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CRITERIA OF GENERAL WEAK TYPE INEQUALITIES
FOR INTEGRAL TRANSFORMS WITH POSITIVE

KERNELS

I. GENEBASHVILI, A. GOGATISHVILI, AND V. KOKILASHVILI

Abstract. Necessary and sufficient conditions are derived in order
that an inequality of the form

ϕ(λ)θ(β{(x, t) ∈ X × [0,∞) : K(fdν)(x, t) > λ}) ≤

≤ c

∫

X

ψ
(

f(x)
η(λ)

)

σ(x)dν(x)

be fulfilled for some positive c independent of λ and a ν-measurable
nonnegative function f : X → R1, where

K(fdν)(x, t) =

∫

X

f(y)k(x, y, t)dν(y), t ≥ 0,

k : X×X× [0,∞) → R1 is a nonnegative measurable kernel, (X, d, µ)
is a homogeneous type space, ϕη and ψ are quasiconvex functions,
ψ ∈ ∆2, and t−αθ(t) is a decreasing function for some α, 0 < α < 1.

A similar problem was solved in Lorentz spaces with weights.

1. Introduction

This paper presents a characterization of weight functions and kernels for
which we have general weight weak type inequalities for integral transforms
of the form

K(fdν)(x, t) =
∫

X
f(y)k(x, y, t)dν(y), (1.1)

where X is a homogeneous type space, and k : X × X × [0,∞) → R1 a
nonnegative measurable kernel.

The homogeneous type space (X, d, µ) is a space with measure µ such
that the class of compactly supported continuous functions is dense in the
space L1(X,µ). Moreover, it is also assumed that there is a nonnegative
real-valued function d : X ×X → R1 satisfying the following conditions:
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(i) d(x, x) = 0 for all x ∈ X;
(ii) d(x, y) > 0 for all x 6= y in X;
(iii) There is a constant a0 such that d(x, y) ≤ a0d(y, x) for all x, y in X;
(iv) There is a constant a1 such that d(x, y) ≤ a1(d(x, z)+d(z, y)) for all

x, y, z in X;
(v) For each neighborhood V of x in X there is an r > 0 such that the

ball B(x, r) = {y ∈ X : d(x, y) < r} is contained in V ;
(vi) The balls B(x, r) are measurable for all x and r > 0;
(vii) There is a constant b such that µB(x, 2r) ≤ bµB(x, r) for all x ∈ X

and r > 0 (see [1], p. 2).
In the sequel B̂(x, r) will denote the set B(x, r) × [0, 2r) for r > 0 and

the one-point set {x} for r = 0 . The set B(x, 0) will be assumed to be
empty. β will be a measure defined on the product of σ-algebras generated
by balls in X and by intervals from [0,∞).

Let ϕ, ψ, and η be nonnegative nondecreasing functions on [0,∞). For
our further discussion we will also need the following basic definitions of
quasiconvex functions. We call ω a Young function if it is a nonnegative
increasing convex function on [0,∞) with ω(0) = 0, ω(∞) = ∞ and not
identically zero or ∞ on (0,∞); it may have a jump up to ∞ at some point
t > 0, but in that case it should be left continuous at t (see [2]).

The function ψ is called quasiconvex if there exist a Young function ω
and a constant c > 1 such that

ω(t) ≤ ψ(t) ≤ ω(ct), t ≥ 0. (1.2)

Clearly, ψ(0) = 0, and for s ≤ t we have ψ(s) ≤ ψ(ct) . To the quasiconvex
function ψ we can put into correspondence its complementary function ψ̃
defined by ψ̃(t) = sups≥0(st− ψ(s)).

The subadditivity of the supremum easily implies that ψ̃ is always a
Young function and (ψ̃)̃ ≤ ψ. The equality holds if ψ is itself a Young func-
tion.
If ψ1 ≤ ψ2, then ψ̃2 ≤ ψ̃1, and if ψ1(t) = aψ(bt), then ψ̃1(t) = aψ̃

( t
ab

)

.
Hence from (1.2) we have

ω̃
(

t
c

)

≤ ψ̃(t) ≤ ω̃(t). (1.3)

Now from the definition of ψ̃ we obtain Young’s inequality

st ≤ ψ(s) + ψ̃(t), s, t ≥ 0. (1.4)

It should be noted that unlike ψ the function ψ̃ may jump to ∞ at some
point t > 0. For example, if ψ(t) = t, then ψ̃(t) = ∞·χ(1,∞)(t) . Throughout
the paper we take 0 · ∞ to be zero.
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We use the convention that c denotes the absolute constant which may
change from line to line.

The function ψ satisfies the (global) ∆2 condition (ψ ∈ ∆2) if there exists
c > 0 such that ψ(2t) ≤ cψ(t), t > 0.

Some properties of quasiconvex functions and also of functions satisfying
the ∆2 condition will be presented in Section 2.

Now we are ready to formulate the main results of this paper.
In the sequel θ will always be a positive nondecreasing function.

Theorem 1.1. Let k : X × X × [0,∞) → R1 be any measurable non-
negative kernel, let ψ ∈ ∆2, and let the function t−αθ(t) decrease for some
α ∈ (0, 1). Let, further, ν be a finite measure on X, and σ : X → R1 be an
almost everywhere positive function which is locally summable with respect
to measure ν.

