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ON TWO-POINT BOUNDARY VALUE PROBLEMS FOR
SYSTEMS OF HIGHER-ORDER ORDINARY

DIFFERENTIAL EQUATIONS WITH SINGULARITIES

I. KIGURADZE AND G. TSKHOVREBADZE

Abstract. The sufficient conditions of solvability and unique solv-
ability of the two-point boundary value problems of Vallèe-Poussin
and Cauchy-Niccoletti have been found for a system of ordinary dif-
ferential equations of the form

u(n) = f(t, u, u′, . . . , u(n−1)),

where the vector function f :]a, b[×Rnl → Rl has nonintegrable sin-
gularities with respect to the first argument at the points a and b.

§ 1. Statement of the main results

In this paper for an l-dimensional system of differential equations

u(n) = f(t, u, u′, . . . , u(n−1)) (1.1)

we consider the boundary value problem of Vallèe-Poussin

u(a+) = · · · = u(m−1)(a+) = 0,

u(b−) = · · · = u(n−m−1)(b−) = 0
(1.2)

and that of Cauchy-Niccoletti

u(a+) = · · · = u(m−1)(a+) = 0,

u(m)(b−) = · · · = u(n−1)(b−) = 0,
(1.3)

where l ≥ 1, n ≥ 2, m is an integer part of the number n
2 , −∞ < a < b <

+∞, and the vector function f :]a, b[×Rnl → Rl satisfies the Caratheodory
conditions on each compact contained in ]a, b[×Rnl. We are interested
mainly in the singular case when f is nonintegrable with respect to the
first argument on [a, b], having singularities at the ends of this interval. The
above problems were investigated for l = 1 in [2-6].
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The following notations will be used:

In(a, b) =

{

]a, b[ for n = 2m
]a, b] for n = 2m + 1

;

µn =

{

1 for n = 2m
n
2 for n = 2m + 1

;

λim(a, b; t) =
min{(t− a)2m−i, (b− t)2m−i}

(m− 1)!(m− i)!
√

(2m− 1)(2m− 2i + 1)
(i = 1, . . . , m);

R is a set of real numbers, R+ = [0,+∞[;
ξ = (ξj)l

j=1 ∈ Rl and A = (akj)l
k,j=1 ∈ Rl×l are respectively an l -

dimensional column vector and an l× l matrix with real components ξj (j =
1, . . . , l) and akj (k, j = 1, . . . , l),

|ξ| = (|ξj |)l
j=1, ‖ξ‖ =

l
∑

j=1

|ξj |, ‖A‖ =
l

∑

k,j=1

|akj |,

S(ξ) =









sign ξ1 0 . . . 0
0 sign ξ2 . . . 0

. . . . . . . . . . . .
0 0 . . . sign ξl









;

r(A) is the spectral radius of the matrix A;
Rl

+ and Rl×l
+ are sets of l-dimensional vectors and l × l matrices with

nonnegative components;
the inequalities ξ ≤ ξ̄ and A ≤ Ā, where ξ and ξ̄ ∈ Rl and A and

Ā ∈ Rl×l, imply respectively ξ̄ − ξ ∈ Rl
+ and Ā−A ∈ Rl×l

+ ;
Lloc(I;R+), where I ⊂ R is an interval, is a set of functions x : I → R+

which are Lebesgue integrable on each segment contained in I;
Kloc(I×Rp;Rl), where p is a natural number, is a set of vector functions

mapping I×Rp into Rl and satisfying the Caratheodory conditions on each
compact contained in I × Rp;

˜Cp
loc(I;Rl) is a set of vector functions u : I → Rl which are absolutely

continuous together with all their derivatives up to order p inclusive on each
segment contained in I;

˜Cn−1,m(I;Rl) is a set of vector functions u ∈ ˜Cn−1
loc (I;Rl) satisfying the

condition
∫

I
‖u(m)(τ)‖2dτ < +∞.

