A improvement of Becker's condition of univalence

Mugur Acu

Abstract

Let A be the class of all analytic functions f in the unit disc $U=U(0,1)$ normed with the conditions $f(0)=0, f^{\prime}(0)=1$. In this paper we give a sufficient condition for univalence which generalize the well known Becker's criterion of univalence.

2000 Mathematical Subject Classification: 30C45

1 Introduction

Let A be the class of functions f, which are analytic in the unit disc $U=\{z \in \mathbf{C}:|z|<1\}$, with $f(0)=0, f^{\prime}(0)=1$.
In this paper we shall find, using the theory of Löwner chains, a sufficient condition for univalence of a class of functions which generalize Becker's univalence criterion.

A function $L(z, t), z \in U, t \geq 0$ is called a Löwner chain, or a subordination chain if $L(z, t)$ is analytic and univalent in U for all positive t and, for all s, t with $0 \leq s<t, L(z, s) \prec L(z, t)$ (by " \prec " we denote the relation of subordination). In addition, $L(z, t)$ must be continuosly differentiable on $[0, \infty]$ for all $z \in U$.

2 Preliminaries

Let $0<r \leq 1$ and U_{r} the disc of the complex plane $\{z \in \mathbf{C}:|z|<r\}$.
Theorem 2.1 (Pommerenke)([4]). Let $r_{0} \in(0,1]$ and let $L(z, t)=a_{1}(t) \cdot z+a_{2}(t) \cdot z^{2}+\cdots, a_{1}(t) \neq 0$, be analytic in $U_{r_{0}}$ for all $t \geq 0$, locally absolutely continuos in $[0, \infty)$ locally uniform with respect to $U_{r_{0}}$. For almost all $t \geq 0$ suppose

$$
\begin{equation*}
z \cdot \frac{\partial L(z, t)}{\partial z}=p(z, t) \cdot \frac{\partial L(z, t)}{\partial t}, z \in U_{r_{0}} \tag{1}
\end{equation*}
$$

where $p(z, t)$ is analytic in U and Re $p(z, t)>0, z \in U, t \geq 0$. If $\left|a_{1}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and $\left\{\frac{L(z, t)}{a_{1}(t)}\right\}$ forms a normal family in $U_{r_{0}}$, then, for each $t \in[0, \infty), L(z, t)$ has an analytic and univalent extension to the whole disc, and is, consequently, a Löwner chain.

Theorem 2.2 (Becker)([1],[2]). If $f \in A$ and

$$
\begin{equation*}
\left(1-|z|^{2}\right) \cdot\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \text { for all } z \in U \tag{2}
\end{equation*}
$$

then f is univalent in U.

3 Main results

Theorem 3.1 Let $f, g, h \in A$ and let α, β, γ be complex numbers with $|\alpha|+|\beta|+|\gamma|>0$. If

$$
\begin{gather*}
|\alpha+\beta+\gamma|<1 \tag{3}\\
\left||z|^{2} \cdot(\alpha+\beta+\gamma)+\left(1-|z|^{2}\right) \cdot\left(\alpha \cdot \frac{z f^{\prime}(z)}{f(z)}+\beta \cdot \frac{z g^{\prime}(z)}{g(z)}+\gamma \cdot \frac{z h^{\prime}(z)}{h(z)}\right)\right| \leq 1, z \in U \tag{4}
\end{gather*}
$$

then the function
(5) $\quad F_{\alpha, \beta, \gamma}(z)=\left[(1+\alpha+\beta+\gamma) \cdot \int_{0}^{z} f^{\alpha}(u) \cdot g^{\beta}(u) \cdot h^{\gamma}(u) d u\right]^{\frac{1}{\alpha+\beta+\gamma+1}}$
is analytic and univalent in U.