Assume that there exist positive constants ε and c1 such that

∫

X\B(a,r)

ψ̃

(

ε
ϕ(s)η(s)

s
θ(βB̂(a,N0(2r + t)))

σ(y)
k(a, y, t)

)

σ(y)dν(y) ≤

≤ c1ϕ(s)θ(βB̂(a,N0(2r + t))) (1.5)

for any s > 0, r ≥ 0, a ∈ X and t ≥ 0, where N0 = a1(1 + 2a0) .
Then there exists a positive constant c2 such that for any λ > 0 and

any nonnegative ν-measurable function f : X → R1 the following inequality
holds:

ϕ(λ)θ(β{(x, t) ∈ X × [0,∞) : K(fdν)(x, t) > λ}) ≤

≤ c2

∫

X
ψ

(

f(x)
η(λ)

)

σ(x)dν(x). (1.6)

Assume now that the nonnegative measurable kernel k satisfies the fol-
lowing additional condition: there exist numbers N ≥ N0, N0 = a1(1+2a0)
and c′ such that

k(a, y, t) ≤ c′k(x, y, τ) (1.7)

when y ∈ X \B(a, r), (x, τ) ∈ B̂(a, N(r + t)) for any a ∈ X, r ≥ 0, t ≥ 0.

Theorem 1.2. Let ϕη and ψ be quasiconvex functions, let ψ ∈ ∆2, let
the function t−αθ(t) decrease for some α ∈ (0, 1), and let k satisfy the
condition (1.7).

Then the inequality (1.6) is equivalent to any of the following conditions:
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(i) there exist positive constants ε and c3 such that

∫

X\B(a,r)

ψ̃

(

ε
ϕ(s)η(s)

s
θ(βB̂(a, r + t))

σ(y)
k(a, y, t)

)

σ(y)dν(y) ≤

≤ c3ϕ(s)θ(βB̂(a, r + t)) (1.8)

for arbitrary s > 0, r ≥ 0, a ∈ X and t ≥ 0;
(ii) there exist positive constants ε and c4 such that

∫

X
ψ̃

(

ε
ϕ(s)η(s)

s
θ(βB̂(a, t))

σ(y)
k(a, y, t)

)

σ(y)dν(y) ≤

≤ c4ϕ(s)θ(βB̂(a, t)) (1.9)

for any s > 0, a ∈ X and t ≥ 0;
(iii) there exists a positive constant c5 such that for any a ∈ X, r ≥ 0,

t ≥ 0 and for any nonnegative ν-measurable functions F : X → R1,
supp F ⊂ X \B(a, r) we have

ϕ (K(Fdν)(a, t)) θ(βB̂(a, r + t)) ≤

≤ c5

∫

X
ψ

(

F (x)
η(K(Fdν)(a, t)

)

σ(y)dν(y). (1.10)

Let k : X × X → R1 be a nonnegative measurable function satisfying
the following condition: there exist numbers N ≥ N0 and c′ > 0 such that
k(a, y) ≤ c′k(x, y) for any a ∈ X, y ∈ X \B(a, r), and x ∈ B(a,Nr) .

For any positive function % : X → R1, locally summable with respect to
measure ν, it will be assumed below that

%E =
∫

E
%(x)dν(x)

for any ν-measurable set E ⊂ X .
We have

Theorem 1.3. Let the functions ϕ, η, and ψ satisfy the conditions of
Theorem 1.2. Then the following statements are equivalent:

(i) there exists a positive constant c6 such that for any λ > 0 and for any
measurable nonnegative function f

ϕ(λ)θ
(

%{x ∈ X :
∫

X
k(x, y)f(y)dν(y) > λ}

)

≤

≤ c6

∫

X
ψ

(

f(y)
η(λ)

)

σ(y)dν(y)
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for any λ>0 and for any measurable nonnegative function f :X→ R1;
(ii) there exist positive numbers ε and c7 such that

∫

X\B(a,r)

ψ̃
(

ε
ϕ(s)η(s)

s
θ(%B(a, r))

σ(y)
k(a, y)

)

σ(y)dν(y) ≤

≤ c7ϕ(s)θ(%B(a, r))

for any s > 0, a ∈ X, and r ≥ 0 .

The above-formulated results contain the solutions of problems of descrip-
tion of a set of weights ensuring in Orlicz spaces the validity of both weak
and extra-weak weighted inequalities for transform (1.1) which are natural
analogies of inequalities of the weak type (p, q). Indeed, for ϕ = ψ, η ≡ 1
(1.6) becomes a weak type weighted inequality, while for ϕ ≡ 1, η(λ) = λ
we obtain an extra-weak type weighted inequality. It is understood that an
inequality of the weak type (ϕ,ϕ) is essentially stronger than an inequality
of the extra-weak type (ϕ,ϕ).

The solutions of similar problems in Lorentz spaces are derived in Sec-
tion 3. Section 4 contains a discussion of the interesting corollaries of The-
orems 1.2 and 1.3 for integral operators such as potentials and their gener-
alizations, Poisson integrals and their generalizations, the Hardy operators,
and others. Here we give a very brief survey only of the results preceding
this paper.

The solution of a weak type two weight problem for Riesz potentials in
Lebesgue spaces was obtained in [3], [4], the criterion found in [4] being
more easily verifiable. The latter result was extended to the integrals on
homogeneous type spaces in [5]. A similar problem was treated in [6] (see
also [7], Theorems 6.1.1 and 6.1.2) in Lorentz spaces over Rn for integral
transforms

Kf(x) =
∫

Rn
k(x, y)f(y)dy.

Subsequently in [8] generalizations were obtained for transforms of type
(1.1) when X = Rn, dν(y) = dy. More particular cases of generalized
potentials and Poisson integrals were considered in [8] and [9], respectively.
The latter deals with Lorentz spaces and the former with Lebesgue spaces.
In Orlicz classes the problem of description of a set of weights ensuring the
validity of weak type weighted inequalities was previously studied mainly
for maximal functions [10], [11], [12] and the Hardy operator [13], [14].