As mentioned above, throughout this paper it is assumed that

f ∈ Kloc(]a, b[×Rnl;Rl).
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Theorem 1.1. Let the following inequalities be fulfilled on ]a, b[×Rnl:

(−1)n−m−1S(x1)f(t, x1, . . . , xn) ≥−
m

∑

i=1

Hi(t)|xi| − h(t) (1.4)

and

‖f(t, x1, . . . , xn)‖≤q(t, x1, . . . , xm)
n

∑

i=m+1

(1+‖xi‖)
2n−2m−1
2i−2m−1 , (1.5)

where

q ∈ Kloc(In(a, b)× Rml;R+), (1.6)

and Hi :]a, b[→ Rl×l
+ (i = 1, . . . , m) and h :]a, b[→ Rl

+ are respectively
measurable matrix and vector functions satisfying the conditions

∫ b

a
(τ − a)n−m− 1

2 (b− τ)m− 1
2 ‖h(τ)‖dτ < +∞, (1.7)

∫ b

a
(τ−a)n−i(b−τ)2m−i‖Hi(τ)‖dτ <+∞ (i=1, . . . , m), (1.8)

r
(

m
∑

i=1

∫ b

a
(τ − a)n−2mλim(a, b; τ)Hi(τ)dτ

)

< µn. (1.9)

Then the problem (1.1),(1.2) is solvable in the class ˜Cn−1,m(In(a,b);Rl).

Theorem 1.2. Let on ]a, b[×Rnl the inequalities (1.4) and (1.5) be ful-
filled, where q ∈ Kloc(]a, b]×Rml;R+), and Hi :]a, b] → Rl×l

+ (i = 1, . . . , m)
and h :]a, b] → Rl

+ are respectively measurable matrix and vector functions
satisfying the conditions

∫ b

a
(τ − a)n−m− 1

2 ‖h(τ)‖dτ < +∞, (1.10)

∫ b

a
(τ − a)n−i‖Hi(τ)‖dτ < +∞ (i = 1, . . . , m), (1.11)

r
(

m
∑

i=1

1

(m− 1)!(m− i)!
√

(2m− 1)(2m− 2i + 1)
×

×
∫ b

a
(τ − a)n−iHi(τ)dτ

)

< µn. (1.12)

Then the problem (1.1), (1.3) is solvable in the class ˜Cn−1,m(]a, b];Rl).
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For a differential system

u(n) = f(t, u, u′, . . . , u(m−1)), (1.1′)

not containing intermediate derivatives of order higher than (m− 1), The-
orems 1.1 and 1.2 can be formulated as follows:

Theorem 1.1′. Let f ∈ Kloc(In(a, b)× Rml;Rl) and on ]a, b[×Rml

(−1)n−m−1S(x1)f(t, x1, . . . , xm)≥−
m

∑

i=1

Hi(t)|xi|−h(t), (1.4′)

where Hi :]a, b[→ Rl×l
+ (i = 1, . . . , m) and h :]a, b[→ Rl

+ are measurable
matrix and vector functions satisfying the conditions (1.7)-(1.9). Then the
problem (1.1′), (1.2) is solvable in the class ˜Cn−1,m(In(a, b);Rl).

Theorem 1.2′. Let f ∈ Kloc(]a, b] × Rml;Rl) and on ]a, b[×Rml the
inequality (1.4′) be fulfilled, where Hi :]a, b] → Rl×l

+ (i = 1, . . . ,m) and
h :]a, b] → Rl

+ are measurable matrix and vector functions satisfying the
conditions (1.10)-(1.12).Then the problem (1.1′), (1.3)is solvable in the class
˜Cn−1,m(]a, b];Rl).

Theorem 1.3. Let

f ∈ Kloc(In(a, b)× Rml;Rl),
∫ b

a
(τ − a)n−m− 1

2 (b− τ)m− 1
2 ‖f(τ, 0, . . . , 0)‖dτ < +∞

(1.13)

and on ]a, b[×Rml

(−1)n−m−1S(x1 − y1)[f(t, x1, . . . , xm)− f(t, y1, . . . , ym)] ≥

≥ −
m

∑

i=1

Hi(t)|xi − yi|,
(1.14)

where Hi :]a, b[→ Rl×l
+ (i = 1, . . . , m) are measurable matrix functions sat-

isfying the conditions (1.8) and (1.9). Then the problem (1.1′), (1.2) is
uniquely solvable in the class ˜Cn−1,m(In(a, b);Rl).

