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ON CONJUGACY OF HIGH-ORDER LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

T. CHANTURIA †

Abstract. It is shown that the differential equation

u(n) = p(t)u,

where n ≥ 2 and p : [a, b] → R is a summable function, is not con-
jugate in the segment [a, b], if for some l ∈ {1, . . . , n− 1} , α ∈]a, b[
and β ∈]α, b[ the inequalities

n ≥ 2 +
1
2
(1 + (−1)n−l), (−1)n−lp(t) ≥ 0 for t ∈ [a, b],

∫ β

α

(t− a)n−2(b− t)n−2|p(t)|dt ≥ l!(n− l)!
(b− a)n−1

(b− β)(α− a)
,

hold.

Consider the differential equation

u(n) = p(t)u, (1)

where n ≥ 2, p ∈ Lloc(I), and I ⊂ R is an interval.
The following definitions will be used below.
Equation (1) is said to be conjugate in I if there exists a nontrivial solu-

tion of this equation with at least n zeroes (each zero counted accordingly
to its multiplicity) in I.

Let l ∈ {1, . . . , n − 1}. Equation (1) is said to be (l, n − l) conjugate in
I if there exists a nontrivial solution u of this equation satisfying

u(i)(t1) = 0 (i = 0, . . . , l − 1),

u(i)(t2) = 0 (i = 0, . . . , n− l − 1),

with t1, t2 ∈ I and t1 < t2.
Suppose first that −∞ < a < b < +∞ and p ∈ L([a, b]).
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Lemma. Let a < α < β < b. Then the Green’s function G of the
problem

u(n)(t) = 0 for t ∈ [a, b],

u(j)(a) = 0 (j = 0, . . . , l − 1),

u(j)(b) = 0 (j = 0, . . . , n− l − 1),

satisfies the inequality

(−1)n−lG(t, s) >

>
(b− β)(α− a)(s− a)n−l−1(b− s)l−1(t− a)l−1(b− t)n−l−1

(b− a)n−1 ×

×
n−l
∑

i=1

(−1)n−l−i

(i− 1)!(n− i)!
for α ≤ t < s ≤ β. (2)

Proof. The function G can be written in the form

G(t, s) =



























n
∑

i=n−l+1

(−1)i−1xi(t)xn−i+1(s) for a ≤ s < t ≤ b,

−
n−l
∑

i=1

(−1)i−1xi(t)xn−i+1(s) for a ≤ t ≤ s ≤ b,

where

xi(t) =
(t− a)n−i(b− t)i−1

(i− 1)!(b− a)n−i .

It is easy to verify that for any fixed s ∈]a, b[ the function (−1)n−lG(·,s)
xn−l(·)xl+1(s)

decreases on ]a, b[ and the function (−1)n−lG(·,s)
xn−l+1(·)xl(s)

increases on ]a, b[. Thus

(−1)n−lG(t, s) ≥ (−1)n−lG(s, s)
xn−l(t)
xn−l(s)

for t ≤ s. (3)

Taking into account that

(−1)n−lG(s, s) = (−1)n−l−1
n−l
∑

i=1

(−1)i−1xi(s)xn−i+1(s) =

=
(s− a)n−1(b− s)n−1

(b− a)n−1

n
∑

i=1

(−1)n−l−i

(i− 1)!(n− i)!

and
xn−l(t)
xn−l(s)

=
(t− a)l(b− t)n−l−1

(s− a)l(b− s)n−l−1 ,



ON CONJUGACY OF HIGH-ORDER EQUATIONS 3

from the inequality (3) we deduce

(−1)n−lG(t, s) ≥

≥ (s− a)n−l−1(b− s)l(t− a)l(b− t)n−l−1

(b− a)n−1

n−l
∑

i=1

(−1)n−l−i

(i− 1)!(n− i)!
>

> (b− β)(α− a)
(s− a)n−l−1(b− s)l−1(t− a)l−1(b− t)n−l−1

(b− a)n−1 ×

×
n−l
∑

i=1

(−1)n−l−i

(i− 1)!(n− i)!
for α ≤ t < s ≤ β.

Theorem 1. Let l ∈ {1, . . . , n− 1},

n ≥ 2 +
1 + (−1)n−l

2
and (−1)n−lp(t) ≥ 0 for t ∈ [a, b]. (4)

If, in addition, there exist α, β ∈]a, b[ such that a < α < β < b and
∫ β

α
(t− a)n−2(b− t)n−2|p(t)|dt ≥ l!(n− l)!

(b− a)n−1

(b− β)(α− a)
, (5)

then Eq. (1) is (l, n− l) conjugate in [a, b].

Note that analogous results are given in [3,5] for the case where n = 2.

Proof. Put p(t) = 0 for t > b and consider Eq. (1) in the interval [a, +∞[.
For any γ > a, let uγ be the solution of (1) satisfying

u(i)
γ (a) = 0 (i = 0, . . . , l − 1),

u(i)
γ (γ) = 0 (i = 0, . . . , n− l − 2),

n−1
∑

i=0

|u(i)
γ (a)| = 1, max{uγ(t) : a ≤ t ≤ γ} > 0.

