ON CONJUGACY OF HIGH-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

T. CHANTURIA \dagger

Abstract. It is shown that the differential equation

$$
u^{(n)}=p(t) u
$$

where $n \geq 2$ and $p:[a, b] \rightarrow \mathbb{R}$ is a summable function, is not conjugate in the segment $[a, b]$, if for some $l \in\{1, \ldots, n-1\}, \alpha \in] a, b[$ and $\beta \in] \alpha, b[$ the inequalities

$$
n \geq 2+\frac{1}{2}\left(1+(-1)^{n-l}\right), \quad(-1)^{n-l} p(t) \geq 0 \text { for } t \in[a, b]
$$

$$
\int_{\alpha}^{\beta}(t-a)^{n-2}(b-t)^{n-2}|p(t)| d t \geq l!(n-l)!\frac{(b-a)^{n-1}}{(b-\beta)(\alpha-a)}
$$

hold.

Consider the differential equation

$$
\begin{equation*}
u^{(n)}=p(t) u \tag{1}
\end{equation*}
$$

where $n \geq 2, p \in L_{l o c}(I)$, and $I \subset \mathbb{R}$ is an interval.
The following definitions will be used below.
Equation (1) is said to be conjugate in I if there exists a nontrivial solution of this equation with at least n zeroes (each zero counted accordingly to its multiplicity) in I.

Let $l \in\{1, \ldots, n-1\}$. Equation (1) is said to be ($l, n-l$) conjugate in I if there exists a nontrivial solution u of this equation satisfying

$$
\begin{array}{ll}
u^{(i)}\left(t_{1}\right)=0 & (i=0, \ldots, l-1) \\
u^{(i)}\left(t_{2}\right)=0 & (i=0, \ldots, n-l-1)
\end{array}
$$

with $t_{1}, t_{2} \in I$ and $t_{1}<t_{2}$.
Suppose first that $-\infty<a<b<+\infty$ and $p \in L([a, b])$.

[^0]Lemma. Let $a<\alpha<\beta<b$. Then the Green's function G of the problem

$$
\begin{aligned}
& u^{(n)}(t)=0 \quad \text { for } t \in[a, b] \\
& u^{(j)}(a)=0 \quad(j=0, \ldots, l-1) \\
& u^{(j)}(b)=0 \quad(j=0, \ldots, n-l-1)
\end{aligned}
$$

satisfies the inequality

$$
\begin{align*}
& (-1)^{n-l} G(t, s)> \\
& >\frac{(b-\beta)(\alpha-a)(s-a)^{n-l-1}(b-s)^{l-1}(t-a)^{l-1}(b-t)^{n-l-1}}{(b-a)^{n-1}} \times \\
& \times \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \quad \text { for } \alpha \leq t<s \leq \beta \tag{2}
\end{align*}
$$

Proof. The function G can be written in the form
where

$$
x_{i}(t)=\frac{(t-a)^{n-i}(b-t)^{i-1}}{(i-1)!(b-a)^{n-i}}
$$

It is easy to verify that for any fixed $s \in] a, b\left[\right.$ the function $\frac{(-1)^{n-l} G(\cdot, s)}{x_{n-l}(\cdot) x_{l+1}(s)}$ decreases on $] a, b\left[\right.$ and the function $\frac{(-1)^{n-l} G(\cdot, s)}{x_{n-l+1}(\cdot) x_{l}(s)}$ increases on $] a, b[$. Thus

$$
\begin{equation*}
(-1)^{n-l} G(t, s) \geq(-1)^{n-l} G(s, s) \frac{x_{n-l}(t)}{x_{n-l}(s)} \quad \text { for } \quad t \leq s \tag{3}
\end{equation*}
$$

