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Numerical solution of two-dimensional
nonlinear Fredholm integral equations of the

second kind by spline functions

Vasile Căruţaşu

Abstract

In this paper we shall investigate the numerical solution of two-dimensional
Fredholm integral equation by Galerkin method using as approximating subspace
a special space of spline functions. The estimation of the error as well as the
convergence of the given procedures are studied. Some numerical examples illustrate
the efficiency of the method.
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1 Introduction

The integral equations provide an important tool for modeling a numerous

phenomena and processes and also for solving boundary value problems

for both ordinary and partial differential equations. Their historical de-

velopment is closely related to the solution of boundary value problems in

potential theory. Progress in the theory of integral equations also had a

great impact on the development of functional analysis. Reciprocally, the

main results of the theory of compact operators have taken the leading

part to the foundation of the existence theory for integral equations of the

second kind. In the last decades there has been much interest in numerical

solutions of integral equations. The Nystrom method and the collocation

method are, probably, the two most important approaches for the nume-

rical solution of these integral equations. But also many other methods
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are known for the approximate solution of the integral equations. For a

comprehensive study of both the theory and the numerical solution of inte-

gral equations we refer to monographs of Hackbusch [7], Athinson [2] and

Baker [4]. Recently, very important results, containing the Galerkin and

iterated Galerkin methods, respectively the iterated collocation method

for linear Fredholm integral equations have been published by Chen and

Xu [5] and Lin, Sloan and Xie [11].Fewer numerical methods are known

for the nonlinear integral equations and especially for several-dimensional

Fredholm integral equations. In this paper we will be concerned to the

Galerkin and iterated Galerkin methods for the two-dimensional nonlinear

Fredholm integral equations of the second kind, using as approximating

subspace a special spline function space. Such methods using the Richard-

son extrapolation of Galerkin solutions have been investigated by Han and

Wang [9].

Let consider the following nonlinear two-dimensional Fredholm integral

equations of the second kind

u (x, y) =

b∫

a

d∫

c

K (x, y, t, s, u (t, s)) dtds+f (x, y) , (x, y) ∈ D := [a, b]×[c, d]

(1)

where K : D×D×< → < is a continuous nonlinear in u given function,

f : D → < is also continuous given function and the two-variable function

u is the unknown function.

Introducing the Uryson integral operator defined by:

(Ku) (x, y) :=

b∫

a

d∫

c

K (x, y, t, s, u (t, s)) ds

the equation (1) takes the operator form

u = Ku + f(2)

The most used numerical method for (1) are the collocation and Galerkin

methods, as we can see in [1]-[3], [6], [11]-[14].
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In [8], [13] a general theory for solving numerically linear and nonli-

near one-dimensional Fredholm integral equations are given and the error

analysis are also investigated. Also the error expansions for the numerical

solution of one-dimensional linear integral equations have been discussed

by Marchuck and Shaidurov [12] and Baker [4]. McLean [13] and Lin et

al. [11] obtained the asymptotic error expansion for numerical solution

of Fredholm integral equations, including the Nystrom method, iterated

collocation method and iterated Galerkin method. In this paper, following

the idea of Han and Wong [9] we shall consider the two-dimensional equa-

tion (1) by using the two-dimensional polynomial spline functions of degree

(p, q) and interpolatory quadrature formulas to evaluate the integrals oc-

curring in the Galerkin and iterated Galerkin methods. If the step-sizes

are denoted by h and k, the error estimation will be obtained with terms

in h2p and k2q.

Throughout in this paper we assume that the following conditions are

satisfied:

i Equation (1) has an unique solution u ∈ Cr+1 (D) for a given r ∈ ℵ;

ii (I −Ku) is nonsingular for the solution u;

iii Functions K and f are smooth enough.

2 The Spline-Galerkin method

Let ∆(1) and ∆(2) denote, respectively the uniform partitions of [a, b] and

[c, d]:

∆(1) : a = x0 < x1 < ... < xM = b, ∆(2) : c = y0 < y1 < ... < yN = d

with:

h := (xi+1 − xi) =
b− a

M
; k := (yj+1 − yj) =

d− c

N
.

These partitions define a grid for D denoted by:
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∆M,N := ∆(1) ×∆(2) = {(xm, yn) : 0 ≤ m ≤ M ; 0 ≤ n ≤ N} .