Suppose now that in spite of the statement of the theorem Eq. (1) is not
(l, n− l) conjugate in [a, b].

Note that if γ ∈]a, b], then uγ(t) > 0 for t ∈]a, γ[ and (−1)n−l−1×
×u(n−l−1)

γ (γ) > 0. Indeed, if it is not so, there exists t0 ∈]a, γ[ such that
uγ(t0) = 0. Let γ0 = inf{γ > a : uγ(t) = 0 for a certain t ∈]a, γ[}. Then
uγ0(t) > 0 for t ∈]a, γ0[ and

u(i)
γ0

(a) = 0 (i = 0, . . . , l − 1),

u(i)
γ0

(γ0) = 0 (i = 0, . . . , n− l − 1),

which contradicts our assumption.
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Let γ0 = sup{γ > b : uγ(t) > 0 for t ∈]a, γ[}. Consider first the case
where γ0 = +∞. There exists the sequence {γk}+∞k=1 such that

lim
k→+∞

γk = +∞, lim
k→+∞

uγk(t) = u0(t)

where u0 is the solution of Eq. (1). Show that

u0(t) > 0 for t > a. (6)

It is clear that u0(t) ≥ 0 for t > a. If now u0(t∗) = 0 for some t∗ > a, then
for any k large enough the function u′γk

will have at least one zero in ]a, γk[.
Taking into account the multiplicities of zeroes of uγk in a and γk, it is easy
to show that u(n−1)

γk has at least two zeroes in ]a, γk[. Hence u(n)
γk changes

sign in this interval and this is impossible.
Thus inequality (6) is proved. This inequality and the results of [1] imply

that there exist l0 ∈ {1, . . . , n} (l − l0 is even) and t1 > b such that

u(i)
0 (t) > 0 for t ≥ t1 (i = 0, . . . , l0 − 1),

(−1)i+l0u(i)
0 (t) ≥ 0 for t ≥ t1 (i = l0, . . . , n).

(7)

Clearly,

(−1)i+l0u(i)
0 (t) ≥ 0 for t ≥ a (i = l0, . . . , n),

(−1)i+l0u(i)
0 (a) > 0 (i = l0, . . . , n− 1).

(8)

Hence l ∈ {1, . . . , l0}.
Suppose that l < l0. Then for any k large enough we have γk >

t1, u(i)
γk (t1) > 0(i = 0, . . . , l0 − 1). This means that the function u(i)

γk has
at least one zero in ]t1, γk[. Taking into account the multiplicity of zero in
γk, it is easy to see that u(n−1)

γk has at least two zeroes in ]t1, γk[, and u(n)
γk

changes sign in this interval. But this is impossible. Thus l = l0.
As l = l0, inequalities (7) and (8) imply

(−1)i+lu(i)
0 (t) ≥ 0 for t ≥ a (i = l, . . . , n),

u(i)
0 > 0 for t > a (i = 0, . . . , l − 1).

Let

v(t) = u(l−1)
0 (t)−

n−1
∑

j=l

(−1)j−l

(j − l + 1)!
(t− a)j−l+1u(j)

0 (t);

then

v′(t) =
(−1)n−l

(n− l)!
(t− a)n−lu(n)

0 (t) ≥ 0 for t ≥ a.
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Hence

u(l−1)
0 (t) ≥

n−1
∑

j=l

(−1)j−l(t− a)j−l+1u(j)
0 (t)

(j − l + 1)!
≥

≥ (t− a)(−1)n−l

(n− l)!

∫ +∞

t
(s− a)n−l−1p(s)u0(s)ds for t ≥ a.

(9)

Denote ρi(t) = iu(l−i)
0 (t) − (t − a)u(l−i+1)

0 (t) for t ≥ a (i = 0, 1, . . . , l).
Then ρ′i(t) = ρi−1(t) for t ≥ a (i = 1, . . . , l). Since ρ0(t) = −(t −
a)u(l+1)

0 (t) ≥ 0 for t ≥ a and ρi(a) = 0 (i = 1, . . . , l), we have ρi(t) ≥ 0 for
t ≥ a (i = 0, 1, . . . , l). This implies

u0(t) ≥
(t− a)l−1

l!
u(l−1)

0 (t). (10)

From (9) and (10) we obtain

1 ≥ (t− a)
l!(n− l)!

∫ β

t
(s− a)n−2|p(s)|ds for t ≥ a,

which contradicts (5). The case γ0 = +∞ is thus eliminated.
Now consider the case where γ0 < +∞. As we have already noted,

γ0 > b, uγ0(t)>0 for t ∈]a, γ0[ and

u(i)
γ0 (a) = 0 (i = 0, . . . , l − 1),

u(i)
γ0 (γ0) = 0 (i = 0, . . . , n− l − 1).

(11)

Hence

uγ0(t) =
∫ γ0

a
G(t, s)p(s)uγ0(s)ds,

where G is the Green’s function of the boundary value problem (11) for the
equation u(n) = 0.