Taking into account that

$$
\begin{aligned}
(-1)^{n-l} G(s, s) & =(-1)^{n-l-1} \sum_{i=1}^{n-l}(-1)^{i-1} x_{i}(s) x_{n-i+1}(s)= \\
& =\frac{(s-a)^{n-1}(b-s)^{n-1}}{(b-a)^{n-1}} \sum_{i=1}^{n} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!}
\end{aligned}
$$

and

$$
\frac{x_{n-l}(t)}{x_{n-l}(s)}=\frac{(t-a)^{l}(b-t)^{n-l-1}}{(s-a)^{l}(b-s)^{n-l-1}}
$$

from the inequality (3) we deduce

$$
\begin{aligned}
& (-1)^{n-l} G(t, s) \geq \\
& \geq \frac{(s-a)^{n-l-1}(b-s)^{l}(t-a)^{l}(b-t)^{n-l-1}}{(b-a)^{n-1}} \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!}> \\
& >(b-\beta)(\alpha-a) \frac{(s-a)^{n-l-1}(b-s)^{l-1}(t-a)^{l-1}(b-t)^{n-l-1}}{(b-a)^{n-1}} \times \\
& \times \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \quad \text { for } \quad \alpha \leq t<s \leq \beta . \quad \square
\end{aligned}
$$

Theorem 1. Let $l \in\{1, \ldots, n-1\}$,

$$
\begin{equation*}
n \geq 2+\frac{1+(-1)^{n-l}}{2} \quad \text { and } \quad(-1)^{n-l} p(t) \geq 0 \quad \text { for } \quad t \in[a, b] \tag{4}
\end{equation*}
$$

If, in addition, there exist $\alpha, \beta \in] a, b[$ such that $a<\alpha<\beta<b$ and

$$
\begin{equation*}
\int_{\alpha}^{\beta}(t-a)^{n-2}(b-t)^{n-2}|p(t)| d t \geq l!(n-l)!\frac{(b-a)^{n-1}}{(b-\beta)(\alpha-a)} \tag{5}
\end{equation*}
$$

then Eq. (1) is $(l, n-l)$ conjugate in $[a, b]$.
Note that analogous results are given in $[3,5]$ for the case where $n=2$.
Proof. Put $p(t)=0$ for $t>b$ and consider Eq. (1) in the interval $[a,+\infty[$. For any $\gamma>a$, let u_{γ} be the solution of (1) satisfying

$$
\begin{aligned}
& u_{\gamma}^{(i)}(a)=0 \quad(i=0, \ldots, l-1) \\
& u_{\gamma}^{(i)}(\gamma)=0 \quad(i=0, \ldots, n-l-2) \\
& \sum_{i=0}^{n-1}\left|u_{\gamma}^{(i)}(a)\right|=1, \quad \max \left\{u_{\gamma}(t): a \leq t \leq \gamma\right\}>0
\end{aligned}
$$

Suppose now that in spite of the statement of the theorem Eq. (1) is not $(l, n-l)$ conjugate in $[a, b]$.

Note that if $\gamma \in] a, b]$, then $u_{\gamma}(t)>0$ for $\left.t \in\right] a, \gamma\left[\right.$ and $(-1)^{n-l-1} \times$ $\times u_{\gamma}^{(n-l-1)}(\gamma)>0$. Indeed, if it is not so, there exists $\left.t_{0} \in\right] a, \gamma[$ such that $u_{\gamma}\left(t_{0}\right)=0$. Let $\gamma_{0}=\inf \left\{\gamma>a: u_{\gamma}(t)=0\right.$ for a certain $\left.t \in\right] a, \gamma[\}$. Then $u_{\gamma_{0}}(t)>0$ for $\left.t \in\right] a, \gamma_{0}[$ and

$$
\begin{array}{ll}
u_{\gamma_{0}}^{(i)}(a)=0 & (i=0, \ldots, l-1) \\
u_{\gamma_{0}}^{(i)}\left(\gamma_{0}\right)=0 & (i=0, \ldots, n-l-1)
\end{array}
$$

which contradicts our assumption.