Proof. The functions $h_{1}(u)=\frac{f(u)}{u}=1+a_{1} \cdot u+a_{2} \cdot u^{2}+\cdots$, $h_{2}(u)=\frac{g(u)}{u}=1+b_{1} \cdot u+b_{2} \cdot u^{2}+\cdots, h_{3}(u)=\frac{h(u)}{u}=1+c_{1} \cdot u+c_{2} \cdot u^{2}+\cdots$ are analytic in U and $h_{1}(0)=h_{2}(0)=h_{3}(0)=1$. Then, we can choose $r_{0}, 0<r_{0} \leq 1$ so that all these functions do not vanish in $U_{r_{0}}$. In this case we denote by $h_{1}^{*}, h_{2}^{*}, h_{3}^{*}$, the uniform branches of $\left[h_{1}(u)\right]^{\alpha}$, of $\left[h_{2}(u)\right]^{\beta}$, and of $\left[h_{3}(u)\right]^{\gamma}$, respectively, which are analytic in $U_{r_{0}}$ and $h_{1}^{*}(0)=h_{2}^{*}(0)=h_{3}^{*}(0)=1$. Let $h_{4}(u)=h_{1}^{*}(u) \cdot h_{2}^{*}(u) \cdot h_{3}^{*}(u)$ and
$\left(6 h_{5}(u)=(1+\alpha+\beta+\gamma) \int_{0}^{e^{-t} z} h_{4}(u) \cdot u^{\alpha+\beta+\gamma} d u=\left(e^{-t} z\right)^{1+\alpha+\beta+\gamma}+\cdots\right.$.
It is clear that, if $z \in U_{r_{0}}$, then $e^{-t} z \in U_{r_{0}}$, and, from the analycity of h_{4} in $U_{r_{0}}$, we have that $h_{5}(z, t)$ is also analytic in $U_{r_{0}}$ for all $t \geq 0$ and:

$$
\begin{align*}
h_{5}(z, t)= & \left(e^{-t} z\right)^{1+\alpha+\beta+\gamma} \cdot h_{6}(z, t) \text { where } \tag{7}\\
& h_{6}(z, t)=1+\cdots \tag{8}
\end{align*}
$$

If we put

$$
\begin{equation*}
h_{7}(z, t)=h_{6}(z, t)+\left(e^{2 t}-1\right) \cdot h_{4}\left(e^{-t} z\right) \tag{9}
\end{equation*}
$$

we have that $h_{7}(0, t)=e^{2 t} \neq 0$ for all $t \geq 0$. Then, we can choose $r_{1}, 0<r_{1} \leq r_{0}$ so that h_{7} does not vanish in $U_{r_{1}}(t \geq 0)$. Now, denote by $h_{8}(z, t)$ the uniform branch of $\left[h_{7}(z, t)\right]^{\frac{1}{1+\alpha+\beta+\gamma}}$, which is analytic in $U_{r_{1}}$ and $h_{8}(0, t)=e^{\frac{2 t}{1+\alpha+\beta+\gamma}}$. It follows that the function

$$
\begin{equation*}
L(z, t)=e^{-t} z \cdot h_{8}(z, t) \tag{10}
\end{equation*}
$$

is analytic in $U_{r_{1}}$ and $L(0, t)=0$ for all $t \geq 0$. It also clear that $e^{-t} \cdot h_{8}(0, t)=e^{\frac{1-(\alpha+\beta+\gamma}{1+(\alpha+\beta+\gamma)} \cdot t}$. Now, we can formally write (using (6), (7), (8), (9), (10)):
$L(z, t)=\left[(1+\alpha+\beta+\gamma) \cdot \int_{0}^{e^{-t_{z}}} f^{\alpha}(u) \cdot g^{\beta}(u) \cdot h^{\gamma}(u) d u+\left(e^{2 t}-1\right) e^{-t_{z}} \cdot f^{\alpha}\left(e^{-t} z\right) \cdot g^{\beta}\left(e^{-t} z\right) \cdot h^{\gamma}\left(e^{-t_{z}}\right)\right]^{\frac{1}{1+\alpha+\beta+\gamma}}=$

$$
\begin{equation*}
=e^{\frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)} \cdot t} \cdot z+\cdots=a_{1}(t) \cdot z+\cdots . \tag{11}
\end{equation*}
$$

