General Mathematics Vol. 9, No. 1-2 (2001), 23-29

A improvement of Becker's condition of univalence

Mugur Acu

Abstract

Let A be the class of all analytic functions f in the unit disc U = U(0, 1) normed with the conditions f(0) = 0, f'(0) = 1. In this paper we give a sufficient condition for univalence which generalize the well known Becker's criterion of univalence.

2000 Mathematical Subject Classification: 30C45

1 Introduction

Let A be the class of functions f, which are analytic in the unit disc $U = \{z \in \mathbf{C} : |z| < 1\}$, with f(0) = 0, f'(0) = 1.

In this paper we shall find, using the theory of Löwner chains, a sufficient condition for univalence of a class of functions which generalize Becker's univalence criterion.

A function L(z,t), $z \in U$, $t \ge 0$ is called a Löwner chain, or a subordination chain if L(z,t) is analytic and univalent in U for all positive t and, for all s, t with $0 \le s < t$, $L(z,s) \prec L(z,t)$ (by " \prec " we denote the relation of subordination). In addition, L(z,t) must be continuously differentiable on $[0,\infty]$ for all $z \in U$.

2 Preliminaries

Let $0 < r \le 1$ and U_r the disc of the complex plane $\{z \in \mathbf{C} : |z| < r\}$.

Theorem 2.1 (Pommerenke)([4]). Let $r_0 \in (0,1]$ and let $L(z,t) = a_1(t) \cdot z + a_2(t) \cdot z^2 + \cdots$, $a_1(t) \neq 0$, be analytic in U_{r_0} for all $t \geq 0$, locally absolutely continuos in $[0,\infty)$ locally uniform with respect to U_{r_0} . For almost all $t \geq 0$ suppose

(1)
$$z \cdot \frac{\partial L(z,t)}{\partial z} = p(z,t) \cdot \frac{\partial L(z,t)}{\partial t}, \ z \in U_{r_0}$$

where p(z,t) is analytic in U and Re $p(z,t) > 0, z \in U, t \geq 0$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\left\{\frac{L(z,t)}{a_1(t)}\right\}$ forms a normal family in U_{r_0} , then, for each $t \in [0,\infty)$, L(z,t) has an analytic and univalent extension to the whole disc, and is, consequently, a Löwner chain.

Theorem 2.2 (Becker)([1],[2]). If $f \in A$ and

(2)
$$\left(1-|z|^2\right) \cdot \left|\frac{zf''(z)}{f'(z)}\right| \le 1 \text{ for all } z \in U$$

then f is univalent in U.

3 Main results

Theorem 3.1 Let $f, g, h \in A$ and let α, β, γ be complex numbers with $|\alpha| + |\beta| + |\gamma| > 0$. If (3) $|\alpha + \beta + \gamma| < 1$

$$(4) \qquad \left||z|^2 \cdot (\alpha + \beta + \gamma) + \left(1 - |z|^2\right) \cdot \left(\alpha \cdot \frac{zf'(z)}{f(z)} + \beta \cdot \frac{zg'(z)}{g(z)} + \gamma \cdot \frac{zh'(z)}{h(z)}\right)\right| \le 1, z \in U$$

then the function

(5)
$$F_{\alpha,\beta,\gamma}(z) = \left[(1+\alpha+\beta+\gamma) \cdot \int_0^z f^\alpha(u) \cdot g^\beta(u) \cdot h^\gamma(u) du \right]^{\frac{1}{\alpha+\beta+\gamma+1}}$$

is analytic and univalent in U.

Proof. The functions $h_1(u) = \frac{f(u)}{u} = 1 + a_1 \cdot u + a_2 \cdot u^2 + \cdots$, $h_2(u) = \frac{g(u)}{u} = 1 + b_1 \cdot u + b_2 \cdot u^2 + \cdots$, $h_3(u) = \frac{h(u)}{u} = 1 + c_1 \cdot u + c_2 \cdot u^2 + \cdots$ are analytic in U and $h_1(0) = h_2(0) = h_3(0) = 1$. Then, we can choose $r_0, 0 < r_0 \le 1$ so that all these functions do not vanish in U_{r_0} . In this case we denote by h_1^*, h_2^*, h_3^* , the uniform branches of $[h_1(u)]^{\alpha}$, of $[h_2(u)]^{\beta}$, and of $[h_3(u)]^{\gamma}$, respectively, which are analytic in U_{r_0} and $h_1^*(0) = h_2^*(0) = h_3^*(0) = 1$. Let $h_4(u) = h_1^*(u) \cdot h_2^*(u) \cdot h_3^*(u)$ and

$$(6h_5(u) = (1 + \alpha + \beta + \gamma) \int_0^{e^{-t}z} h_4(u) \cdot u^{\alpha + \beta + \gamma} du = (e^{-t}z)^{1 + \alpha + \beta + \gamma} + \cdots$$