Let $\gamma^{0}=\sup \left\{\gamma>b: u_{\gamma}(t)>0 \quad\right.$ for $\left.\quad t \in\right] a, \gamma[\}$. Consider first the case where $\gamma^{0}=+\infty$. There exists the sequence $\left\{\gamma_{k}\right\}_{k=1}^{+\infty}$ such that

$$
\lim _{k \rightarrow+\infty} \gamma_{k}=+\infty, \quad \lim _{k \rightarrow+\infty} u_{\gamma_{k}}(t)=u_{0}(t)
$$

where u_{0} is the solution of Eq. (1). Show that

$$
\begin{equation*}
u_{0}(t)>0 \quad \text { for } \quad t>a . \tag{6}
\end{equation*}
$$

It is clear that $u_{0}(t) \geq 0$ for $t>a$. If now $u_{0}\left(t_{*}\right)=0$ for some $t_{*}>a$, then for any k large enough the function $u_{\gamma_{k}}^{\prime}$ will have at least one zero in $] a, \gamma_{k}[$. Taking into account the multiplicities of zeroes of $u_{\gamma_{k}}$ in a and γ_{k}, it is easy to show that $u_{\gamma_{k}}^{(n-1)}$ has at least two zeroes in $] a, \gamma_{k}\left[\right.$. Hence $u_{\gamma_{k}}^{(n)}$ changes sign in this interval and this is impossible.

Thus inequality (6) is proved. This inequality and the results of [1] imply that there exist $l_{0} \in\{1, \ldots, n\}\left(l-l_{0}\right.$ is even) and $t_{1}>b$ such that

$$
\begin{align*}
u_{0}^{(i)}(t)>0 & \text { for } \quad t \geq t_{1} \quad\left(i=0, \ldots, l_{0}-1\right), \\
(-1)^{i+l_{0}} u_{0}^{(i)}(t) \geq 0 & \text { for } \quad t \geq t_{1} \quad\left(i=l_{0}, \ldots, n\right) . \tag{7}
\end{align*}
$$

Clearly,

$$
\begin{array}{lr}
(-1)^{i+l_{0}} u_{0}^{(i)}(t) \geq 0 \quad \text { for } t \geq a \quad\left(i=l_{0}, \ldots, n\right), \\
(-1)^{i+l_{0}} u_{0}^{(i)}(a)>0 & \left(i=l_{0}, \ldots, n-1\right) . \tag{8}
\end{array}
$$

Hence $l \in\left\{1, \ldots, l_{0}\right\}$.
Suppose that $l<l_{0}$. Then for any k large enough we have $\gamma_{k}>$ $t_{1}, u_{\gamma_{k}}^{(i)}\left(t_{1}\right)>0\left(i=0, \ldots, l_{0}-1\right)$. This means that the function $u_{\gamma_{k}}^{(i)}$ has at least one zero in $] t_{1}, \gamma_{k}[$. Taking into account the multiplicity of zero in γ_{k}, it is easy to see that $u_{\gamma_{k}}^{(n-1)}$ has at least two zeroes in $] t_{1}, \gamma_{k}\left[\right.$, and $u_{\gamma_{k}}^{(n)}$ changes sign in this interval. But this is impossible. Thus $l=l_{0}$.

As $l=l_{0}$, inequalities (7) and (8) imply

$$
\begin{aligned}
(-1)^{i+l} u_{0}^{(i)}(t) \geq 0 & \text { for } \quad t \geq a \quad(i=l, \ldots, n), \\
u_{0}^{(i)}>0 & \text { for } \quad t>a \quad(i=0, \ldots, l-1) .
\end{aligned}
$$

Let

$$
v(t)=u_{0}^{(l-1)}(t)-\sum_{j=l}^{n-1} \frac{(-1)^{j-l}}{(j-l+1)!}(t-a)^{j-l+1} u_{0}^{(j)}(t) ;
$$

then

$$
v^{\prime}(t)=\frac{(-1)^{n-l}}{(n-l)!}(t-a)^{n-l} u_{0}^{(n)}(t) \geq 0 \text { for } t \geq a .
$$