Theorem 1.4. Let

f ∈ Kloc(]a, b]× Rml;Rl),
∫ b

a
(τ − a)n−m− 1

2 ‖f(τ, 0, . . . , 0)‖dτ < +∞

and on ]a, b[×Rml the inequality (1.14) be fulfilled, where Hi :]a, b] → Rl×l
+

(i = 1, . . . , m) are measurable matrix functions satisfying the conditions
(1.11) and (1.12). Then the problem (1.1′), (1.3) is uniquely solvable in the
class ˜Cn−1,m(]a, b];Rl).
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§ 2. Auxiliary propositions

Lemma 2.1. Let I ⊂ R be some interval, k be a natural number, ρ0 ∈
]0, +∞[ and

ϕ ∈ Lloc(I;R+). (2.1)

Then there exists a continuous function ρ : I → R+ such that for any vector
function v ∈ ˜Ck

loc(I;Rl) satisfying almost everywhere on I the differential
inequality

‖v(k+1)(t)‖ ≤ ϕ(t)

[

1 +
k

∑

i=0

‖v(i)(t)‖
2k+1
2i+1

]

(2.2)

and the condition
∫

I
‖v(τ)‖2 dτ ≤ ρ2

0, (2.3)

the estimates

‖v(i)(t)‖ < ρ(t) for t ∈ I (i = 0, . . . , k) (2.4)

hold.

Proof. In the case I = [a, b] it is not difficult to verify by Lemma 2.2 from [6]
that there exists a positive constant ρ̃ such that the estimates ‖v(i)(t)‖ < ρ̃
for a ≤ t ≤ b (i = 0, . . . , k) hold for any vector function v ∈ ˜Ck

loc(I;Rl)
satisfying the conditions (2.2) and (2.3); in other words, we have (2.4),
where ρ(t) ≡ ρ̃.

Now consider the case I =]a, b]. Choose any decreasing sequence aj ∈
]a, b] (j = 0, 1, 2, . . . ) such that a0 = b and lim

j→+∞
aj = a. Then, by virtue

of the above reasoning, for any natural number j there exists a positive
constant ρj such that any vector function v ∈ ˜Ck

loc(I;Rl) satisfying the
conditions (2.2) and (2.3) admits the estimates

‖v(i)(t)‖ < ρj for aj ≤ t ≤ b (i = 0, . . . , k). (2.5)

Without loss of generality the sequence (ρj)+∞j=1 can be assumed to be non-
decreasing. Then (2.5) yields the estimates (2.4), where

ρ(t) = ρj +
t− aj−1

aj − aj−1
(ρj+1 − ρj) for aj < t ≤ aj−1 (j = 1, 2, . . . )

with ρ : I → R+ being continuous and independent of v.
The cases I = [a, b[ and I =]a, b[ are considered similarly.
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Lemma 2.2. Let Hi :]a, b[→ Rl×l
+ (i = 1, . . . ,m) and h :]a, b[→ Rl

+ be
measurable matrix and vector functions satisfying the conditions (1.7)-(1.9)
and

H =
m

∑

i=1

∫ b

a
(τ − a)n−2mλim(a, b; τ)Hi(τ) dτ. (2.6)

Then for any vector function u ∈ ˜Cn−1,m(]a, b[;Rl) satisfying a system of
differential inequalities

(−1)n−m−1S(u(t))u(n)(t)≥−
m

∑

i=1

Hi(t)|u(i−1)(t)|−h(t) (2.7)

for a < t < b

and the boundary conditions (1.2) we have the estimates

∫ b

a
‖u(m)(τ)‖2 dτ ≤ ρ2

0 (2.8)

and

‖u(i−1)(t)‖ ≤ ρ0σim(a, b; t) for a < t < b (i = 1, . . . , m), (2.9)

where

σim(a, b; t) =
min{(t− a)m−i+ 1

2 , (b− t)m−i+ 1
2 }

(m− i)!
√

2m− 2i + 1
,

ρ0 =
√

l‖(µnE −H)−1‖ ×

×
∫ b

a
(τ − a)n−2mσ1m(a, b; τ)‖h(τ)‖ dτ (2.10)

and E is the unit l × l matrix.

To prove this lemma we need

Lemma 2.3. Let

w(t) =
n−m
∑

i=1

n−m
∑

k=i

cik(t)v(n−k)(t)v(i−1)(t),

where

v ∈ ˜Cn−1,m(]a, b[;R), v(i−1)(a+) = 0 (i = 1, . . . , m),

v(j−1)(b−) = 0 (j = 1, . . . , n−m)
(2.11)
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and each cik : [a, b] → R is a (n−k− i+1)-times continuously differentiable
function; in that case there exists a positive constant c0 such that

|cii(t)| ≤ c0(t− a)n−2m for a ≤ t ≤ b (2.12)

(i = 1, . . . , n−m).

Then

lim
t→a+

inf |w(t)| = 0, lim
t→b−

inf |w(t)| = 0.