Set

I
(1)
0 := [x0, x1] , I

(1)
m := ]xm, xm+1] ,m = 1, 2, ..., M − 1;

I
(2)
0 := [y0, y1] , I

(2)
n := ]yn, yn+1] , n = 1, 2, ..., N − 1.

and let Im,n be the two-dimensional rectangles defined by

Im,n := I(1)
m × I(2)

n ; m = 0, 1, ..., M − 1;

We shall use the following polynomial spline functions finite element

space:

S(−1)
p,q (∆M,N) :=

{
v : v |Im,n

=: um,n ∈ Pp,q, 0 ≤ m ≤ M − 1; 0 ≤ n ≤ N − 1
}

where Pp,q denotes the space of real polynomials of degree p in x and

degree q in y. For simplicity, we shall write this spline subspace by S
(−1)
p,q .

The superscript (−1) in the notation of spline finite element space empha-

size that spline spaces S
(−1)
p,q is not a subspace of C (D), i.e. the segments

of splines are not continuous connected.

Now, the spline Galerkin method is the following:

Find uhk ∈ S
(−1)
p−1,q−1 such that

(
uhk, v

)
=

(
Kuhk, v

)
+ (f, v) ,∀v ∈ S

(−1)
p−1,q−1(3)

where (•, •) denotes the usual inner product in L2 (D).

If P denotes the orthogonal projection of L2 (D) onto S
(−1)
p−1,q−1, then the

spline Galerkin method (3) can be equivalently rewritten: Find

uhk ∈ S
(−1)
p−1,q−1 such that

uhk = PKuhk + Pf.(4)

The iterated Galerkin spline solution, uhk, corresponding to the above

Galerkin spline solution uhk is given by:
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uhk (x, y) =
(
Kuhk

)
(x, y) + f (x, y) , (x, y) ∈ D.(5)

For the iterated Galerkin solution uhk it is easy to show that:

(I −KP ) uhk = f(6)

and that

Puhk = uhk.(7)

To give an explicit formula for Pu we denote the inner product in the

real Hilbert space L2 [0, 1] as usual by

(u, v) =

1∫

0

u (t) v (t) dt.

Let ϕ0, ϕ1, ϕ2, ... be the sequence of orthogonal polynomials associated

with the above inner product, i.e. ϕi is a polynomial of degree i and

(ϕi, ϕj) = δi,j, i, j ≥ 0.

Let L0 (t) = 1 and

Li (t) :=
1

2iL!

di

dti
(
t2 − 1

)i
, i ≥ 1

the Legendre polynomials of degree i. Then the orthogonal polynomial

ϕi are related to the Legendre polynomials Li by

ϕi (t) :=
√

2i + 1Li (2t− 1) .

Now set Ψj (s) :=
√

2j + 1Lj (2s− 1) .

Defining the piecewise functions

ϕim (x) :=

{
1√
h
ϕi

(
x−xm

h

)
, x ∈ [xm, xm+1]

0, x ∈ [a, b] \ [xm, xm+1]

Ψjn (y) :=

{
1√
k
Ψj

(
y−yn

k

)
, y ∈ [yn, yn+1]

0, x ∈ [c, d] \ [yn, yn+1]
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then the functions

{ϕim (x) Ψjn (y)} (0 ≤ i ≤ p− 1, 0 ≤ m ≤ M − 1, 0 ≤ j ≤ q − 1

and 0 ≤ n ≤ N − 1) form an orthogonal basis of the spline space S
(−1)
p−1,q−1.

Therefore

(Pu) (x, y) =

p−1∑

i=0

q−1∑

j=0

M−1∑
m=0

N−1∑
n=0

(ϕimΨjn, u) ϕim (x) Ψjn (y) .(8)

The solution processes for equation (3) leads to an algebraic nonlinear

system in which each coefficient of the system is a definite integral. Because

the integrals occurring in (3) and (5) cannot be obtained in general exactly,

these integrals have to be approximated by suitable quadrature formulas.

When the quadrature formulas are given, the method is called the discrete

spline Galerkin method. We shall introduce such a discrete method.

Let c1, c2, ..., cp−1 be the Gauss knots in the interval ]0, 1[.

The following Gauss quadrature formula

1∫

0

g(t)dt ≈
p−1∑
i=0

wig (ci) =: R (g)(9)

with 0 < c0 < c1 < ... < cp−1 < 1 is an interpolatory quadrature rule

which is exact for all polynomials of degree 2p − 1, but not exact for any

polynomials of degree 2p or higher.