It is clear that, if $z \in U_{r_0}$, then $e^{-t}z \in U_{r_0}$, and, from the analycity of h_4 in U_{r_0} , we have that $h_5(z,t)$ is also analytic in U_{r_0} for all $t \ge 0$ and:

(7)
$$h_5(z,t) = \left(e^{-t}z\right)^{1+\alpha+\beta+\gamma} \cdot h_6(z,t) \text{ where}$$

$$h_6(z,t) = 1 + \cdots$$

If we put

(9)
$$h_7(z,t) = h_6(z,t) + \left(e^{2t} - 1\right) \cdot h_4\left(e^{-t}z\right)$$

we have that $h_7(0,t) = e^{2t} \neq 0$ for all $t \geq 0$. Then, we can choose $r_1, 0 < r_1 \leq r_0$ so that h_7 does not vanish in U_{r_1} $(t \geq 0)$. Now, denote by $h_8(z,t)$ the uniform branch of $[h_7(z,t)]^{\frac{1}{1+\alpha+\beta+\gamma}}$, which is analytic in U_{r_1} and $h_8(0,t) = e^{\frac{2t}{1+\alpha+\beta+\gamma}}$. It follows that the function

(10)
$$L(z,t) = e^{-t}z \cdot h_8(z,t)$$

is analytic in U_{r_1} and L(0,t) = 0 for all $t \ge 0$. It also clear that $e^{-t} \cdot h_8(0,t) = e^{\frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)} \cdot t}$. Now, we can formally write (using (6), (7), (8), (9), (10)):

$$L(z,t) = \left[(1+\alpha+\beta+\gamma) \cdot \int_0^{e^{-t}z} f^{\alpha}(u) \cdot g^{\beta}(u) \cdot h^{\gamma}(u) \, du + \left(e^{2t}-1\right) e^{-t}z \cdot f^{\alpha}(e^{-t}z) \cdot g^{\beta}(e^{-t}z) \cdot h^{\gamma}(e^{-t}z) \right]^{\frac{1}{1+\alpha+\beta+\gamma}} = e^{\frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)} \cdot t} \cdot z + \dots = a_1(t) \cdot z + \dots$$

From (3) we have that
$$Re \frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)} > 0$$
 and then:
$$\lim_{t \to \infty} |a_1(t)| = \lim_{t \to \infty} \left| e^{\frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)} \cdot t} \right| = \lim_{t \to \infty} e^{t \cdot Re \frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)}} = \infty.$$

Mugur Acu

 $\frac{L(z,t)}{a_1(t)}$ is analytic in U_{r_1} for all $t \ge 0$ and then, it follows that $\left\{\frac{L(z,t)}{a_1(t)}\right\}$ is uniformly bounded in $U_{\frac{r_1}{2}}$.

Applying Montel's theorem, we have that $\left\{\frac{L(z,t)}{a_1(t)}\right\}$ forms a normal family in $U_{\frac{r_1}{2}}$. Using (9) and (10) we have:

(12)
$$\frac{\partial L(z,t)}{\partial t} = e^{-t}z \cdot \left[\frac{1}{1+\alpha+\beta+\gamma} \cdot (h_7(z,t))^{\frac{-\alpha-\beta-\gamma}{1+\alpha+\beta+\gamma}} \cdot \frac{\partial h_7(z,t)}{\partial t} - (h_7(z,t))^{\frac{1}{1+\alpha+\beta+\gamma}}\right]$$