2. Proof of the Main Theorems

In this section use will be made of some properties of quasiconvex func-
tions satisfying the ∆2 condition, also of the covering lemma in homogeneous



14 I. GENEBASHVILI, A. GOGATISHVILI, AND V. KOKILASHVILI

type spaces.

Lemma 2.1 ([11], p. 4). The following statements are equaivalent:
(i) ϕ is a quasiconvex function;
(ii) there exists c > 1 such that

ϕ(s)
s

≤ ϕ(ct)
t

for s < t. (2.1)

Hence for quasiconvex functions ϕ we immediately obtain the estimates

δϕ(t) ≤ ϕ(cδt), t ≥ 0, δ > 1, (2.2)

ϕ(δt) ≤ δϕ(ct), t ≥ 0, δ < 1. (2.3)

For convex functions the inequalities to be given above are valid when
c = 1 .

Lemma 2.2. If ω is a Young function, then

ω
(

ω̃(t)
t

)

≤ ω̃(t), t ≥ 0. (2.4)

Proof. By virtue of the equality (ω̃)̃ = ω we have

ω
(

ω̃(t)
t

)

= sup
s≥0

s
(

ω̃(t)
t

− ω̃(s)
s

)

≤ sup
0≤s<t

s
ω̃(t)

t
≤ ω̃(t).

since the expression in the brackets is negative when t < s.

Lemma 2.3 ([11], p.17). Let ψ satisfy the ∆2-condition. Then there
exist p > 1 and c > 1 such that

s−pψ(s) ≤ ct−pψ(t) (2.5)

for 0 ≤ t ≤ s.

Lemma 2.4. Let E be a bounded set in X, and for each point x ∈ E
let a ball Bx = B(x, rx) be given such that supx∈E rad Bx < ∞. Then
from the family {Bx}x∈E we can choose a (finite or infinite) sequence of
pairwise disjoint balls (Bj)j for which E ⊂ ∪j≥1N0Bj, N0 = a1(1 + 2a0),
and for each Bx∈{Bx}x∈E there exists a ball Bj0 such that x∈N0Bj0 and
radBx ≤ 2 rad Bj0 .

Proof. Set R1 = supx∈E radBx. There obviously exists a ball B1 = Bx1

from the family {Bx}x∈E provided that rad B1 > 2−1R1. If x 6∈ N0B1 ∩E,
then Bx ∩ B1 = ∅. Indeed, making the opposite assumption that there
exists a point y∈Bx ∩B1, we will have

d(x1, x) ≤ a1(d(x1, y) + d(y, x)) < a1(rad Bx1 + a0d(x, y)) <

< a1(rad B1 + a0 rad Bx) < a1(1 + 2a0) rad B1 = N0 radB1,
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which leads to the contradiction.
Obviously, rad Bx ≤ 2 rad B1 for an arbitrary point x∈N0B1 ∩ E. As-

suming now that R2 = supx∈E\N0B1
rad Bx, we can find a ball B2 = Bx2

from the family {Bx}x∈E\N0B1 provided that B2∩B1 = ∅, radB2 > 2−1R2

and rad Bx ≤ 2 rad B2 for each point x∈ (N0B2 ∩ E)\N0B1. Proceeding in
this way, we arrive at the sequence {Bj}j≥1 of nonintersecting balls. If this
sequence is finite, then it will be the one we wanted to obtain.

Let the sequence be infinite. If we show that for each point x∈E there
exists a ball Bj for which x ∈N0Bj , then setting j0 equal to the minimal
value among similar j’s, we obtain the desired covering.

Assume the opposite. Let in E there exists a point x0 ∈ E such that
x0 6∈N0Bj for every j. Then we will have Bx0 ∈{Bx}x∈E\∪n

j=1N0Bj for any
natural number n, and hence rad Bx0 ≤ Rn < 2 rad Bn for each n.

On the other hand, it is obvious that ∪x∈EBx is a bounded set, i.e. it
is contained within some ball B0. It therefore turns out that (Bj)j≥1 is
an infinite sequence of nonintersecting balls contained in B0. Therefore
rad Bn → 0 (see, for example, [17], p. 68). The latter result leads to the
contradiction rad Bx0 = 0.

Proof of Theorem 1.1. Fix the function f ≥ 0 and λ > 0. Without loss of
generality it can be assumed that

1
c1θ(β(X × [0,∞)))ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν < 1. (2.6)

Otherwise we would have

ϕ(λ)θ(β{(x, t) : K(fdν)(x, t) > λ}) ≤ ϕ(λ)θ(β(X × [0,∞))) ≤

≤ 1
c1

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν

and, since ψ∈∆2, the proof is complete.
Assume (x, t) ∈ Eλ, where Eλ = {(x′, t′) ∈ X × [0,∞) : K(fdν)(x′, t′)

> λ}. By virtue of (2.6) for (x, t) there exists a finite r ≥ 0 such that

1

c1θ(β ̂B(x, N0(2r + t)))ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν < 1.

If the greatest lower bound of r is positive, then there exists a positive
number r0 = r0(x, t) such that the inequalities

1

c1θ(β ̂B(x,N0(r0 + t)))ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν ≥ 1, (2.7)

1

c1θ(β ̂B(x, N0(2r0 + t)))ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν < 1 (2.8)
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are simultaneously fulfilled.
For such r0 we would have by virtue of inequality (1.4) and condi-

tion (1.5)
∫

X\B(x,r0)

f(y)k(x, y, t)dν =
λ

4c1ϕ(λ)θ(β ̂B(x,N0(2r0+t)))
×

×
∫

X\B(x,r0)

4c1

ε
f(y)
η(λ)

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(x,N0(2r0 + t)))

σ(y)
k(x, y, t)σ(y)dν ≤

≤ λ

4c1ϕ(λ)θ(β ̂B(x,N0(2r0 + t)))

∫

X\B(x,r0)

ψ
(4c1f(x)

εη(λ)

)

σ(x)dν +

+
λ

4c1ϕ(λ)θ(β ̂B(x, N0(2r0+t)))
×

×
∫

X\B(x,r0)

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(x,N0(2r0 + t)))

σ(y)
k(x, y, t)

)

σ(y)dν ≤

≤ λ
4

+
λ
4

=
λ
2
.