Proof. In the first place it will be shown that

lim
t→a+

inf |w(t)| = 0. (2.13)

Let the opposite be true. Then without loss of generality one may assume
that the inequality w(t) ≥ δ for a < t ≤ a + 2ε0 is fulfilled for some
δ ∈]0,+∞[ and ε0 ∈

]

0, b−a
4

[

∩]0, 1[.
Therefore

n−m
∑

i=1

n−m
∑

k=i

qik(t; ε)v(n−k)(t)v(i−1)(t) ≥ δ(t− a− ε)n(a + 2ε− t)n (2.14)

for a + ε ≤ t ≤ a + 2ε, 0 < ε ≤ ε0,

where qik(t; ε) = (t− a− ε)n(a + 2ε− t)ncik(t). After integrating the latter
inequality from a + ε to a + 2ε according to Lemma 4.1 from [7], we obtain

n−m
∑

i=1

n−m
∑

k=i

mik
∑

j=0

νikj

∫ a+2ε

a+ε
q(n−k−i−2j+1)
ik (τ ; ε)[v(i+j−1)(τ)]2dτ≥

≥ δ
∫ a+2ε

a+ε
(τ − a− ε)n(a + 2ε− τ)n dτ, (2.15)

where mik is the integer part of the number 1
2 (n − k − i + 1) and νikj

(i = 1, . . . , n −m; k = i, . . . , n −m; j = 0, . . . , mik) are positive constants
independent of a, ε and v.

If k ∈ {i + 1, . . . , n−m}, then we have i + j − 1 ≤ m− 1, 2n− (n− k −
i− 2j + 1) ≥ 2i + 2j + n for any j ∈ {0, . . . ,mik}.

Therefore, taking into account (2.11) and (2.14), we find

[v(i+j−1)(t)]2 =
[

1
(m− i− j)!

∫ t

a
(t− τ)m−i−jv(m)(τ) dτ

]2

≤

≤ α(ε)ε2m−2i−2j+1 for a < t ≤ a + 2ε (2.16)
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and |q(n−k−i−2j+1)
ik (t; ε)| ≤ α1ε2i+2j+n for a ≤ t ≤ a + 2ε, where

α(ε) = 22m−1
∫ a+2ε

a
[v(m)(τ)]2 dτ → 0 for ε → 0 (2.17)

and α1 is a positive constant independent of ε. Therefore
∣

∣

∣

∣

∫ a+2ε

a+ε
q(n−k−i−2j+1)
ik (τ ; ε)[v(i+j−1)(τ)]2 dτ

∣

∣

∣

∣

≤ α1α(ε)ε2m+2+n ≤

≤ α1α(ε)ε2n+1.

Consider now the case k = i. By virtue of (2.12) and (2.14) we have

|q(n−k−i−2j+1)
ik (t; ε)| = |q(n−2i−2j+1)

ii (t; ε)| ≤ α2ε2n−2m+2i+2j−1

for a ≤ t ≤ a + 2ε,

where α2 is a positive constant independent of ε. Therefore if i+ j−1 = m,
then

∣

∣

∣

∣

∫ a+2ε

a+ε
q(n−2i−2j+1)
ii (τ ; ε)[v(i+j−1)(τ)]2 dτ

∣

∣

∣

∣

=

=
∣

∣

∣

∣

∫ a+2ε

a+ε
qii(τ ; ε)[v(m)(τ)]2 dτ

∣

∣

∣

∣

≤ α2α(ε)ε2n+1,

if however i + j − 1 < m, then, taking into account (2.16), we obtain
∣

∣

∣

∣

∫ a+2ε

a+ε
q(n−2i−2j+1)
ii (τ ; ε)[v(i+j−1)(τ)]2 dτ

∣

∣

∣

∣

≤ α2α(ε)ε2n+1.

Thus
∣

∣

∣

∣

∫ a+2ε

a+ε
q(n−k−i−2j+1)
ik (τ ; ε)[v(i+j−1)(τ)]2 dτ

∣

∣

∣

∣

≤ α0α(ε)ε2n+1, (2.18)

(i = 1, . . . , n−m; k = i, . . . , n−m, j = 0, . . . , mik),

where α0 = max{α1, α2}.
On the other hand,

∫ a+2ε

a+ε
(τ − a− ε)n(a + 2ε− τ)n dτ ≥ εn

2n

∫ a+ 3ε
2

a+ε
(τ − a− ε)ndτ =

=
1

22n+1(n + 1)
ε2n+1.