Because $h_7(0,t) = e^{2t} \neq 0$, we consider an uniform branch of $(h_7(z,t))^{\frac{-\alpha-\beta-\gamma}{1+\alpha+\beta+\gamma}}$ which is analytic in U_{r_2} , where r_2 , $0 < r_2 \leq \frac{r_1}{2}$ is chosen so that the abovementioned uniform branch, which takes in (0,t) the value $e^{\frac{-2t\cdot(\alpha+\beta+\gamma)}{1+\alpha+\beta+\gamma}}$, does not vanish in U_{r_2} . It is also clear that $\frac{\partial h_7(z,t)}{\partial t}$ is analytic in U_{r_2} , and then, it follows that $\frac{\partial L(z,t)}{\partial t}$ is also. Then L(z,t) is locally absolutely continuous. Let

(13)
$$p(z,t) = \frac{z \cdot \frac{\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}}.$$

In order to prove that p(z,t) has an analytic extension with positive real part in U, for all $t \ge 0$, it is sufficient to prove that the function:

(14)
$$w(z,t) = \frac{p(z,t) - 1}{p(z,t) + 1}$$

is analytic in U for $t \ge 0$ and

$$(15) |w(z,t)| < 1$$

for all $z \in U$ and $t \ge 0$. Using (14), after simple calculations we obtain:

$$(16) w(z,t) = \left[(\alpha + \beta + \gamma) \cdot h_1(e^{-t}z)h_2(e^{-t}z)h_3(e^{-t}z) \right] \frac{1}{e^{2t} \cdot h_1(e^{-t}z)h_2(e^{-t}z)h_3(e^{-t}z)} + \\ + (e^{2t} - 1) \cdot \left[\alpha f'(e^{-t}z)h_2(e^{-t}z)h_3(e^{-t}z) + \beta g'(e^{-t}z)h_1(e^{-t}z)h_3(e^{-t}z) + \gamma h'(e^{-t}z)h_1(e^{-t}z)h_2(e^{-t}z) \right] \\ \frac{e^{2t} \cdot h_1(e^{-t}z)h_2(e^{-t}z)h_3(e^{-t}z)}{e^{2t} \cdot h_1(e^{-t}z)h_2(e^{-t}z)h_3(e^{-t}z)}$$

Because h_1, h_2 and h_3 do not vanish in U_{r_2} and are analytic, it follows that w(z,t) is also analytic in the same disc, for all $t \ge 0$. Then, w(z,t)has an analytic extension in U denoted also by w(z,t). For t = 0, $|w(z,0)| = |\alpha + \beta + \gamma| < 1$ from (3). Let now t > 0. In this case w(z,t) is analytic in \overline{U} because $|e^{-t}z| \le e^{-t} < 1$ for all $z \in \overline{U}$. Then

(17)
$$|w(z,t)| < \max_{|z|=1} |w(z,t)| = \left|w(e^{i\theta},t)\right| \text{ with } \theta \text{ real.}$$

To prove (15) it is sufficient that:

(18)
$$\left|w(e^{i\theta},t)\right| \le 1 \text{ for all } t > 0.$$

Note $u = e^{-t} \cdot e^{i\theta}$, $u \in U$. Then $|u| = e^{-t}$ and from (16) we obtain:

(19)
$$\left|w(e^{i\theta},t)\right| = \left||u|^2 \cdot (\alpha+\beta+\gamma) + \left(1-|u|^2\right) \cdot \left[\alpha \frac{uf'(u)}{f(u)} + \beta \frac{ug'(u)}{g(u)} + \gamma \frac{uh'(u)}{h(u)}\right]\right|$$

and inequality (18) becomes:

(20)
$$\left| |u|^2 \cdot (\alpha + \beta + \gamma) + \left(1 - |u|^2\right) \cdot \left[\alpha \frac{uf'(u)}{f(u)} + \beta \frac{ug'(u)}{g(u)} + \gamma \frac{uh'(u)}{h(u)} \right] \right| \le 1.$$

Because $u \in U$, relation (4) implies (20). Combining (17), (18), (19) and (20), it follows that |w(z,t)| < 1 for all $z \in U$ and $t \ge 0$. Applying Theorem 2.1, we have that L(z,t) is a Löwner chain and, then the function $L(z,0) = F_{\alpha,\beta,\gamma}(z)$, defined by (5), is analytic and univalent in U.

Remark 3.1 From Theorem 3.1, with $\beta + \gamma = -\alpha$ and h = g we have: If $f, g \in A$ and α is a complex number, $\alpha \neq 0$, and

(21)
$$\left| \left(1 - |z|^2 \right) \cdot \left[\alpha \frac{zf'(z)}{f(z)} - \alpha \frac{zg'(z)}{g(z)} \right] \right| \le 1$$

for all $z \in U$, then the function

(22)
$$F(z) = \int_0^z \left[\frac{f(u)}{g(u)}\right]^\alpha du$$

is analytic and univalent in U.