But since (x, t)∈Eλ, the latter estimate implies
∫

B(x,r0)

f(y)k(x, y, t)dν >
λ
2
. (2.9)

When the measure ν is concentrated at the point x, the above-mentioned
greatest lower bound may turn out to be equal to zero. Then instead of
(2.9) we have

k(x, x, t)f(x)ν{x} >
λ
2
. (2.10)

Therefore due to (1.4) and (1.5)

ϕ(λ)θ(β ̂B(x,N0t))) ≤
1

2c1
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)ν{x}+

+
1

2c1

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(x,N0t)))

σ(x)
k(x, x, t)

)

σ(x)ν{x} ≤

≤ 1
2c1

∫

B(x,t)

ψ
(4c1

ε
f(x)
η(λ)

)

σ(y)dν(y) +
1
2
ϕ(λ)θ(β ̂B(x,N0t)).
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Hence

ϕ(λ)θ(β ̂B(x,N0t)) ≤
1

4c1

∫

B(x,t)

ψ
(4c1

ε
f(y)
η(λ)

)

σ(y)dν(y). (2.11)

Let us now consider the case when ν is not concentrated at the point x.
Let n be the greatest nonnegative integer for which

b def= lim
r→0

βB̂(r + t)) < 2−nβ ̂B(x,N0(r0 + t));

n may be equal to ∞ if b = 0. For each k, 0 < k ≤ n, we set rk = sup{r :
β ̂B(x, N0(r+t)) ≤ 2−kβ ̂B(x, N0(r0+t))}. Then (rk)k is a decreasing (finite
or infinite) sequence and

β ̂B(x,N0(rk + t)) ≤ 2−kβ ̂B(x,N0(r0 + t)) ≤

≤ β ̂B(x, N0(2rk + t)). (2.12)

Let Bk = B(x, rk), 0 ≤ k ≤ n, and Bn+1 = {x}. Since by the condition
of the theorem u−αθ(u) decreases, we have

ap
k =

β ̂B(x,N0(rk + t))

θ(β ̂B(x,N0(rk + t)))
· θ(β ̂B(x,N0(r0 + t)))

β ̂B(x, N0(r0 + t))
=

=
β ̂B(x,N0(rk + t))

θ(β ̂B(x,N0(rk + t)))

θ(β ̂B(x,N0(r0 + t)))

(β ̂B(x, N0(r0 + t)))1−α(β ̂B(x,N0(r0 + t)))α
≤

≤ c
(β ̂B(x,N0(rk + t))

β ̂B(x, N0(r0 + t))

)1−α
≤ c

( 1
2k

)1−α
.

Because of this
n

∑

k=0

ak ≤ c
1
p

∞
∑

k=0

( 1
2k

)
1−α

p = a < ∞.

Inequality (2.9) can now be rewritten as

λ
2

n
∑

k=0

ak

a
≤

n
∑

k=0

∫

Bk\Bk+1

k(x, y, t)f(y)dν,

whence it follows that there exists k0, 0 ≤ k0 ≤ n, such that

λ
2

ak0

a
<

∫

Bk0\Bk0+1

k(x, y, t)f(y)dν.

Therefore

ϕ(λ)θ(β ̂B(x,N0(2rk0+1 + t))) ≤
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≤ 1
2c1

∫

Bk0\Bk0+1

4ac1

εak0

f(y)
η(λ)

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(x,N0(2rk0+1 + t)))

σ(y)
×

×k(x, y, t)σ(y)dν(y) ≤ 1
2c1

∫

Bk0

ψ
(4ac1

εak0

f(y)
η(λ)

)

σ(y)dν +

+
1

2c1

∫

Bk0\Bk0+1

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(x,N0(2rk0+1 + t)))

σ(y)
×

×k(x, y, t)
)

σ(y)dν ≤ 1
2c1

∫

Bk0

ψ
(4ac1

εak0

f(y)
η(λ)

)

σ(y)dν +

+
1
2
ϕ(λ)θ(β ̂B(x,N0(2rk0+1 + t))),

and as a result we have

ϕ(λ)θ(β ̂B(x,N0(2rk0+1 + t))) ≤ ca−p
k0

∫

B(x,rk0 )

ψ
(4c1

ε
f(y)
η(λ)

)

σ(y)dν.

Next, taking into account (2.12), we obtain the estimate

ϕ(λ)θ(β ̂B(x,N(rk0 + t))≤ca−p
k0

∫

B(x,rk0+t)

ψ
(4c1f(y)

εη(λ)

)

σ(y)dν (2.13)

which by the definition of the number ak0 takes the form

ϕ(λ)β ̂B(x,N0(rk0 + t)) ≤

≤ c
β ̂B(x,N0(r0 + t))

θ(β ̂B(x,N0(r0 + t)))

∫

B(x,rk0+t)

ψ
(4c1f(y)

εη(λ)

)

σ(y)dν. (2.14)

Rewrite (2.7) now as

θ(β ̂B(x,N0(r0 + t))) ≤ 1
c1ϕ(λ)

∫

X
ψ

(4c1

ε
f(y)
η(λ)

)

σ(y)dν. (2.15)