Let xm,i := xm + cih (m = 0, 1, ..., M − 1; i = 0, 1, ..., p− 1).

From (9) we obtain the following composite quadrature rule:

b∫

a

g(t)dt ≈ h
M−1∑
m=0

p−1∑
i=0

wig (xi,m) =: Rh (g) .(10)

Similarly, if dj, j = 0, 1, ...q − 1 are the Gauss points in ]0, 1[, then the

interpolatory quadrature rule
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1∫

0

g(t)dt ≈
q−1∑
j=0

wjg (dj) =: S (g)

furnishes the composite quadrature rule

d∫

c

g(t)dt ≈ k

N−1∑
n=0

q−1∑
j=0

wjg (yn,j) =: Sk (g)(11)

where yn,j := yn + djk, n = 0, 1, ..., N − 1, j = 0, 1, ..., q − 1.

We define a discrete integral operator Khk by

(Khku) (x, y) := hk

M−1∑
m=0

N−1∑
n=0

p−1∑
i=0

q−1∑
j=0

wiwjK (x, y, xm,i, yn,j, u (xm,i, yn,j)) .(12)

Using (10) and (11) we define a discrete semidefinite inner product:

(f, g)hk := hk

M−1∑
m=0

N−1∑
n=0

p−1∑

i=0

q−1∑

j=0

wiwjf (xm,i, yn,j) g (xm,i, yn,j) , f, g ∈ C (D)

(13)

We introduce now a discrete analog of the orthogonal projection oper-

ator P , denoted by Q and defined as follows:

For u ∈ C (D) , define z := Qu to be the unique element in S
(−1)
p−1,q−1 that

satisfies:

(z, Φ)hk = (u, Φ)hk ,(14)

It is clear that Q : C (D) → S
(−1)
p−1,q−1 is a projection operator.

By effective calculating of Qu we obtain:

(Qu) (x, y) =

p−1∑
i=0

q−1∑
j=0

M−1∑
m=0

N−1∑
n=0

(ϕimΨjn, u) ϕim (x) Ψjn (y) .(15)

Using now the projection operator Q, the discrete Galerkin method for

solving the equation (2) is defined as follows:
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Find zhk ∈ S
(−1)
p−1,q−1 such that

(I −QKhk) zhk = Qf.(16)

The iterated discrete spline Galerkin solution zhk, corresponding to dis-

crete spline Galerkin solution zhk is given by

zhk (x, y) =
(
Khkz

hk
)
(x, y) + f (x, y) , (x, y) ∈ D.(17)

For the iterated discrete spline Galerkin solution of (17) we have

Qzhk =
(
QKhkz

hk + Qg
)

= zhk.

Substituting it back in (17) we obtain that zhk satisfies

(I −QKhk) zhk = f.(18)

As a spline approximating solution of the problem (2) we shall consider

the iterated spline Galerkin solution zhk.

3 The estimation of the error

First we need the asymptotic error expansion of the discrete orthogonal

projection Qu.

Theorem 1. Let r ≥ max (p, q) be an integer and let u ∈ Cr+1 (D).

Then, for any (x, y) ∈ ]xm, xm+1[ × ]yn, yn+1[, m = 0, 1, ..., M − 1,

n = 0, 1, ..., N − 1 we have:

Qu (x, y) =
p−1∑
µ=0

r−µ∑
v=0

hµkυu(µ,υ) (x, y) Φµ

(
x−xm

h

)
Ψυ

(
y−yn

k

)
+

+O
(
hr+1 + kr+1

)(19)

where

Φµ (τ) :=
p−1∑
α=0

p−1∑
β=0

ϕi (cα) ϕi (τ) (cα−τ)µ

µ! and

Ψυ (τ) :=
q−1∑
β=0

q−1∑
j=0

Ψj (dβ) Ψj (θ)
(dβ−θ)µ

υ! .
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Proof. Let (x, y) ∈ ]xm, xm+1[× ]yn, yn+1[. From (13) and recalling the

definitions of ϕim and Ψjn we have:

(u, ϕimΨjn)hk =

p−1∑
α=0

q−1∑

β=0

wαwβϕi (cα) Ψj (dβ) u (xm + cαh, yn + dβk) .