From (3) we have that $\operatorname{Re} \frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)}>0$ and then:
$\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\lim _{t \rightarrow \infty}\left|e^{\frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)} \cdot t}\right|=\lim _{t \rightarrow \infty} e^{t \cdot R e \frac{1-(\alpha+\beta+\gamma)}{1+(\alpha+\beta+\gamma)}}=\infty$.
$\frac{L(z, t)}{a_{1}(t)}$ is analytic in $U_{r_{1}}$ for all $t \geq 0$ and then, it follows that $\left\{\frac{L(z, t)}{a_{1}(t)}\right\}$ is uniformly bounded in $U_{\frac{r_{1}}{2}}$.
Applying Montel's theorem, we have that $\left\{\frac{L(z, t)}{a_{1}(t)}\right\}$ forms a normal family in $U_{\frac{r_{1}}{2}}$. Using (9) and (10) we have:

$$
\begin{equation*}
\frac{\partial L(z, t)}{\partial t}=e^{-t} z \cdot\left[\frac{1}{1+\alpha+\beta+\gamma} \cdot\left(h_{7}(z, t)\right)^{\frac{-\alpha-\beta-\gamma}{1+\alpha+\beta+\gamma}} \cdot \frac{\partial h_{7}(z, t)}{\partial t}-\left(h_{7}(z, t)\right)^{\frac{1}{1+\alpha+\beta+\gamma}}\right] \tag{12}
\end{equation*}
$$

Because $h_{7}(0, t)=e^{2 t} \neq 0$, we consider an uniform branch of $\left(h_{7}(z, t)\right)^{\frac{-\alpha-\beta-\gamma}{1+\alpha+\beta+\gamma}}$ which is analytic in $U_{r_{2}}$, where $r_{2}, 0<r_{2} \leq \frac{r_{1}}{2}$ is chosen so that the abovementioned uniform branch, which takes in $(0, t)$ the value $e^{\frac{-2 t \cdot(\alpha+\beta+\gamma)}{1+\alpha+\beta+\gamma}}$, does not vanish in $U_{r_{2}}$. It is also clear that $\frac{\partial h_{7}(z, t)}{\partial t}$ is analytic in $U_{r_{2}}$, and then, it follows that $\frac{\partial L(z, t)}{\partial t}$ is also. Then $L(z, t)$ is locally absolutely continuous. Let

$$
\begin{equation*}
p(z, t)=\frac{z \cdot \frac{\partial L(z, t)}{\partial z}}{\frac{\partial L(z, t)}{\partial t}} \tag{13}
\end{equation*}
$$

In order to prove that $p(z, t)$ has an analytic extension with positive real part in U, for all $t \geq 0$, it is sufficient to prove that the function:

$$
\begin{equation*}
w(z, t)=\frac{p(z, t)-1}{p(z, t)+1} \tag{14}
\end{equation*}
$$

is analytic in U for $t \geq 0$ and

$$
\begin{equation*}
|w(z, t)|<1 \tag{15}
\end{equation*}
$$

for all $z \in U$ and $t \geq 0$. Using (14), after simple calculations we obtain:

$$
\begin{equation*}
w(z, t)=\left[(\alpha+\beta+\gamma) \cdot h_{1}\left(e^{-t} z\right) h_{2}\left(e^{-t} z\right) h_{3}\left(e^{-t} z\right)\right] \frac{1}{e^{2 t} \cdot h_{1}\left(e^{-t} z\right) h_{2}\left(e^{-t} z\right) h_{3}\left(e^{-t} z\right)}+ \tag{16}
\end{equation*}
$$

$$
\frac{+\left(e^{2 t}-1\right) \cdot\left[\alpha f^{\prime}\left(e^{-t} z\right) h_{2}\left(e^{-t} z\right) h_{3}\left(e^{-t} z\right)+\beta g^{\prime}\left(e^{-t} z\right) h_{1}\left(e^{-t} z\right) h_{3}\left(e^{-t} z\right)+\gamma h^{\prime}\left(e^{-t} z\right) h_{1}\left(e^{-t} z\right) h_{2}\left(e^{-t} z\right)\right]}{e^{2 t} \cdot h_{1}\left(e^{-t} z\right) h_{2}\left(e^{-t} z\right) h_{3}\left(e^{-t} z\right)}
$$

Because h_{1}, h_{2} and h_{3} do not vanish in $U_{r_{2}}$ and are analytic, it follows that $w(z, t)$ is also analytic in the same disc, for all $t \geq 0$. Then, $w(z, t)$ has an analytic extension in U denoted also by $w(z, t)$.