If θ−1 is defined by θ−1(u) = sup{τ : θ(τ) ≤ u}, then θ(θ−1(u)) ≤ u and
θ(2θ−1(u)) ≥ u, i.e., u

2 ≤ θ(θ−1(u)) ≤ u. Moreover, θ−1(θ(u)) = sup{τ :
θ(τ) ≤ θ(u)} ≥ u. Therefore (2.15) will yield the estimate

β ̂B(x,N0(r0 + t)) ≤ θ−1(θ(β ̂B(x, N0(r0 + t)))) ≤

≤ θ−1
( 1

c1ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν
)

.
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Thus

θ
(

θ−1
( 1

c1ϕ(λ)

∫

X
ψ

(4c1f(x)
εη(λ)

)

σ(x)dν
))

≤

≤ 1
c1ϕ(λ)

∫

X
ψ

(4c1f(x)
εη(λ)

)

σ(x)dν,

which by virtue of the fact that θ(u)
u decreases yields the estimate

β ̂B(x,N0(r0 + t))

θ(β ̂B(x,N0(r0 + t)))
≤

≤ c
θ−1

(

1
c1ϕ(λ)

∫

X ψ
(

4c1
ε

f(y)
η(λ)

)

σ(y)dν
)

θ
(

θ−1
(

1
c1ϕ(λ)

∫

X ψ
(

4c1
ε

f(y)
η(λ)

)

σ(y)dν
)) ≤

≤ 2c
θ−1

(

1
c1ϕ(λ)

∫

X ψ
(

4c1
ε

f(y)
η(λ)

)

σ(y)dν
)

1
c1ϕ(λ)

∫

X ψ
(

4c1
ε

f(y)
η(λ)

)

σ(y)dν

def= l(f, λ).

After the above manipulations condition (2.14) can be formulated as
follows: for each (x, t)∈Eλ there exists a ball Bx,t such that x is its center,
t ≤ rad Bx,t, and

ϕ(λ)β(N0 ̂Bx,t) ≤ cl(f, λ)
∫

Bx,t

ψ
(4c1

ε
f(y)
η(λ)

)

σ(y)dν. (2.16)

Now fix a ball B0 and consider the sets ̂B0∩Eλ and B0∩{x : K(fdν)(x, 0)
> λ} ≡ B0 ∩ E0

λ.
It is obvious that the latter set is contained in the former. For each

x ∈ E0
λ we set d(x) = sup{t : (x, t) ∈ ̂B0 ∩ Eλ}. It is easy to verify that

d(x) < 2 rad B0. For each x ∈ B0 ∩ E0
λ there exist tx ≥ 2d(x)

N0
such that

(x, tx) ∈ B̂0 ∩ Eλ(N0 > 2); consequently, for (x, tx), (2.16) is valid.
As a result we have the following situation: for each x∈B0 ∩ E0

λ there
exists a ball Bx with center at the point x such that rad Bx > d(x)

N0
and

(2.16) is fulfilled for Bx = Bx,t.
If sup

x∈B0∩E0
λ

radBx = ∞, then, clearly, there exists a ball B1∈{Bx}x∈E0
λ∩B0

such that Eλ ∩ ̂B0 ⊂ ̂B1.
If sup rad Bx <∞, then, due to Lemma 2.4, from the family {Bx}x∈E0

λ
∩

B0 covering the bounded set E0
λ ∩ B0 we can choose a sequence (Bj) of

nonintersecting balls for which ∪j≥1N0Bj ⊃ E0
λ ∩B0 and (2.16) holds.

It will be shown that (N̂0Bj)j≥1 covers the set Eλ ∩B0. To this end we
prove that each (x, d(x)) ∈ ∪j≥1N̂0Bj . Indeed, if x is the center of some
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ball Bj , then there is nothing to prove. Let x not be the center of Bj ;
then by Lemma 2.4 for Bx there exists a ball Bj such that x∈N0Bj and
rad Bx ≤ 2 rad Bj . Therefore d(x) < N0 radBx ≤ 2N0 radBj or, which is
the same, (x, d(x))∈N̂0Bj .

On account of the foregoing reasoning we can derive estimates

ϕ(λ)β{(x, t)∈̂B0 : K(fdν)(x, t) > λ} ≤
∞
∑

j=1

ϕ(λ)βN̂0Bj ≤

≤ cl(f, λ)
∞
∑

j=1

∫

Bj

ψ
(4c1

ε
f(y)
η(λ)

)

σ(y)dν ≤

≤ cl(f, λ)
∫

X
ψ

(4c1

ε
f(y)
η(λ)

)

σ(y)dν ≤

≤ cϕ(λ)θ−1
( 1

c1ϕ(λ)

∫

X
ψ

(4c1

ε
f(y)
η(λ)

)

σ(y)dν
)

which yield

θ(β{(x, t)∈̂B0 : K(fdν)(x, t) > λ}) ≤

≤ θ
(

cθ−1
( 1

c1ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν
))

.

Taking into account ψ ∈ ∆2 and u−αψ(u) ↓, from the latter estimate we
obtain the inequality

θ(β{(x, t)∈̂B0 : K(fdν)(x, t) > λ}) ≤

≤ cαθ
(

θ−1
( 1

c1ϕ(λ)

∫

X
ψ

(4c1

ε
f(x)
η(λ)

)

σ(x)dν
))

≤

≤ c
ϕ(λ)

∫

X
ψ

(f(x)
η(λ)

)

σ(x)dν.

If we now assume that rad B0 tends to infinity, we obtain (1.6).

Consider the case dβ = %dν⊗δ0, where δ0 is the Dirac measure supported
at the origin and

k(x, y, t) =
{

k(x, y), t = 0,
0, t > 0.