Let t0 ∈]α, β[ be such that

uγ0(t)
(t− a)l−1(γ0 − t)n−l−1 ≥

uγ0(t0)
(t0 − a)l−1(γ0 − t0)n−l−1

for t ∈ [α, β]. (12)
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Then from the lemma and the inequality (12) it follows that

uγ0(t0) ≥ (γ0 − β)(α− a)
n−l
∑

i=1

(−1)n−l−i

(i− 1)!(n− i)!
×

×
∫ β

α

(s− a)n−2(γ0 − s)n−2

(γ0 − a)n−1 |p(s)|dsuγ0(t0) >

>
(b− β)(α− a)

(b− a)n−1

n−l
∑

i=1

(−1)n−l−i

(i− 1)!(n− i)!
×

×
∫ β

α
(s− a)n−2(b− s)n−2|p(s)|dsuγ0(t0).

(13)

Since
n−l
∑

i=1

(−1)n−l−i

(i−1)!(n−i)! ≥
1

l!(n−l)! the inequality (13) contradicts (5).

Denote

µ−n = min{l!(n− l)! : l ∈ {1, . . . , n− 1}, n− l odd},
µ+

n = min{l!(n− l)! : l ∈ {1, . . . , n− 1}, n− l even}.

It is clear that

µ−n =























(
n
2
− 1)!(

n
2

+ 1)! for n ≡ 0 (mod 4),
[

(
n
2

)!
]2

for n ≡ 2 (mod 4),

(
n− 1

2
)!(

n + 1
2

)! for n ≡ 1 (mod 2),

µ+
n =























[

(
n
2

)!
]2

for n ≡ 0 (mod 4),

(
n
2
− 1)!(

n
2

+ 1)! for n ≡ 2 (mod 4),

(
n− 1

2
)!(

n + 1
2

)! for n ≡ 1 (mod 2).

Corollary 1. Let either n ≥ 2, µn = µ−n , and p(t) ≤ 0 for t ∈ [a, b] or
n≥3, µn = µ+

n , and p(t) ≥ 0 for t ∈ [a, b]. Let, moreover, α, β ∈]a, b[ exist
such that a < α < β < b and

∫ β

α
|p(t)|dt ≥ µn

( b− a
(b− β)(α− a)

)n−1
.

Then Eq. (1) is conjugate in [a, b].

Note that max{l!(n − l)! : l ∈ {1, . . . , n − 1}} = (n − 1)!. Thus from
Theorem 1 easily follows
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Corollary 2. Let l ∈ {1, . . . , n − 1}, let the conditions (4) be fulfilled,
and let α, β ∈]a, b[ exist such that a < α < β < b and

∫ β

α
|p(t)|dt ≥ (n− 1)!

( b− a
(b− β)(α− a)

)n−1
. (14)

Then Eq. (1) is (l, n− l) conjugate in [a, b].

Note that in the inequality (14) the factor (n−1)! cannot be replaced by
(n− 1)!− ε with ε ∈]0, 1[. This is shown by the following

Example. Let ε ∈]0, 1[ be given beforehand and choose α ∈]a, b[ and
β ∈]α, b[ such that

(n− 1)!
(α− a

β − a

)n−1 (b− β
b− a

)n−1
> (n− 1)!− ε. (15)

Put

v(t) =



















t− a for t ∈ [a, α],
α + β

2
− a− 1

2(β − α)
(t− β)2 for t ∈]α, β[,

α + β
2

− a for t ∈ [β, b],

u0(t) =
1

(n− 3)!

∫ t

a
(t− s)n−3v(s)ds for t ∈ [a, b], n ≥ 3,

u0(t) = v(t) for t ∈ [a, b], n = 2,

and

p(t) =
v′′(t)
u0(t)

for a < t < b.

Then the function u0 is non-decreasing for t ∈ [a, β], and the inequality

u0(t) ≤ u0(β) ≤ 1
(n− 3)!

∫ β

a
(β − s)n−3(s− a)ds =

(β − a)n−1

(n− 1)!

is valid. Taking into account the inequality (15), we obtain
∫ β

α
p(t)dt =

1
β − α

∫ β

α

dt
u0(t)

>
(n− 1)!

(β − a)n−1 >

> ((n− 1)!− ε)
( b− a

(b− β)(α− a)

)n−1
.

On the other hand, in the case considered, Eq. (1) is not conjugate in [a, b]
because it has a solution u0 satisfying the following conditions:

u(i)
0 (a) = 0 (i = 0, . . . , n− 2), u(n−1)

0 (a) = 1, u0(t) > 0 for a < t ≤ b.



8 T. CHANTURIA

This example shows that in Corollary 2 inequality (14) cannot be replaced
by the inequality

∫ β

α
|p(t)|dt ≥

(

(n− 1)!− ε
)

( b− a
(b− β)(α− a)

)n−1

no matter how small ε > 0 is.
Now consider Eq. (1) on the whole axis R with p ∈ Lloc(R). From

Corollary 2 easily follows

Corollary 3. Let l ∈ {1, . . . , n − 1}, p is not zero on the set of the
positive measure and

n ≥ 2 +
1 + (−1)n−l

2
, (−1)n−lp(t) ≥ 0 for t ∈ R.

Then Eq. (1) is (l, n− l) conjugate in R.
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