For $t=0,|w(z, 0)|=|\alpha+\beta+\gamma|<1$ from (3). Let now $t>0$. In this case $w(z, t)$ is analytic in \bar{U} because $\left|e^{-t} z\right| \leq e^{-t}<1$ for all $z \in \bar{U}$. Then

$$
\begin{equation*}
|w(z, t)|<\max _{|z|=1}|w(z, t)|=\left|w\left(e^{i \theta}, t\right)\right| \text { with } \theta \text { real. } \tag{17}
\end{equation*}
$$

To prove (15) it is sufficient that:

$$
\begin{equation*}
\left|w\left(e^{i \theta}, t\right)\right| \leq 1 \text { for all } t>0 . \tag{18}
\end{equation*}
$$

Note $u=e^{-t} \cdot e^{i \theta}, u \in U$. Then $|u|=e^{-t}$ and from (16) we obtain:

$$
\begin{equation*}
\left|w\left(e^{i \theta}, t\right)\right|=\left||u|^{2} \cdot(\alpha+\beta+\gamma)+\left(1-|u|^{2}\right) \cdot\left[\alpha \frac{u f^{\prime}(u)}{f(u)}+\beta \frac{u g^{\prime}(u)}{g(u)}+\gamma \frac{u h^{\prime}(u)}{h(u)}\right]\right| \tag{19}
\end{equation*}
$$

and inequality (18) becomes:

$$
\begin{equation*}
\left||u|^{2} \cdot(\alpha+\beta+\gamma)+\left(1-|u|^{2}\right) \cdot\left[\alpha \frac{\alpha f^{\prime}(u)}{f(u)}+\beta \frac{u g^{\prime}(u)}{g(u)}+\gamma \frac{u h^{\prime}(u)}{h(u)}\right]\right| \leq 1 . \tag{20}
\end{equation*}
$$

Because $u \in U$, relation (4) implies (20). Combining (17), (18), (19) and (20), it follows that $|w(z, t)|<1$ for all $z \in U$ and $t \geq 0$. Applying Theorem 2.1, we have that $L(z, t)$ is a Löwner chain and, then the function $L(z, 0)=F_{\alpha, \beta, \gamma}(z)$, defined by (5), is analytic and univalent in U.

Remark 3.1 From Theorem 3.1, with $\beta+\gamma=-\alpha$ and $h=g$ we have: If $f, g \in A$ and α is a complex number, $\alpha \neq 0$, and

$$
\begin{equation*}
\left|\left(1-|z|^{2}\right) \cdot\left[\alpha \frac{z f^{\prime}(z)}{f(z)}-\alpha \frac{z g^{\prime}(z)}{g(z)}\right]\right| \leq 1 \tag{21}
\end{equation*}
$$

for all $z \in U$, then the function

$$
\begin{equation*}
F(z)=\int_{0}^{z}\left[\frac{f(u)}{g(u)}\right]^{\alpha} d u \tag{22}
\end{equation*}
$$

is analytic and univalent in U.
After simple calculations, we have that condition (21) is equivalent to:

$$
\begin{equation*}
\left|\left(1-|z|^{2}\right) \cdot \frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}\right| \leq 1 \tag{23}
\end{equation*}
$$

It follows that condition (23) implies the univalence of F. This is Becker's criterion of univalence (see Theorem 2.2). Then Theorem 3.1 is a generalization of Becker's criterion of univalence.

Remark 3.2 It's easy to see that for $\gamma=0$ in Theorem 3.1 we obtain the results from [3].

