On the exponential diophantine equations of the form $a^{x}-b^{y} \cdot c^{z}= \pm 1$

Ana-Maria Acu, Mugur Acu

Abstract

In this short paper we obtain by elementary methods some general results for some exponential diophantine equations of the form $a^{x}-b^{y} \cdot c^{z}= \pm 1$

2000 Mathematical Subject Classification: 11D72

1 Introduction

This type of exponential diophantine equations was studied by D.Acu, L.J.Alex, L.S.Chen, J.H.Teng, Y.B.Wang.

Theorem 1 [3] If p_{1}, p_{2} are distinct prime numbers and not equal with 3, then the equation $7^{x}-p_{1}^{y} \cdot p_{2}^{z}=1$ has no nonnegative integer solutions.

Theorem 2 [7] The equation $a^{x}-p_{1}^{y_{1}} p_{2}^{y_{2}} \ldots p_{k}^{y_{k}}= \pm 1$ where a is a positive integer with $a>1$ and $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes with $\operatorname{gcd}\left(a, p_{1} p_{2} \ldots p_{k}\right)=1$, has only finitely many positive integer solutions.

Theorem 3 [1] If a, b, c are distinct prime numbers and not equal with 2, then the equation $a^{x}-b^{y} \cdot c^{z}= \pm 1$ has no nonnegative integer solutions.

2 New results

Theorem 4 If a is a natural numbers, $a \equiv 1(\bmod p)$, and b, c are natural numbers with $b c \not \equiv 0(\bmod p)$, where p is a natural number with $p \geq 2$, then the equations $a^{x}-b^{y} \cdot c^{z}=1$ have no nonnegative integer solutions.

Proof. The equation $a^{x}-b^{y} \cdot c^{z}=1$ is equivalent with

$$
\begin{equation*}
a^{x}-1=b^{y} \cdot c^{z} \tag{1}
\end{equation*}
$$

From $b c \not \equiv 0(\bmod p)$ we obtain

$$
\begin{equation*}
b^{y} \cdot c^{z} \not \equiv 0(\bmod p) \tag{2}
\end{equation*}
$$

Because $a \equiv 1(\bmod \mathrm{p})$ we obtain $a^{x} \equiv 1(\bmod \mathrm{p})$, and thus we conclude

$$
\begin{equation*}
a^{x}-1 \equiv 0(\bmod p) \tag{3}
\end{equation*}
$$

Using (1), (2), (3) we find a contradiction. We conclude that the equations $a^{x}-b^{y} \cdot c^{z}=1$ have no nonnegative integer solutions.

Remark 1 From theorem 4 with $a=7, p=3, b=p_{1}, c=p_{2}$, where p_{1}, p_{2} are distinct prime numbers and not equal with 3, we obtain the result from theorem 1.

Remark 2 From theorem 4 with a, b, c distinct prime numbers and not equal with 2, and $p=2$, we obtain a half of results from theorem 3.

Theorem 5 If a is a natural number, $a \equiv-1(\bmod p)$, and b, c are natural numbers with $b c \equiv 0(\bmod p)$, where p is a natural number with $p \geq 2$, then the equations $a^{x}-b^{y} \cdot c^{z}=-1$ have no nonnegative integer solutions with the form $(2 k+1, y, z)$.
Proof. By using congruences with p modulus, in a similar way with the proof of the theorem 4, we obtain the assertion.
Theorem 6 If a is a natural number, $a \equiv 1(\bmod p)$, and $p_{1}, p_{2}, \ldots, p_{k}$ are natural numbers with $\prod_{i=1}^{k} p_{i} \not \equiv 0(\bmod p)$, where p is a natural number with $p \geq 2$, then the equations $a^{x}-\prod_{i=1}^{k} p_{i}^{y_{i}}=1$ have no nonnegative integer solutions

Proof. The equation $a^{x}-\prod_{i=1}^{k} p_{i}^{y_{i}}=1$ is equivalent with $a^{x}-1=\prod_{i=1}^{k} p_{i}^{y_{i}}$. Using congruences with p modulus we show that $a^{k}-1 \equiv 0(\bmod \mathrm{p})$ and $\prod_{i=1}^{k} p_{i}^{y_{i}} \not \equiv 0(\bmod \mathrm{p})$. Thus we find a contradiction and we obtain the assertion.

Remark 3 It is easy to see that the Theorem 6 is complementary to the Theorem 2.

Theorem 7 The only solutions of the equation $3^{x}-5^{y} \cdot 2^{z}=-1$ nonnegative integers are (0, 0, 1), (1, 0, 2) and (2, 1, 1).

Proof. The equation $3^{x}-5^{y} \cdot 2^{z}=-1$ is equivalent with

$$
\begin{equation*}
3^{x}+1=5^{y} \cdot 2^{z} \tag{4}
\end{equation*}
$$

If $z \geq 3$ then $2^{z} \equiv 0(\bmod 8) . U \operatorname{sing}(4)$ we obtain $3^{x}+1 \equiv 0(\bmod 8)$.
By using congruences with 8 modulus for $x=0, x=2 p$ and respectively $x=2 p+1$, we conclude that $3^{x}+1 \not \equiv 0(\bmod 8)$.

If $y \geq 2$ then $5^{y} \equiv 0(\bmod 25)$. Using (4) we obtain $3^{x}+1 \equiv 0(\bmod 25)$. By using congruences with 25 modulus $x=4 q, x=4 q+1, x=4 q+2$, and respectively $x=4 q+3$, we conclude that $3^{x}+1 \not \equiv 0(\bmod 25)$.

Now we conclude that

$$
\begin{equation*}
y \in\{0,1\} \text { and } z \in\{0,1,2\} \tag{5}
\end{equation*}
$$

By a simple calculation we obtain from (4) and (5) the only solutions (0, $0,1),(1,0,2)$ and $(2,1,1)$.

References

[1] A.M.Acu, M.Acu, On the exponential diophantine equations of the forms $a^{x}-b^{y} \cdot c^{z}= \pm 1$ with a, b, c prime numbers, General Mathematics, vol.8/2000, no.3-4.
[2] D.Acu, On some exponential diophantine equations of the form $a^{x}-b^{y} \cdot c^{z}= \pm 1$, Anal. Univ. de Vest(Timişoara), Mat.-Inf., Vol.XXXIV, Fasc. 2 (1996), 167-172.
[3] D.Acu, On some exponential diophantine equations of the form $a^{x}-b^{y} \cdot c^{z}= \pm 1$, submitted.
[4] L.J. Alex, On simple groups of order $2^{a} 3^{b} 7^{c} p$, Journal of Algebra, 25(1)(1973), pag.113-124.
[5] L.J. Alex, On simple groups of order $2^{a} 3^{b} 7^{c} p$, Trans. Amar. Math. Soc., 173(1972), pag.389-399
[6] L.S.Chen, Y.B.Wang On the exponential diophantine equation $a^{x}-b^{y} \cdot c^{z}= \pm 1$, Heilongjiang Dexue Ziran Kexue Xuebao, 11 (2) (1994), pag.18-20 (MR 96B:11039).
[7] Y.H.Teng On the diophantine equation $a^{x}-p_{1}^{y_{1}} p_{2}^{y_{2}} \ldots p_{k}^{y_{(k)}}= \pm 1$ (Chinese), Heilongjiang Dexue Ziran Kexue Xuebao, 8 (4) (1991), 57-59 (MR93C:11019).

Department of Mathematics
Faculty of Sciences
"Lucian Blaga" University of Sibiu
2400 Sibiu, Romania
E-mail address: acu_mugur@yahoo.com