Hence

$$
\begin{align*}
& u_{0}^{(l-1)}(t) \geq \sum_{j=l}^{n-1} \frac{(-1)^{j-l}(t-a)^{j-l+1} u_{0}^{(j)}(t)}{(j-l+1)!} \geq \tag{9}\\
& \geq \frac{(t-a)(-1)^{n-l}}{(n-l)!} \int_{t}^{+\infty}(s-a)^{n-l-1} p(s) u_{0}(s) d s \text { for } t \geq a
\end{align*}
$$

Denote $\rho_{i}(t)=i u_{0}^{(l-i)}(t)-(t-a) u_{0}^{(l-i+1)}(t)$ for $t \geq a(i=0,1, \ldots, l)$. Then $\rho_{i}^{\prime}(t)=\rho_{i-1}(t)$ for $t \geq a(i=1, \ldots, l)$. Since $\rho_{0}(t)=-(t-$ a) $u_{0}^{(l+1)}(t) \geq 0$ for $t \geq a$ and $\rho_{i}(a)=0(i=1, \ldots, l)$, we have $\rho_{i}(t) \geq 0$ for $t \geq a(i=0,1, \ldots, l)$. This implies

$$
\begin{equation*}
u_{0}(t) \geq \frac{(t-a)^{l-1}}{l!} u_{0}^{(l-1)}(t) \tag{10}
\end{equation*}
$$

From (9) and (10) we obtain

$$
1 \geq \frac{(t-a)}{l!(n-l)!} \int_{t}^{\beta}(s-a)^{n-2}|p(s)| d s \quad \text { for } \quad t \geq a
$$

which contradicts (5). The case $\gamma^{0}=+\infty$ is thus eliminated.
Now consider the case where $\gamma^{0}<+\infty$. As we have already noted, $\gamma^{0}>b, u_{\gamma^{0}}(t)>0$ for $\left.t \in\right] a, \gamma^{0}[$ and

$$
\begin{align*}
u_{\gamma^{0}}^{(i)}(a)=0 & (i=0, \ldots, l-1) \\
u_{\gamma^{0}}^{(i)}\left(\gamma^{0}\right)=0 & (i=0, \ldots, n-l-1) \tag{11}
\end{align*}
$$

Hence

$$
u_{\gamma^{0}}(t)=\int_{a}^{\gamma^{0}} G(t, s) p(s) u_{\gamma^{0}}(s) d s
$$

where G is the Green's function of the boundary value problem (11) for the equation $u^{(n)}=0$.

Let $\left.t_{0} \in\right] \alpha, \beta[$ be such that

$$
\begin{align*}
& \frac{u_{\gamma^{0}}(t)}{(t-a)^{l-1}\left(\gamma^{0}-t\right)^{n-l-1}} \geq \frac{u_{\gamma^{0}}\left(t_{0}\right)}{\left(t_{0}-a\right)^{l-1}\left(\gamma^{0}-t_{0}\right)^{n-l-1}} \\
& \quad \text { for } t \in[\alpha, \beta] . \tag{12}
\end{align*}
$$

Then from the lemma and the inequality (12) it follows that

$$
\begin{align*}
u_{\gamma^{0}}\left(t_{0}\right) & \geq\left(\gamma^{0}-\beta\right)(\alpha-a) \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \times \\
& \times \int_{\alpha}^{\beta} \frac{(s-a)^{n-2}\left(\gamma^{0}-s\right)^{n-2}}{\left(\gamma^{0}-a\right)^{n-1}}|p(s)| d s u_{\gamma^{0}}\left(t_{0}\right)> \tag{13}\\
& >\frac{(b-\beta)(\alpha-a)}{(b-a)^{n-1}} \sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \times \\
& \times \int_{\alpha}^{\beta}(s-a)^{n-2}(b-s)^{n-2}|p(s)| d s u_{\gamma^{0}}\left(t_{0}\right)
\end{align*}
$$

