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Duality for multiobjective stochastic
programming

Alexandru Hampu

Abstract

This paper presents two ways of constructing the dual of the vectorial stochastic
programming problem with simple recourse in an original way. The first method
used is the transformation of vectorial stochastic programming problem in a stochas-
tic program with a single objective function to which a dual in the sense of Wolfe is
constructed. The second method is the dual‘s construction after the initial problem
was transformed, in turn, into a deterministic vectorial programming problem and
then into one with a single objective function.
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1 Introduction

The study of certain aspects concerning the dual of the vectorial stochastic
programming problem with a single objective function was the preoccupa-
tion of certain authors who elaborated a theory of duality for different
types of the problems. Among those who obtained fundamental results
in this sense, we may mention Wilson [5], Ziemba [7] and Rockafellar and
Wets [3], who created the basis of duality in stochastic programming. For
the vectorial stochastic programming problem these aspects haven‘t been
but little analyzed and we intend to approach the possibility of construct-
ing the dual problem of vectorial stochastic programming with a simple
recourse problem. We consider the vectorial stochastic problem with the
simple recourse.
PVR

V max Z(x)(1)
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subject to:

Tx + y = ξ(ω)

x ≥ 0, y ≥ 0

where Z : Rn → Rr, Z = (z1, z2, ..., zr) is a vectorial function,
zk(x, ξ) = gk(x) + Eξ{Qk(x, ξ)}, (k = 1, 2, ..., r), gk is a linear function,
ξ = (ξ1, ξ2, ..., ξm)T is a random vector, defined on the probability space
{Ω,K,P}, ω ∈ Ω, T is a m x n matrix, x is a n− vector, y is a m− vector,
Eξ denotes the mean operator,

Qk(x, ξ) = min
y∈Yξ

qky, (k = 1, 2, ..., r),

Yξ = {y ∈ Rm|y ≥ 0, Tx + y = ξ(ω)}

where qk is the kth row of the penalties matrix Q = (qkj), k = 1, 2, ..., r;
j = 1, 2, ...,m. The function Qk(x, ξ) is called recourse function.

The PVR model has the following interpretation: if, for a given deci-
sion x and realization ξ(ω), the constraint Tx = ξ(ω) is violated, we could
provide a recourse decision y, such as to compensate its constraint‘s viola-
tion by satisfying Tx + y = ξ(ω). This extra effort is assumed to cause a
penalty of qk(k = 1, 2, ..., r) per unit for the kth objective function.

We denote by:

Qk(χ) = Eξ{Qk(x, ξ)} = Eξ{hk(ξ(ω) − χ)}, (k = 1, 2, ..., r), where
y = ξ(ω)− χ.

The problem (1) becomes:

V max (g1(x)−Q1(χ), g2(x)−Q2(χ), ..., gr(x)−Qr(χ))(2)

subject to:

Tx + y = ξ(ω)

x ≥ 0, y ≥ 0

We consider two possible ways of constructing the dual of (2) problem:

a. We change the vectorial stochastic programming problem into a
stochastic problem with a single objective whose dual we construct.

b. We change the vectorial stochastic programming problem in its vec-
torial deterministic equivalent and we construct its dual using a result
obtained by Kolumbàn [2].
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2 The duality in stochastic programming problem

with simple recourse

We approach the first way of constructing the (1) problem‘s dual which we
will change into a stochastic program with a single objective function using
weights of the objectives denoted by ak, (k = 1, 2, ..., r). The problem (2)
is equivalent with the following stochastic programming problem with a
single objective function:

maxZ∗(x, χ) =
r∑

k=1

akzk(x, χ), (k = 1, 2, ..., r)(3)

subject to:

Tx− y = ξ

x ≥ 0, y ≥ 0

where the weights fulfill the conditions:
r∑

k=1
ak = 1, ak ∈ [0, 1],

k = 1, 2, ..., r.

In the case in which the functions zk, (k = 1, 2, ..., r) can not be summed
they change into utility functions in Neumann-Morgenstern sense and we
obtain z′

k(x, χ) = ukzk(x, χ) + vk, (k = 1, 2, ..., r) where uk and vk are determinated
from the system: {

ukmk + vk = 1

ukMk + vk = 0, (k = 1, 2, ..., r)

where mk and Mk are the minimum and maximum of zk(x, χ) (k = 1, 2, ..., r)
on the domain of the possible solutions, determining the synthesis function

Z∗(x, χ) =
r∑

k=1
akz

′
k(x, χ).

It should be observed that Z∗(x, χ) =
r∑

k=1
ak[gk(x)−Qk(χ)] is a convex

function being a sum of convex functions and the set of constraints is
convex being an intersection of convex regions.

We write the problem(3) in the form:

maxZ∗(x, χ) = g∗(x)−Q∗(χ), (k = 1, 2, ..., r)(4)
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subject to:
Tx− y = ξ(ω)

x ≥ 0, y ≥ 0

where we noted

g∗(x)−Q∗(χ) = a1g1(x) + a2g2(x) + ... + argr(x)− (a1Q1(χ) + a2Q2(χ) + ... + arQr(χ))

knowing that:

Qk(χ) = Eξ{hk(ξ − χ)}, (k = 1, 2, ..., r)

We can write that

Q∗(χ) = Eξ{h∗(ξ−χ) = Eξ{(a1h1(ξ−χ)+a2h2(ξ−χ)+ ...+arhr(ξ−χ))}.

Bringing the problem (1) to this form we may use a result belonging to
Ziemba [7].