Let x = xm + τh and y = yn + θk, then , using Taylor‘s theorem and

writing it as polynomials in h and k we obtain:

(u, ϕimΨjn)hk =
p−1∑
α=0

q−1∑
β=0

wαwβϕi (cα)Ψj (dβ) u (x + (cα − τ) h, y + (dβ − θ) k) =

=
r∑

µ=0

r−µ∑
υ=0

hµkυu(µ,υ) (x, y)
(

p−1∑
α=0

wαϕi (cα) (cα−τ)µ

µ!

)
·

·
(

q−1∑
β=0

wβΨj (dβ) (dβ−θ)µ

υ!

)
+ O

(
hr+1 + kr+1

)
.

Substituting the above expression into (15) we have:

(Qu) (x, y) =
r∑

µ=0

r−µ∑
υ=0

hµkυu(µ,υ) (x, y)

(
p−1∑
α=0

p−1∑
i=0

ϕi (α) ϕi (τ) (cα−τ)µ

µ!

)
·

·
(

q−1∑
β=0

q−1∑
j=0

Ψj (dβ) Ψj (θ)
(dβ−θ)µ

υ!

)
=

=
r∑

µ=0

r−µ∑
υ=0

hµkυu(µ,υ) (x, y) Φµ

(
x−xm

h

)
Ψυ

(
y−yn

k

)
+ O

(
hr+1 + kr+1

)

and the theorem is proved.

Noting that ci, i = 0, 1, ..., p − 1 are Gauss point in the interval ]0, 1[,

the quadrature rule (9) is an interpolation quadrature rule and we have:

Φµ (τ) :=
p−1∑
α=0

p−1∑
i=0

ϕi (cα) ϕi (τ) (cα−τ)µ

µ! =

=
1∫
0

p−1∑
i=0

ϕi (ξ) ϕi (τ) (ξ−τ)µ

µ! dξ, µ ≤ p.

(20)

But using the Cristoffel-Darboux identity we have
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p−1∑
i=0

ϕi (ξ) ϕi (τ) =
ap−1

ap
· ϕp (ξ) ϕp−1 (τ)− ϕp−1 (ξ) ϕp (τ)

ξ − τ
(21)

where ap is the leading coefficient of the polynomial ϕp. Because ϕ0, ϕ1, ...

are orthogonal polynomials, it is easy to see that Φµ (τ) = 0 for

1 ≤ µ ≤ p− 1 and similarly Ψυ (τ) = 0 for 1 ≤ υ ≤ q − 1.

From Theorem 1 we have the following corollary.
Corollary 1. Let r ≥ max (p, q) be an integer and let u ∈ Cr+1 (D).

Then, for any (x, y) ∈ ]xm, xm+1[ × ]yn, yn+1[, m = 0, 1, ..., M − 1,
n = 0, 1, ..., N − 1 we have:

(Q− I) u (x, y) =
r−q∑
µ=p

hµu(µ,0) (x, y) Φµ

(
x−xm

h

)
+

r∑
υ=q

kυu(0,υ) (x, y)Ψυ

(y−yn

k

)
+

+
r−q∑
µ=p

r−µ∑
υ=q

hµkυu(µ,υ) (x, y)Φµ

(
x−xm

h

)
Ψυ

(y−yn

k

)
+ O

(
hr+1 + kr+1

)

where Φµ (τ) and Ψυ (θ) are defined in Theorem 1.

Lemma 1.For i = 0, 1, ..., r and j = 0, 1, ..., r−1 let Vi,j ∈ Cr+1−i−j (D)

and let be V (x, y) :=
r∑

i=0

r−i∑
j=0

hikjVi,j (x, y) .

Then, for any (x, y) ∈ ]xm, xm+1[ × ]yn, yn+1[, m = 0, 1, ..., M − 1,
n = 0, 1, ..., N − 1 holds:

QV (x, y) := V 0,0 (x, y) +
r∑

i=0

r−i∑

j=0

hikjV i,j

(
x, y,

x− xm

h
,
y − yn

k

)
+ O

(
hr+1 + kr+1

)

where V 0,0 (x, y, t, s) := 0 for i 6= 0 and j 6= 0 and

V i,j (x, y, t, s) :=
i∑

µ=0

j∑
υ=0

V (µ,υ) (x, y) Φµ (t) Ψυ (s) .