Since $\sum_{i=1}^{n-l} \frac{(-1)^{n-l-i}}{(i-1)!(n-i)!} \geq \frac{1}{l!(n-l)!}$ the inequality (13) contradicts (5).
Denote

$$
\left.\begin{array}{l}
\mu_{n}^{-}=\min \{l!(n-l)!: l \in\{1, \ldots, n-1\}, \quad n-l \text { odd }\} \\
\mu_{n}^{+}=\min \{l!(n-l)!: l \in\{1, \ldots, n-1\}, \\
n-l
\end{array} \text { even }\right\} .
$$

It is clear that

$$
\begin{aligned}
& \mu_{n}^{-}= \begin{cases}\left(\frac{n}{2}-1\right)!\left(\frac{n}{2}+1\right)! & \text { for } n \equiv 0(\bmod 4), \\
{\left[\left(\frac{n}{2}\right)!\right]^{2}} & \text { for } n \equiv 2(\bmod 4), \\
\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)! & \text { for } n \equiv 1(\bmod 2),\end{cases} \\
& \mu_{n}^{+}= \begin{cases}{\left[\left(\frac{n}{2}\right)!\right]^{2}} & \text { for } n \equiv 0(\bmod 4), \\
\left(\frac{n}{2}-1\right)!\left(\frac{n}{2}+1\right)! & \text { for } n \equiv 2(\bmod 4) \\
\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)! & \text { for } n \equiv 1(\bmod 2)\end{cases}
\end{aligned}
$$

Corollary 1. Let either $n \geq 2, \mu_{n}=\mu_{n}^{-}$, and $p(t) \leq 0$ for $t \in[a, b]$ or $n \geq 3, \mu_{n}=\mu_{n}^{+}$, and $p(t) \geq 0$ for $t \in[a, b]$. Let, moreover, $\left.\alpha, \beta \in\right] a, b[$ exist such that $a<\alpha<\beta<b$ and

$$
\int_{\alpha}^{\beta}|p(t)| d t \geq \mu_{n}\left(\frac{b-a}{(b-\beta)(\alpha-a)}\right)^{n-1}
$$

Then Eq. (1) is conjugate in $[a, b]$.
Note that $\max \{l!(n-l)!: l \in\{1, \ldots, n-1\}\}=(n-1)!$. Thus from Theorem 1 easily follows

Corollary 2. Let $l \in\{1, \ldots, n-1\}$, let the conditions (4) be fulfilled, and let $\alpha, \beta \in] a, b[$ exist such that $a<\alpha<\beta<b$ and

$$
\begin{equation*}
\int_{\alpha}^{\beta}|p(t)| d t \geq(n-1)!\left(\frac{b-a}{(b-\beta)(\alpha-a)}\right)^{n-1} \tag{14}
\end{equation*}
$$

Then Eq. (1) is $(l, n-l)$ conjugate in $[a, b]$.
Note that in the inequality (14) the factor $(n-1)$! cannot be replaced by $(n-1)!-\varepsilon$ with $\varepsilon \in] 0,1[$. This is shown by the following

Example. Let $\varepsilon \in] 0,1[$ be given beforehand and choose $\alpha \in] a, b[$ and $\beta \in] \alpha, b[$ such that

$$
\begin{equation*}
(n-1)!\left(\frac{\alpha-a}{\beta-a}\right)^{n-1}\left(\frac{b-\beta}{b-a}\right)^{n-1}>(n-1)!-\varepsilon \tag{15}
\end{equation*}
$$

Put

$$
\begin{gathered}
v(t)= \begin{cases}t-a & \text { for } t \in[a, \alpha] \\
\frac{\alpha+\beta}{2}-a-\frac{1}{2(\beta-\alpha)}(t-\beta)^{2} & \text { for } t \in] \alpha, \beta[\\
\frac{\alpha+\beta}{2}-a & \text { for } t \in[\beta, b]\end{cases} \\
u_{0}(t)=\frac{1}{(n-3)!} \int_{a}^{t}(t-s)^{n-3} v(s) d s \quad \text { for } \quad t \in[a, b], n \geq 3, \\
u_{0}(t)=v(t) \quad \text { for } \quad t \in[a, b], n=2,
\end{gathered}
$$

