Note on a class of delta operators

Emil C. Popa

Abstract

Let Q be a delta operator with basic set $\left(p_{n}\right)$, and $$
A_{n}(x)=x(x+n b)^{n-1}, n=1,2, \ldots
$$ the Abel polynomials. For each natural number $n, n \geq 1$ let us consider the delta operator defined on the algebra of polynomials, by $$
\begin{equation*} \alpha_{n, Q}=Q(Q+n b I)^{n-1}, b \neq 0 . \tag{1} \end{equation*}
$$

The purpose of this paper is to give a representation theorem for basic set $\left(q_{m}\right)$ relative to $\alpha_{n, D}$, and we define a linear operator $t_{n, D}$ whence we obtain the $R_{n, a}$ and $\alpha_{n, D}$ operators (see [1], [2]).

2000 Mathematical Subject Classification: 05A40

Theorem 1 If $m=\min (k, n)$, we have

$$
\begin{equation*}
\left(\alpha_{n, Q} p_{k}\right)(x)=\frac{1}{n} \sum_{j=1}^{m} \frac{(-n)_{j}(-k)_{j}}{(j-1)!}(n b)^{n-1} p_{k-j}(x) \tag{2}
\end{equation*}
$$

where $(a)_{s}=a(a+1) \cdot \ldots \cdot(a+s-1)$.

Proof.

$$
\begin{aligned}
A_{n}(x) & =\sum_{j=0}^{n-1}\binom{n-1}{j}(n b)^{n-j-1} x^{j+1}= \\
& =\sum_{j=1}^{n}\binom{n-1}{j-1}(n b)^{n-j} x^{j}
\end{aligned}
$$

Hence

$$
\alpha_{n, Q}=\sum_{j=1}^{n}\binom{n-1}{j-1}(n b)^{n-j} Q^{j},
$$

whence

$$
\left(\alpha_{n, Q} p_{k}\right)(x)=\sum_{j=1}^{m}\binom{n-1}{j-1} \frac{k!}{(k-j)!}(n b)^{n-j} p_{k-j}(x)
$$

with $m=\min (k, n)$.
Theorem 2 If $\left(q_{m}\right)$ is a basic sequence for the delta operator $\alpha_{n, D}$, then for $n>0$

$$
\begin{equation*}
q_{m}=\frac{1}{(n b)^{m n-m} \Gamma(m n-m)} \int_{0}^{\infty} e^{-t} t^{m n-m-1} x\left(x-\frac{1}{n b} t\right)^{m-1} d t \tag{3}
\end{equation*}
$$

Proof. We have

$$
\alpha_{n, D}=D(D+n b I)^{n-1}
$$

and

$$
\begin{gathered}
q_{m}=x(D+n b I)^{-m n+m} e_{m-1} \\
q_{m}(x)=x \frac{I}{(D+n b I)^{m n-m}} x^{m-1}
\end{gathered}
$$

Hence

$$
q_{m}(x)=\frac{1}{(n b)^{m n-m}} \cdot \frac{1}{\Gamma(m n-m)} \int_{0}^{\infty} e^{-t} t^{m n-m-1} x\left(x-\frac{1}{n b} t\right)^{m-1} d t
$$

2
Ler R be a delta operator with two Sheffer sequences $\left(r_{n}\right)$ and $\left(\widetilde{r}_{n}\right)$.
We note

$$
T=e^{a x} D^{m} e^{-a x}=(D-a I)^{m}
$$

and

$$
t_{n}(x)=S\left(T E^{b}\right)^{n} \widetilde{r}_{n-1}(x)
$$

where S is the linear operator defined by

$$
S \widetilde{r}_{n}=r_{n+1}, n=0,1,2, \ldots
$$

Theorem 3 If m is natural number, $a, b \in \mathbb{R}, a \neq 0$ and R_{S}^{\prime}, $P_{S}^{\prime} \in \prod_{t}^{*}$ where

$$
P^{-1}=T E^{b}
$$

then

$$
t_{n}(x)=t_{n}\left(a, b, m ; \widetilde{r}_{n} ; x\right)=S e^{a x} D^{n m} e^{-a x} \widetilde{r}_{n-1}(x+n b)
$$

is a set of Sheffer polynomials.
Proof. It is used the theorem of [3].
For $m=0$, we find

$$
t_{n}\left(a, b, 0 ; \widetilde{r}_{n} ; x\right)=S \widetilde{r}_{n-1}(x+n b)
$$

and for $a=m=1, b=0$,

$$
t_{n}\left(1,0,1 ; \widetilde{r}_{n} ; x\right)=S(D-I)^{n} \widetilde{r}_{n-1}(x)
$$

Now for $\widetilde{r}_{n}=r_{n}=x^{n}$ we have $S=X,(X P)(x)=x p(x)$, and

$$
\begin{gathered}
t_{n}\left(a, b, 0 ; x^{n} ; x\right)=x(x+n b)^{n-1} \\
t_{n}\left(1,0,1 ; x^{n}, x\right)=x(D-I)^{n} x^{n-1}
\end{gathered}
$$

Hence from

$$
t_{n}(x)=t_{n}\left(a, b, m ; \widetilde{r}_{n} ; x\right)=S(D-a I)^{m n} \widetilde{r}_{n-1}(x+n b)
$$

we obtain the linear operator

$$
t_{n, D}=t_{n}(D)
$$

whence we find $R_{n, \alpha}$ and $\alpha_{n, D}$ operators, (see [1], [2]).

References

[1] E.C.Popa, A certain class of linear operators, ICAOR, Cluj-Napoca, 1996, Revue D‘Analyse Numérique et de Théorie de l'Approximation, Tome 26, No. 1-2, 1997.
[2] E.C.Popa, Linear operators of Abel type, Bull.Math. de la Soc. des Sci. Math. de Roum., Vol.40, 1997.
[3] E.C.Popa, Note on Sheffer polynomials, Octogon, Mathematical Magazine, Vol.5, Nr.2, oct. 1997, 56-57.
[4] E.C.Popa, Note on a delta operators, General Mathematics, Vol.8, Nr.1-2, oct. 2000, 79-82.
[5] S.Roman, G-C.Rota, The umbral calculus, Adv. in Math. 27, 1978, 96-188.
[6] G-C.Rota, D.Kahaner, A.Odlyzko, Finite operator calculus, J.Math.Anal.Appl. 42, 1973, 685-760.

Department of Mathematics
Faculty of Sciences
"Lucian Blaga" University of Sibiu
2400 Sibiu, Romania
E-mail: emil.popa@ulbsibiu.ro