Theorem 1 Assume that hk, (k = 1, 2, ..., r)defined on Rm is integrable
and continuously differentiable (except possibly on the set of measure zero),
and there exists m integrable function Gi, i = 1, 2, ...,m such that[

∂h∗(ξ − χ)

∂χi

]
≤ G∗

i (ξ), i = 1, 2, ...,m.

Then Q∗(χ) = Eξ [h∗(ξ − χ)] is continuously differentiable (except possibly
on the set of measure zero) and

∂Q∗(χ)

∂χi
= Eξ

[
∂h∗(ξ − χ)

∂χi

]
, i = 1, 2, ...,m.

If we assume that Z∗ is differentiable then using the Wolfe formulation
[6], a dual of problem (1) is:

minW (x, χ, v) = g∗(x)−Q∗(χ) + vT (Tx− x)(5)

subject to:
∇xW (x, χ, v) = ∇xg

∗(x) + T Tv = 0

∇xW (x, χ, v) = −∇xQ
∗(χ)− v = 0, v ≥ 0.

Under these conditions Wolfe [6] has proved the following duality theo-
rem which we present without proof.



Duality for multiobjective stochastic programming 19

Theorem 2 Suppose that Z∗ is differentiable and convex on the open con-
vex Γ ⊂ Rn × Rm and assume that the constraints of the problem (4)
are fulfilled. If (x, χ) is a solution of problem (4) there exists v such that
(x, χ, v) is a solution to (5) and the extremes of the two problems are equal.

We present now the second way of transforming the vectorial stochastic
programming problem into a deterministic vectorial programming problem
to which we can construct a dual using a result that is due to Kolumbán[2].
For finding the deterministic equivalent of the problem we consider the two
stages of the problem with simple recourse.

The second stage is as follows:

V min(q1y, q2y, ..., qry)(6)

subject to:
Tx + y = ξ(ω)

y ≥ 0

Let Qk(x, ξ) be the optimum of the problem (6) and we will note
Qk(x) = Eξ{Qk(x, ξ)} (k ∈ I).

The first stage of the problem (1) is:

V max(g1(x)−Q1(x), g2(x)−Q2(x), ..., gr(x)−Qr(x))(7)

subject to:
x ≥ 0, x ∈ K1

where we note K1 = {x ∈ D| for every s ∈ S there exists y ≥ 0 such

that Tx + y = s}, D =
r⋂

k=1
Dk, Dk = {x ∈ Rn|Qk(x, ξ) < +∞ almost

surely}, S ∈ Rm being the support of the distribution function of the
random variable ξ (P (ξ ∈ S) = 1).

Taking into account that in (6) there is the condition that y ≥ 0 if we
note s0 the lower bound of S, the set K1 is K1 = {x ∈ Rn|Tx ≤ s0} and
we note K = Rn

+
⋂

K1. Under these conditions we shall try to find the
deterministic equivalent of the problem (1).

In [1] was demonstrated that the following theorem holds:

Theorem 3 x0 ∈ K is an efficient solution for (1) if and only if x0 is an
efficient solution for the following multiobjectiv linear programming prob-
lem:

max(c1x + q1Tx, c2x + q2Tx, ..., crx + qrTx)
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subject to:

x ∈ K

Therefore the deterministic equivalent of (1) is the following vectorial
programming problem

V max(c1x + q1Tx, c2x + q2Tx, ..., crx + qrTx)(8)

subject to:

Tx ≤ s0

x ≥ 0

where s0 = (b1, b2, ..., bm).

Let dkx be the linear functions, where dk = ck + qkT (k = 1, 2, ..., r).
The deterministic equivalent of the problem (1) is as follows:

V max(d1x, d2x, ..., drx)(9)

subject to:

Tx ≤ s0

x ≥ 0

or:

V max(d11x1 + d12x2 + ... + d1nxn, ..., dr1x1 + dr2x2 + ... + drnxn)(10)

subject to:
n∑

j=1

tijxj ≤ bi, i = 1, 2, ...,m(11)

xj ≥ 0, j = 1, 2, ..., n.

The vectorial programming problem is transformed into a problem with
a single objective function using the real numbers ym+1, ym+2, ..., ym+r where

ym+k ≥ 0 (k = 1, 2, ..., r) and
r∑

k=1
ym+k ≥ 0.

We get that (10)-(11) is:

max
r∑

k=1

(
n∑

j=1

dkjxj

)
ym+k(12)
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subject to:
n∑

j=1

tij xj ≤ bi i = 1, 2, ...,m(13)

xj ≥ 0 j = 1, 2, ..., n.

We show using a result due to Kolumbán[2] that a dual of (12)–(13) is
as follows:

min

m∑
i=1

biyi(14)

subject to:
m∑

i=1

tijyi ≤
r∑

k=1

dkjym+k, j = 1, 2, ..., n(15)

r∑
k=1

ym+k ≥ 0, ym+k ≥ 0, k = 1, 2, ..., r.

Let X and X ′ be nonempty convex sets. Let M be the set of maximal
elements of X and M the set of the optimal elements of X ′.

Theorem 4 • 1 If the system (13) or the system (15) is incompatible
then M and M ′ are nonempty.

• 2 If both (13) and (15) systems are compatible then M and M ′ are
nonempty.

• 3 The element (x1, x2, ..., xn) which satisfies (13) is contained in M if
and only if there exists an element (y1, y2, ..., ym+r) contained in M ′

such that:
m∑

i=1

biyi =
r∑

k=1

(
n∑

j=1

dkjxj

)
ym+k(16)

• 4 The element (y1, y2, ..., ym+r) which satisfies (15) is contained in M ′

if and only if there exists an element (x1, x2, ..., xn) contained in M

such that the (16) equality hold.
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