and

$$
p(t)=\frac{v^{\prime \prime}(t)}{u_{0}(t)} \quad \text { for } \quad a<t<b
$$

Then the function u_{0} is non-decreasing for $t \in[a, \beta]$, and the inequality

$$
u_{0}(t) \leq u_{0}(\beta) \leq \frac{1}{(n-3)!} \int_{a}^{\beta}(\beta-s)^{n-3}(s-a) d s=\frac{(\beta-a)^{n-1}}{(n-1)!}
$$

is valid. Taking into account the inequality (15), we obtain

$$
\begin{gathered}
\int_{\alpha}^{\beta} p(t) d t=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \frac{d t}{u_{0}(t)}>\frac{(n-1)!}{(\beta-a)^{n-1}}> \\
\quad>((n-1)!-\varepsilon)\left(\frac{b-a}{(b-\beta)(\alpha-a)}\right)^{n-1}
\end{gathered}
$$

On the other hand, in the case considered, Eq. (1) is not conjugate in $[a, b]$ because it has a solution u_{0} satisfying the following conditions:

$$
u_{0}^{(i)}(a)=0(i=0, \ldots, n-2), u_{0}^{(n-1)}(a)=1, u_{0}(t)>0 \text { for } a<t \leq b
$$

This example shows that in Corollary 2 inequality (14) cannot be replaced by the inequality

$$
\int_{\alpha}^{\beta}|p(t)| d t \geq((n-1)!-\varepsilon)\left(\frac{b-a}{(b-\beta)(\alpha-a)}\right)^{n-1}
$$

no matter how small $\varepsilon>0$ is.
Now consider Eq. (1) on the whole axis \mathbb{R} with $p \in L_{l o c}(\mathbb{R})$. From Corollary 2 easily follows

Corollary 3. Let $l \in\{1, \ldots, n-1\}, \quad p$ is not zero on the set of the positive measure and

$$
n \geq 2+\frac{1+(-1)^{n-l}}{2}, \quad(-1)^{n-l} p(t) \geq 0 \quad \text { for } \quad t \in \mathbb{R}
$$

Then Eq. (1) is $(l, n-l)$ conjugate in \mathbb{R}.

References

1. I. T. Kiguradze, Some singular boundary value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
2. V. A. Kondratyev, On oscillations of solutions of the equation $y^{(n)}=$ $p(x) y$. (Russian) Trudy Moskov. Mat. Obshch. 10(1961), 419-436.
3. N. L. Korshikova, On zeroes of solutions of linear equations of high orders. (Russian) Differential Equations and Their Applications (Russian), 143-148, Moscow University Press, Moscow, 1984.
4. A. Yu. Levin, Non-oscillation of solutions of the equation $x^{(n)}+$ $p_{1}(t) x^{(n-1)}$
$+\ldots+p_{n}(t) x=0$. (Russian) Uspekhi Mat. Nauk. 24(1969), No. 2, 43-96.
5. A. G. Lomtatidze, On oscillatory properties of solutions of linear differential equations of second order. (Russian) Reports of the seminar of the I. N. Vekua Institute of Applied Mathematics 19(1989), 39-54.
6. T. A. Chanturia, Sturm type theorems of comparison for differential equations of high orders. (Russian) Bull. Acad. Sci. Georgian SSR 99(1980), No. 2, 289-291.
7. - On oscillations of solutions of linear differential equations of high orders. (Russian) Reports of the seminar of the I. N. Vekua Institute of Applied Mathematics 16(1982), 3-72.
8. F. Hartman, Ordinary differential equations. (Russian) Mir, Moscow, 1970; English original, Wiley, New York, 1964.
$\left(\right.$ Received 1.07.1992) ${ }^{1}$
[^1]
[^0]: 1991 Mathematics Subject Classification. 34C10.

[^1]: ${ }^{1}$ The original manuscript was prepared for publication by D. Paatashvili