In that case due to Theorem 1.1 we have

Corollary 2.1. Let the functions ϕ, η and ψ satisfy the conditions of
Theorem 1.1. It is further assumed that there exist positive ε and c1 such
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that
∫

X\B(a,r)

˜ψ
(

ε
ϕ(s)η(s)

s
θ(%B(a, 2N0r))

σ(y)
k(a, y)

)

σ(y)dν ≤

c1ϕ(s)θ(%B(a, 2N0r))

for any s > 0, r ≥ 0 and a∈X.
In that case there exists c2 > 0 such that the inequality

ϕ(λ)θ(%{x∈X :
∫

X
k(x, y)f(y)dν(y) > λ}) ≤

≤ c2

∫

X
ψ

(f(x)
η(λ)

)

σ(x)dν

holds for any λ > 0 and any nonnegative measurable function f : X → R1.

It is time to make some remarks. Taking a closer look at the proof of
Theorem 1.1, we readily find that if β ̂B(x, r) is continuous with respect to
r for each x∈X, the factor 2 in condition (1.5) can be omitted.

Moreover, if the space (X, d, µ) possesses the Besicovitch property (con-
sisting in the fact that for every bounded set E any family {B(y, r(y))}y∈E
of balls contains a countable (or finite) subfamily {Bn} = {B(yn,r(yn)},
n∈N , such that E ⊂ ∪Bn and

∑

χBn ≤ c, where χBn is the characteristic
function of the set Bn), then in Corollary 2.1 we can set N0 = 1.

Finally we remark that for ϕ(λ) = ψ(λ) = λp, η ≡ 1, θ(u) = u
p
q , X = Rn

Corollary 2.1 becomes the particular case of Theorem 6.1.1 from [7], p. 171.
The proof of Theorem 1.2 rests on a number of lemmas.

Lemma 2.5. Let θ be any increasing function, and let the kernel k sat-
isfy condition (1.7). If condition (1.6) is fulfilled, then there exists a constant
c > 0 such that for any a∈X, r ≥ 0, t ≥ 0, and any nonnegative measurable
function F :X→R1, supp F ⊂ X\B(a, r) we have the inequality

ϕ(K(Fdν)(a, t))θ(β ̂B(a,N(r + t))) ≤

≤ c
∫

X
ψ

( c′F (x)
η(K(Fdν)(a, t))

)

σ(x)dν,
(2.17)

where N and c′ are the constants from condition (1.7).

Proof. Fix a∈X, r ≥ 0, t ≥ 0, and F : X → R1 assuming that supp F ⊂
X\B(a, r). Inequality (2.17) is obtained if in (1.6) we set f = c′F and
λ = K(Fdν)(a, t).

It is sufficient only to note that the inclusion

̂B(a,N(r + t)) ⊂ {(x, τ) : K(c′Fdν)(x, τ) ≥ K(Fdν)(a, t)}
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holds by virtue of condition (1.7).

Lemma 2.6. Let ϕη and ψ be quasiconvex functions, and let k be a
nonnegative kernel. Then condition (2.17) with the constants c, c′, and N
implies the existence of ε and c1 such that the inequality

∫

X\B(a,r)

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(a,N(r + t)))

σ(y)
k(a, y, t)

)

σ(y)dν(y)≤

≤ c1ϕ(λ)θ(β ̂B(a,N(r + t))) (2.18)

holds for any λ > 0, r ≥ 0, t ≥ 0, and a∈X.

Proof. It is obvious that (2.17) is fulfilled for σ1 = σ + δ, too, if δ > 0.
Let a ∈X, r ≥0, t≥ 0, λ > 0 be the fixed constants. Due to (1.8) it can
be assumed without loss of generality that the function ψ is convex. For
M > 0 we define the value

I =
∫

D

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(a,N(r + t))

σ1(y)
k(a, y, t)

)

σ1(y)dν,

where D = B(a,R)\B(a, r) ∩ {y ∈X : k(a, y, t) < M}, R > r, while the
constant ε will be appropriately chosen later.

We introduce the notation

Tδ(y) = ε
ϕ(λ)η(λ)

λ
θ(β ̂B(a,N(r + t)))

σ1(y)
k(a, y, t),

g(y) =
˜ψ(Tσ(y))
Tσ(y)

εη(λ)χD(y),

allowing us to write

I = ϕ(λ)θ(β ̂B(a,N(r + t)))
K(gdν)(a, t)

λ
. (2.19)

Our next step is to show that for sufficiently small ε’s the value I is finite.
If limt→∞

ψ(t)
t = ∞, then ˜ψ is finite everywhere and thus

I ≤ ˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(a,N(r + t)))

δ
M

)

∫

B(a,R)

σ1(x)dν < ∞

for any ε > 0.
Let now ψ(t) ≤ At, A > 0. Then from the condition (2.17) we obtain

ϕ(K(Fdν)(a, t))η(K(Fdν)(a, t))θ(β ̂B(a,N(r + t))) ≤

≤ c
∫

X
F (x)σ(x)dν. (2.20)
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Set

l =
∥

∥

∥χX\B(a,r)
k(a, ·, t)

σ1

∥

∥

∥

L∞
.

From the definition of the norm in L∞ it follows that there exists a
measurable set E ⊂ X\B(a, r), νE > 0 such that

k(a, y, t)
σ1(y)

>
l
2

for y∈E.
Set in (2.20)

F (y) =
λ

νEk(a, y, t)
χE(y).