4 Some particular cases

Corollary 4.1 If $f \in A$ and α, β, γ, are complex numbers, $|\alpha|+|\beta|+|\gamma|>0$, satisfying:

$$
\begin{gather*}
|\alpha+\beta+\gamma|<1 \tag{24}\\
\left.|z|^{2} \cdot(\alpha+\beta+\gamma)+\left(1-|z|^{2}\right) \cdot\left[(\alpha+\beta) \cdot \frac{z f^{\prime}(z)}{f(z)}+\gamma \cdot\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right] \right\rvert\, \leq 1 \tag{25}
\end{gather*}
$$

then the function

$$
\begin{equation*}
F_{\alpha, \beta, \gamma}(z)=\left[(\alpha+\beta+\gamma+1) \cdot \int_{0}^{z} f^{\alpha+\beta}(u) \cdot u^{\gamma} \cdot\left[f^{\prime}(u)\right]^{\gamma} d u\right]^{\frac{1}{\alpha+\beta+\gamma+1}} \tag{26}
\end{equation*}
$$

is analytic and univalent in U.
Proof. Let $h(z)=z f^{\prime}(z) \in A$ and $g(z)=f(z)$. By applying Theorem 3.1 we obtain the assertion.

Corollary 4.2 If $f \in A$ and α, β, γ, are complex numbers, $|\alpha|+|\beta|+|\gamma|>0$, satisfying:

$$
\begin{gather*}
|\alpha+\beta+\gamma|<1 \tag{27}\\
\left||z|^{2} \cdot(\alpha+\beta+\gamma)+\left(1-|z|^{2}\right) \cdot\left[\alpha \cdot \frac{z f^{\prime}(z)}{f(z)}+(\beta+\gamma) \cdot\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right]\right| \leq 1 \tag{28}
\end{gather*}
$$

then the function

$$
\begin{equation*}
F_{\alpha, \beta, \gamma}(z)=\left[(\alpha+\beta+\gamma+1) \cdot \int_{0}^{z} f^{\alpha}(u) \cdot u^{\beta+\gamma} \cdot\left[f^{\prime}(u)^{\beta+\gamma} d u\right]^{\frac{1}{\alpha+\beta+\gamma+1}}\right. \tag{}
\end{equation*}
$$

is analytic and univalent in U.
Proof. Let $g(z)=h(z)=z f^{\prime}(z) \in A$. By applying Theorem 3.1 we obtain the assertion.

Corollary 4.3 If $f \in A$ and $c \in U$ satisfying:

$$
\begin{equation*}
\left||z|^{2} \cdot c+\left(1-|z|^{2}\right) \cdot c \cdot \frac{z f^{\prime}(z)}{f(z)}\right| \leq 1 \tag{30}
\end{equation*}
$$

then the function

$$
\begin{equation*}
F_{c}(z)=\left[(c+1) \cdot \int_{0}^{z} f^{c}(u) d u\right]^{\frac{1}{c+1}} \tag{31}
\end{equation*}
$$

is analytic and univalent in U.

Proof. Let $g(z)=h(z)=f(z) \in A$. By applying Theorem 3.1, with $\alpha+\beta+\gamma=c$, we obtain the assertion.

References

[1] L.V. Ahlfors, Sufficient conditions for Q.C. extension, Ann. Math. Studies 79, Princeton, 1974
[2] J. Becker, Löwnersche Differentialgleichurg und quasikonform fortsetzbare schichte Functionen, J. Reine Angew. Math., 255(1972), 23-24, M.R. 45-8828
[3] E. Drăghici, An improvment of Becker's condition of univalence , Mathematica, Tome 34/57, No 2/1992, pp 139-144
[4] Ch. Pommerenke, Über die Subordination-analytischer Functionen, J. Reine Angew. Mathematik, 218(1965), 159-173

Department of Mathematics
Faculty of Sciences
"Lucian Blaga" University of Sibiu
Str. I. Raţiu 5-7
2400 Sibiu, Romania
E-mail: acu_mugur@yahoo.com