Proof. From Theorem 1 we have for any (x, y) ∈ ]xm, xm+1[× ]yn, yn+1[:

QV (x, y) =
r∑

i=0

r−i∑
j=0

hikjQVi,j (x, y) +
r∑

i=0

r−i∑
j=0

hikj·

·
r−i−j∑
µ=0

r−i−j−µ∑
υ=0

hµkυV
(µ,υ)
i,j (x, y) ·

·Φµ

(
x−xm

h

)
Ψυ

(
y−yn

k

)
+ O

(
hr+1 + kr+1

)
(22)

and writing (22) as polynomials in h and k it follows:
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QV (x, y) =
r∑

i=0

r−i∑
j=0

hikj ·
i∑

µ=0

j∑
υ=0

V
(µ,υ)
i−µ,j−υ (x, y) ·

·Φµ

(
x−xm

h

)
Ψυ

(
y−yn

k

)
+ O

(
hr+1 + kr+1

)
.

Now, if V 0,0 (x, y, t, s) := 0 for i 6= 0 and j 6= 0 and

V i,j (x, y, t, s) :=
i∑

µ=0

j∑
υ=0

V
(µ,υ)
i−µ,j−υ (x, y) Φµ (t) Ψυ (s)

we obtain Lemma 1.

Lemma 2. (Euler-McLaurin summation formula). Let f ∈ Cr+1 (D)

and τ, θ with 0 ≤ τ ≤ 1, 0 ≤ θ ≤ 1. Then

hk
M−1∑
µ=0

N−1∑
υ=0

f (xµ + τh, yυ + θk) =
r∑

i=0

r−i∑
j=0

hikj

i!j! Bi (τ) Bj (θ) ·

· [f (i−1,j−1) (x, y)
]b d

x=a,y=c
+ O

(
hr+1 + kr+1

)

where Bj are Bernoulli polynomials and

[
f (−1,−1) (x, y)

]b d

x=a,y=c
:=

b∫
a

d∫
c

f (x, y) dxdy,

[f (x, y)]b d
x=a,y=c := f (b, d)− f (b, c)− f (a, d) + f (a, c) .

Lemma 3. Let f ∈ Cr+1 (D). Then we have the following cubature

formula:

RhSk (f) = hk
M−1∑
m=0

N−1∑
n=0

p−1∑
i=0

q−1∑
j=0

wiwjf (xm,i, yn,j) =

=
r∑

i=0

r−i∑
j=0

hikj

i!j! R (Bi) S (Bj) ·
[
f (i−1,j−1) (x, y)

]b d

x=a,y=c
+ O

(
hr+1 + kr+1

)
.

Now, let come to discuss the error expansing problem. We first consider

linear two-dimensional Fredholm integral equation of the second kind:

u (x, y) =

b∫

a

d∫

c

K (x, y, t, s, ) u (t, s) dtds + f (x, y) , (x, y) ∈ D(23)

which may be written in the operator form as
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u = Ku + f, (Ku) (x, y) :=

b∫

a

d∫

c

K (x, y, t, s, ) u (t, s) dtds.(24)

Theorem 2. Suppose that K ∈ Cr+1 (D ×D), f ∈ Cr+1 (D) and that
the hypothesis of Lemma 1 are satisfied. Then, for any (x, y) ∈ D we have:

(KhkQV ) (x, y) =
r∑

i=0

r−i∑
j=0

hikj

i!j!

{
R (Bi) S (Bj)

[
∂i+j−2

∂ti−1∂sj−1 K (x, y, t, s, ) V0,0 (t, s)
]b d

t=a,s=c

+
i∑

α=0

j∑
β=0

p−1∑
µ=0

q−1∑
υ=0

wµwυ
Bα(cµ)Bβ(dυ)

α!β! ·

·
[

∂α+β−2

∂tα−1∂sβ−1 K (x, y, t, s, )V i−α,j−β (t, s, cµ, dυ)
]b d

t=a,s=c

}
+

+O
(
hr+1 + kr+1

)
.

(25)

Proof. According to the definition (12) of Khk we have:

(KhkQV ) (x, y) = hk
M−1∑
m=0

N−1∑
n=0

p−1∑
µ=0

q−1∑
υ=0

wµwνK (x, y, xm,µ, yn,υ) ·
·QV (xm,µ, yn,υ)

(26)

Using Lemma 1 we find

QV (xm,µ, yn,υ) = V0,0 (xm,µ, yn,υ) +

+
r∑

i=0

r−i∑
j=0

hikjV i,j (xm,µ, yn,υ, cµ, dυ) + O
(
hr+1 + kr+1

)
.