Recall that a and t are fixed. Obviously, K(Fdν)(a, t) = λ and hence by
virtue of (2.20) we obtain the estimate

ϕ(λ)η(λ)
λ

θ(β ̂B(a,N(r + t))) ≤ c
νE

∫

E

σ(y)
k(a, y, t)

dν ≤ 2c
l

,

which yields

ϕ(λ)η(λ)
λ

θ(β ̂B(a,N(r + t)))χX\B(a,r)
k(a, y, t)
σ1(y)

< c,

where the constant does not depend on λ, r, t, and a.
Thus we conclude that

I ≤ ˜ψ(εc)
∫

B(a,r)

σ1(y)dν.

If now ε is so small that ˜ψ(cε) < ∞, then the value I will be finite for
the respective ε.

Now it will be shown that

I ≤ bϕ(λ)θ(β ̂B(a, N(r + t))) + cb
∫

X
ψ

(c′g(y)
η(λ)

)

σ1dν, (2.21)

where the constants b, c and c′ do not depend on λ, r, and t.
Let a∈X and t ≥ 0 be such that K(gdν)(a, t) < bλ, where the constant

b is such that

ϕ(s)η(s)
s

≤ b
ϕ(u)η(u)

u
(2.22)

for bs < u (see Lemma 2.1).
Then evidently (2.19) will yield

I ≤ bϕ(λ)θ(β ̂B(a,N(r + t))).

Let now K(gdν)(a, t) > bλ.
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Using (2.22) and condition (2.17), from (2.19) we obtain the estimate

I = ϕ(λ)θ(β ̂B(a,N(r + t)))
K(gdν)(a, t)

λ
≤

≤ b
ϕ(K(gdν)(a, t))η(K(gdν)(a, t))

η(λ)
θ(β ̂B(a,N(r + t))) ≤

≤ cb
η(K(gdν)(a, t))

η(λ)

∫

X
ψ

( c′g(x)
η(K(gdν)(a, t))

)

σ1(x)dν.

Since the function ψ is convex, estimating the right-hand part of the
latter inequality by means of (2.2) we conclude that

I ≤ cb
∫

X
ψ

(c′g(x)
η(λ)

)

σ1(x)dν.

Thus we have shown that inequality (2.21) is valid.
Rewrite (2.21) as

I ≤ bϕ(λ)θ(β ̂B(a,N(r + t))) +

+cb
∫

X
ψ

(

c′ε
˜ψ(Tδ(y))
Tδ(y)

)

σ1(y)dν. (2.23)

Let ε be chosen so small that c′ε < 1. Then, by virtue of the assumption
that the function ψ is convex and taking into account (2.3) and (2.4), from
(2.23) we have

∫

D

˜ψ
(

Tδ(y)
)

σ(y)dν ≤ bϕ(λ)θ(β ̂B(a,N(r + t))) +

+cc′bε
∫

D

˜ψ(Tδ(y))σ1(y)dν.

If ε is so small that cc′bε < 1, then the latter inequality implies
∫

D

˜ψ
(

Tδ(y)
)

σ1(y)dν ≤ cϕ(λ)θ(β ̂B(a,N(r + t))).

Passing here to the limit when R →∞, M →∞, and δ → 0, we obtain the
desired inequality (2.18).

Lemma 2.7. Let the kernel k satisfy condition (1.7), and let inequality
(1.9) be fulfilled. Then (1.5) is valid.

Proof. Replace t by N0(2r+t) in condition (1.9) and take into consideration
that by virtue of condition (1.7) we have

k(a, y, t) ≤ c′k(a, y,N0(2r + t))

for any y∈X\B(a, r).
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Proof of Theorem 2.2. The proof is accomplished by the diagram

(1.6) ⇒ (1.10)
⇑ ⇓

(1.9) ⇐ (1.8)

By Lemma 2.5 (1.6)⇒ (1.10). Then by Lemma 2.6 (1.10)⇒ (1.8). When
r = 0, condition (1.8) yields (1.9). Next, by Lemma 2.7 we obtain (1.5).
Finally, using Theorem 1.1, we ascertain that the implication (1.5) ⇒ (1.6)
is valid.

We make some remarks connected with the proof of Theorem 1.3. If
k(x, y, t) = k(x, y), dβ = %dµ⊗δ0 Lemmas 2.5 and 2.6 can be reformulated in
the respective manner. Further, proceeding from Corollary 2.1 and following
the proof of Theorem 2.2, we ascertain that Theorem 1.3 is valid.

3. Criteria of General Weak Type Weighted Inequalities in
Lorentz Spaces

Let (Y, ν) be a space with a positive σ-additive measure ν. When 1 ≤
p ≤ ∞, 1 ≤ s ≤ ∞, the Lorentz space Lps

ν is the space of all ν-measurable
functions f for which ‖f‖Lps(Y,ν) < ∞, where

‖f‖Lps(Y,ν) =
(

s
∫ ∞

0
(ν{y ∈ Y : |f(y)| > τ})

s
p τ s−1dτ

) 1
s

if 1 ≤ p < ∞, 1 ≤ s < ∞,

and

‖f‖Lps(Y,ν) = sup τ({y ∈ Y : |f(y)| > τ})
1
p if 1 ≤ p < ∞, s = ∞.

If 1 < p < ∞ and 1 ≤ s ≤ ∞, or p = s = 1, or p = s = ∞, then Lps(Y, ν)
is a Banach space with norm equivalent to ‖ · ‖Lps(Y,ν).

In the sequel X will denote a homogeneous type space, β a positive
measure given on the product of σ-algebras generated by balls from X and
by intervals from [0,∞), and ν a finite positive measure on X.