After simple calculations, we have that condition (21) is equivalent to:

(23)
$$\left| \left(1 - |z|^2 \right) \cdot \frac{zF''(z)}{F'(z)} \right| \le 1.$$

It follows that condition (23) implies the univalence of F. This is Becker's criterion of univalence (see Theorem 2.2). Then Theorem 3.1 is a generalization of Becker's criterion of univalence.

Remark 3.2 It's easy to see that for $\gamma = 0$ in Theorem 3.1 we obtain the results from [3].

4 Some particular cases

Corollary 4.1 If $f \in A$ and α, β, γ , are complex numbers, $|\alpha| + |\beta| + |\gamma| > 0$, satisfying:

$$(24) \qquad \qquad |\alpha + \beta + \gamma| < 1$$

 $\left||z|^2 \cdot (\alpha + \beta + \gamma) + \left(1 - |z|^2\right) \cdot \left[(\alpha + \beta) \cdot \frac{zf'(z)}{f(z)} + \gamma \cdot \left(\frac{zf''(z)}{f'(z)} + 1\right)\right]\right| \le 1$

then the function

(26)
$$F_{\alpha,\beta,\gamma}(z) = \left[(\alpha + \beta + \gamma + 1) \cdot \int_0^z f^{\alpha+\beta}(u) \cdot u^{\gamma} \cdot \left[f'(u) \right]^{\gamma} du \right]^{\frac{1}{\alpha+\beta+\gamma+1}}$$

is analytic and univalent in U.

Proof. Let $h(z) = zf'(z) \in A$ and g(z) = f(z). By applying Theorem 3.1 we obtain the assertion.

Corollary 4.2 If $f \in A$ and α, β, γ , are complex numbers, $|\alpha| + |\beta| + |\gamma| > 0$, satisfying:

$$(27) \qquad \qquad |\alpha + \beta + \gamma| < 1$$

(28)
$$\left||z|^2 \cdot (\alpha + \beta + \gamma) + \left(1 - |z|^2\right) \cdot \left[\alpha \cdot \frac{zf'(z)}{f(z)} + (\beta + \gamma) \cdot \left(\frac{zf''(z)}{f'(z)} + 1\right)\right]\right| \le 1$$

then the function

(29)
$$F_{\alpha,\beta,\gamma}(z) = \left[(\alpha + \beta + \gamma + 1) \cdot \int_0^z f^{\alpha}(u) \cdot u^{\beta + \gamma} \cdot \left[f'(u) \right]^{\beta + \gamma} du \right]^{\frac{1}{\alpha + \beta + \gamma + 1}}$$

is analytic and univalent in U.

Proof. Let $g(z) = h(z) = zf'(z) \in A$. By applying Theorem 3.1 we obtain the assertion.

Corollary 4.3 If $f \in A$ and $c \in U$ satisfying:

(30)
$$||z|^2 \cdot c + (1 - |z|^2) \cdot c \cdot \frac{zf'(z)}{f(z)}| \le 1$$

then the function

(31)
$$F_c(z) = \left[(c+1) \cdot \int_0^z f^c(u) du \right]^{\frac{1}{c+1}}$$

is analytic and univalent in U.

Proof. Let $g(z) = h(z) = f(z) \in A$. By applying Theorem 3.1 , with $\alpha + \beta + \gamma = c$, we obtain the assertion.

References

- L.V. Ahlfors, Sufficient conditions for Q.C. extension, Ann. Math. Studies 79, Princeton, 1974
- J. Becker, Löwnersche Differentialgleichurg und quasikonform fortsetzbare schichte Functionen, J. Reine Angew. Math., 255(1972), 23-24, M.R. 45-8828
- [3] E. Drăghici, An improvment of Becker's condition of univalence, Mathematica, Tome 34/57, No 2/1992, pp 139-144
- [4] Ch. Pommerenke, Über die Subordination-analytischer Functionen, J. Reine Angew. Mathematik, 218(1965), 159-173

Department of Mathematics Faculty of Sciences "Lucian Blaga" University of Sibiu Str. I. Raţiu 5-7 2400 Sibiu, Romania E-mail: acu_mugur@yahoo.com