Substituting this expression into (26) and using Lemmas 2 and 3 we

have:
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(KhkQV ) (x, y) = hk
M−1∑
m=0

N−1∑
n=0

p−1∑
µ=0

q−1∑
υ=0

wµwνK (x, y, xm,µ, yn,υ) ·

·V0,0 (xm,µ, yn,υ) +
r∑

i=0

r−i∑
j=0

hikj
p−1∑
µ=0

q−1∑
υ=0

wµwνhk
M−1∑
m=0

N−1∑
n=0

K (x, y, xm,µ, yn,υ) ·

·V i,j (xm,µ, yn,υ, cµ, dυ) + O
(
hr+1 + kr+1

)
+

r∑
i=0

r−i∑
j=0

hikj·

·
{

R(Bi)S(Bj)
i!j!

[
∂i+j−2

∂ti−1∂sj−1K (x, y, t, s, ) V0,0 (t, s)
]b d

t=a,s=c
+

+
p−1∑
µ=0

q−1∑
υ=0

wµwν

r−i−j∑
α=0

r−i−j−α∑
β=0

hαkβ Bα(cµ)Bβ(dυ)
α!β! ·

·
[

∂α+β−2

∂tα−1∂sβ−1K (x, y, t, s, ) V i,j (t, s, cµ, dυ)
]b d

t=a,s=c

}
+ O

(
hr+1 + kr+1

)

Writing the above expression as polynomials in h and k we obtain the

Theorem 2.

Now we choose V0,0 (x, y) = u∗ (x, y) (the exact solution of equation (23))

and

Vi,j (i 6= 0, j 6= 0) to satisfy the following linear Fredholm integral equa-

tions:

Vi,j (x, y)−
b∫
a

d∫
c

K (x, y, t, s) Vi,j (t, s) dtds =

=
R(Bi)S(Bj)

i!j!

[
∂i+j−2

∂ti−1∂sj−1K (x, y, t, s) V0,0 (t, s)
]b d

t=a,s=c
+

+
i∑

α=0

j∑
β=0

p−1∑
µ=0

q−1∑
υ=0

wµwυ
Bα(cµ)Bβ(dυ)

α!β! ·

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K (x, y, t, s) V i−α,j−β (t, s, cµ, dυ)−

− (1− sgn (α + β)) Vi,j (t, s))]b d
t=a,s=c .

(27)

From Theorem 2 we have:

V (x, y)− (KhkQV ) (x, y) = f (x, y) + O
(
hr+1 + kr+1) .(28)

Theorem 3. Let K ∈ Cr+1 (D ×D), f ∈ Cr+1 (D) and u∗ be the

exact solution of (23). Then, for sufficiently large M and N , the difference
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between the iterated discrete spline Galerkin solution zhk and u∗ can be

written as:

zhk(x, y)− u∗(x, y) =

[ r
2 ]∑

i=p

h2iV2i,0(x, y) +

[ r
2 ]∑

j=q

k2jV0,2j (x, y) +(29)

+

[ r
2 ]−q∑
i=p

[ r
2 ]−i∑
j=p

h2ik2jV2i,2j (x, y) + O
(
hr+1 + kr+1) , (x, y) ∈ D

where Vi,j (i 6= 0, j 6= 0) satisfy the equation (27).

Proof. Let denote by η (x, y) := V (x, y)− zhk (x, y) for any (x, y) ∈ D.

Substracting (18) from (28) we get:

(I −KhkQ) η (x, y) = O
(
hr+1 + kr+1)(30)

The operator series KhkQ converge uniformly to K as h → 0 and

k → 0. Because (I −K)−1 exists and is uniformly bounded, it follows that

(I −KhkQ)−1 exist and are uniformly bounded for all sufficiently small

value h and k. So we have:

zhk (x, y) =
r∑

i=0

r−i∑
j=0

hikjVi,j (x, y) + O
(
hr+1 + kr+1) , (x, y) ∈ D

Thus, to complete the proof, it is easily to verify that Vi,j (x, y) = 0

if i is odd or i ≤ 2p − 1, j is odd or j ≤ 2q − 1. Now, coming back to

the two-dimensional nonlinear Fredholm integral equation (1), we choose

W0,0 (x, y) = u∗ (x, y) (the exact solution of (1)) and Wi,j (i 6= 0, or j 6= 0)

the functions to satisfy the following linear Fredholm integral equations:



Numerical solution of two-dimensional Fredholm integral equations 45

Wi,j (x, y)−
b∫
a

d∫
c

Ku (x, y, t, s, u∗ (t, s)) dtds =

=
R(Bi)S(Bj)

i!j!