Theorem 3.1. Let 1 ≤ s ≤ p < q < ∞, and let k : X×X× [0,∞) → R1

be an arbitrarily chosen nonnegative kernel. In that case, if there exists a
number c1 > 0 such that the inequality

(

β ̂B(a, N0(2r + t)
) 1

q ‖χX\B(a,r)
k(a, ·, t)

σ
‖Lp′s′ (X,σdν) ≤ c1 (3.1)
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holds for any a ∈ X, r ≥ 0, t ≥ 0, then there exists a positive constant c2

such that

β{(x, t) ∈ X × [0,∞) : K(fdν)(x, t) > λ} ≤
≤ c2λ−q‖f‖q

Lps(X,ν) (3.2)

for any measurable nonnegative f : X → R1 and λ > 0.

Theorem 3.2. Let 1 ≤ s ≤ p < q < ∞, and let the kernel k satisfy
condition (1.7). Then the folowing statements are equivalent:

(i) (3.2) is fulfilled;
(ii) there exists a positive constant c such that

(

β ̂B(a, (2r + t)
) 1

q ‖χX\B(a,r)
k(a, ·, t)

σ
‖Lp′s′ (X,σdν) ≤ c

for any a ∈ X, r ≥ 0, t ≥ 0;
(iii) there exists a number c1 > 0 such that

(

β ̂B(a, t
) 1

q ‖k(a, ·, t)
σ

‖Lp′s′ (x,σdν) ≤ c1.

The proofs of these theorems are accomplished in the manner described
in Section 2 using the technique from [7], Chapter 6, and we therefore leave
them out. Note that the solution of the two-weight problem in the sense of
[3] was previously derived in [19] in Lebesgue space for a fractional integral
over a homogenous type space.

4. General Weak Type Inequalities for Classical Operators

In this section we discuss some specific examples for which the results of
the previous sections are valid.

Consider the kernel

k(x, y, t) = (µB(x, d(x, y) + t))−δ, δ > 0.

It is easy to verify that it satisfies condition (1.7). Let y ∈ X\B(a, r)
and (x, τ)∈ ̂B(a,N(r + t)), where N is an arbitrary positive number. It is
sufficient to show the inclusion

B(x, d(x, y) + τ) ⊂ B(a, c(d(a, y) + t)).



CRITERIA OF GENERAL WEAK TYPE INEQUALITIES 27

Indeed, assuming that z∈B(x, d(x, y)+ τ), we obtain a chain of inequal-
ities

d(a, z) ≤ a1(d(a, x) + d(x, z)) ≤ a1(N(r + t) + d(x, z)) ≤
≤ a1N(r + t) + a1d(x, y) + a1τ ≤ 3a1N(r + t) +

+a2
1(d(x, a) + d(a, y)) ≤ 3a1N(r + t) + a2

1a0d(a, x) +

+a2
1d(a, y) ≤ (3a1 + a2

1a0)N(r + t) + a2
1d(a, y) ≤

≤ (3a1 + a2
1a0)Nt + ((3a1 + a2

1a0)N + a2
1)d(a, y) ≤

≤ ((3a1 + a2
1a0)N + a2

1)(d(a, y) + t).

Thus condition (1.7) is fulfilled. For such kernels we have Theorems 2.2
and 3.2 and hence we obtain the solution of the general weak type weight
problem in Orlicz and Lorentz spaces for classical operators such as Riesz
potentials, Poisson integrals, and others.

Let X = Rn, d a Euclidean distance, µ a Lebesgue measure, and

Tγf(x, t) =
∫

Rn

f(y)
(|x− y|+ t)n−γ dν, 0 < γ < n.

a generalized potential. Theorem 2.2 yields a solution of the general weak-
type weight problem for Tγ in Orlicz spaces. It was previously solved in
Lorentz space in [6] (see also [7], Theorem 6.5.1).

Now consider the Poisson integral in the upper half-space

Pf(x, y) =
∫

Rn
f(y)P(x− y, t)dy,

where P(x, t) = cnt(t2 + |x|2)−n+1
2 is the Poisson kernel for Rn+1

+ . The
criterion of a two-weight inequality of the weak type (p, q) was established
in [10]. From Theorem 2.2 we obtain

Corollary 4.1. Let ϕη and ψ be quasiconvex functions, ψ ∈ ∆2, and
let the function t−αθ(t) decrease for some α ∈ (0, 1). Then the following
statements are equivalent:

(i) there exists a constant c1 > 0 such that

ϕ(λ)θ(β{(x, t)∈Rn × [0,∞) :
1
t
Pf(x, t) > λ}) ≤

c1

∫

Rn
ψ

(f(x)
η(λ)

)

σ(x)dν

for any λ > 0 and any nonnegative measurable function f : Rn → R1;



28 I. GENEBASHVILI, A. GOGATISHVILI, AND V. KOKILASHVILI

(ii) there exist positive constants ε and c2 such that

∫

Rn\B(a,r)

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(a, r + t))

σ(y)
1
t
P(a− y, t)

)

σ(y)dν ≤

≤ c2ϕ(λ)θ(β ̂B(a, r + t))

for any λ > 0, a∈Rn, r ≥ 0, t ≥ 0;
(iii) there exists positive constants ε and c3 such that

∫

Rn

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(β ̂B(a, t))

σ(y)
1
t
P(a− y, t)

)

σ(y)dν ≤

≤ c3ϕ(λ)θ(β ̂B(a, t))

for any λ > 0, a∈Rn and t ≥ 0.

Let now X = [0,∞), d a Euclidean distance, µ a Lebesgue measure, and

k(x, y) =
{

1 for x > y,
0 for x ≤ y.

Then for the Hardy transform f 7→
∫ x
0 f(y)dν Theorem 2.3 yields the cri-

terion of validity of the weak-type inequality figuring in this theorem. This
criterion is written in the form

∫ x

0

˜ψ
(

ε
ϕ(λ)η(λ)

λ
θ(%(x,∞))

σ(y)

)

σ(y)dν ≤ cϕ(λ)θ(%(x,∞)).
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