[
∂i+j−2

∂ti−1∂sj−1K (x, y, t, s, V0,0 (t, s))
]b d

t=a,s=c
+

+
i∑

α=0

j∑
β=0

p−1∑
µ=0

q−1∑
υ=0

wµwυ
Bα(cµ)Bβ(dυ)

α!β! ·

·
[

∂α+β−2

∂tα−1∂sβ−1

(
Ku (x, y, t, s, u∗ (t, s)) ·W i−α,j−β (t, s, cµ, dυ)−

− (1− sgn (α + β)) Wi,j (t, s)− Fi−α,j−β (x, y, t, s, ξ, η))]b d
t=a,s=c

(31)

where W 0,0 (x, y, t, s) = 0 for i 6= 0, or j 6= 0,

W i,j (x, y, t, s) :=
i∑

µ=0

j∑
υ=0

W (µ,υ) (x, y) · Φµ (t) Ψυ (s) and

Fi,j (x, y, t, s, ξ, η) :=
i+j∑
p=2

1
p!

(
∂
∂u

)p
K (x, y, t, s, u∗ (t, s)) ·

·
(

∑
α1+...αp=i

∑
β1...βp=j

p∏
n=1

Wαn,βn
(t, s, ξ, η)

)

For the two-dimensional nonlinear Fredholm integral equation (1), si-

milarly to Theorem 3 we obtain the following essential results.

Theorem 4. Let suppose that r ≥ max (p, q) is an integer number,

K ∈ Cr+1 (D ×D), f ∈ Cr+1 (D) and u∗ is the exact solution of (1). If zhk

is the iterated spline discrete Galerkin solution, then for sufficiently large

M and N we have the following error expression:

zhk (x, y)− u∗ (x, y) =
[ r
2 ]∑

i=p

h2iW2i,0 (x, y) +
[ r
2 ]∑

j=q

k2jW0,2j (x, y) +

+
[ r
2 ]−q∑
i=p

[ r
2 ]−i∑
j=q

h2ik2jW2i,2j (x, y) + O
(
hr+1 + kr+1

)
, (x, y) ∈ D

where Wi,j (i 6= 0 or j 6= 0) satisfy the equation (31).

From the expression of the error given by the above Theorem, it follows

directly that the iterated spline discrete Galerkin method possesses very

good convergence properties.
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4 Numerical example

Consider the following nonlinear Fredholm integral equation [9]

u (x, y) =
1∫
0

1∫
0

x
1+y (1 + t + s) u2 (t, s) dtds + 1

(1+x+y)2
− x

6(1+y) ,

(x, y) ∈ [0, 1]× [0, 1]

whose exact solution is: u∗ (x, y) = 1
(1+x+y)2

.

The exact solution u∗ will be approximated by iterated spline discrete

Galerkin method in the spline space S
(−1)
p−1,q−1 with p = q = 1, i.e. the spline

approximating space S
(−1)
0,0 is the piecewise constant finite element space.

We choose uniform partition with M = N = 1, 2, 4, 8, 16, 32 and with

h = k = 1
N , xm,1 = xm + c1h, yn,1 = yn + d1h; (0 ≤ m,n ≤ N − 1) with

c1 = d1 = 1
2 , w1 = w1 = 1.

The resulting nonlinear algebraic systems have been solved by a New-

ton method. Denoting by zhk
m the approximating spline solution, by u∗

the exact solution, by e
(m)
N := max

{
u∗ (x, y)− zhk (x, y) |: (x, y) ∈ D

}
the

errors, and by α(i) := log2
e
(i)
N

e
(i)
2N

an estimate of a convergence order we have

obtained using the Theorem 4 the results contained in the following table:

N e
(0)
N α(0) e

(1)
N α(1) e

(2)
N α(2)

1 6.124× 10−2 1.540 7.686× 10−3 3.133 4.250× 10−4 4.810

2 2.103× 10−2 1.831 8.779× 10−4 3.671 1.512× 10−5 5.685

4 5.93× 10−3 1.951 6.910× 10−5 3.912 2.945× 10−7 5.868

8 1.535× 10−3 1.988 4.595× 10−6 3.981 5.06× 10−9

16 3.87× 10−4 1.998 2.941× 10−7

32 9.71× 10−5
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