Due to (2.18) and the latter inequality we find from (2.15) that α(ε) ≥ δ0
for 0 < ε ≤ ε0, where δ0 is a positive constant independent of ε. But the
latter inequality contradicts the condition (2.17). This contradiction proves
that (2.13) holds.
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The equality lim
t→b−

inf |w(t)| = 0 is proved similarly, the only difference

being that for n = 2m + 1 instead of (2.12) the condition v(m)(b−) = 0 is
used.

Proof of Lemma 2.2. For each component uj (j = 1, . . . , l) of the solution
u of the problem (2.7), (1.2) we have

|u(i−1)
j (t)| =

∣

∣

∣

∣

1
(m− i)!

∫ t

a
(t− τ)m−iu(m)

j (τ) dτ
∣

∣

∣

∣

≤

≤ 1
(m− i)!

√
2m− 2i + 1

(t− a)m−i+ 1
2

(

∫ b

a
[u(m)

j (τ)]2 dτ

) 1
2

for a < t < b (i = 1, . . . , m)

and

|u(i−1)
j (t)| =

∣

∣

∣

∣

∣

1
(m− i)!

∫ b

t
(τ − t)m−iu(m)

j (τ) dτ

∣

∣

∣

∣

∣

≤

≤ 1
(m− i)!

√
2m− 2i + 1

(b− t)m−i+ 1
2

(

∫ b

a
[u(m)

j (τ)]2 dτ

) 1
2

for a < t < b (i = 1, . . . , m).

Therefore

|u(i−1)
j (t)| ≤ σim(a, b; t)ρj for a < t < b (i = 1, . . . , m), (2.19)

where

ρj =

(

∫ b

a
[u(m)

j (τ)]2 dτ

) 1
2

.

Let Hi(t) =
(

hijk(t)
)l
j,k=1 (i = 1, . . . , m), h(t) = (hj(t))l

j=1. Rewrite
(2.7) in terms of components as

(−1)n−m−1u(n)
j (t) sign uj(t) ≥

≥−
m

∑

i=1

l
∑

k=1

hijk(t)|u(i−1)
k (t)|−hj(t) (j =1, . . . , l). (2.7′)
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After multiplying both sides of (2.7′) by (t−a)n−2m|uj(t)| and integrating
from s to t, we obtain

(−1)n−m
∫ t

s
(τ − a)n−2mu(n)

j (τ)uj(τ) dτ ≤

≤
m

∑

i=1

l
∑

k=1

∫ t

s
(τ − a)n−2mhijk(τ)|u(i−1)

k (τ)||uj(τ)| dτ +

+
∫ t

s
(τ − a)n−2mhj(τ)|uj(τ)| dτ for a < s ≤ t < b. (2.20)

By virtue of (2.19)

l
∑

k=1

∫ t

s
(τ − a)n−2mhijk(τ)|u(i−1)

k (τ)||uj(τ)| dτ ≤

≤ ρj

l
∑

k=1

ρk

∫ t

s
(τ − a)n−2mσ1m(a, b; τ)σim(a, b; τ)hijk(τ) dτ =

= ρj

l
∑

k=1

ρk

∫ t

s
(τ − a)n−2mλim(a, b; τ)hijk(τ) dτ (2.21)

(i = 1, . . . , m),
∫ t

s
(τ − a)n−2mhi(τ)|uj(τ)| dτ ≤

≤ ρj

∫ t

s
(τ − a)n−2mσ1m(a, b; τ)hj(τ) dτ. (2.22)

On the other hand, by Lemma 4.1 from [7]

∫ t

s
(τ − a)n−2mu(n)

j (τ)uj(τ) dτ =

= wj(t)− wj(s) + (−1)n−mµn

∫ t

s
[u(m)

j (τ)]2 dτ, (2.23)

where

wj(t) =



























n−m
∑

p=1
(−1)p−1u(n−p)

j (t)u(p−1)
j (t) for n = 2m,

n−m−1
∑

p=1
(−1)p−1[(t− a)u(n−p)

j (t)−

−pu(n−p−1)
j (t)]u(p−1)

j (t)+(−1)m t−a
2 [u(m)

j (t)]2 for n=2m+1.
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As one may readily verify, the functions wj (j = 1, . . . , l) satisfy the condi-
tions of Lemma 2.3 and therefore

lim
s→a+

inf |wj(s)| = 0, lim
t→b−

inf |wj(t)| = 0 (j = 1, . . . , l).

Taking into account the latter equalities and conditions (1.7) and (1.8) from
(2.20)-(2.23) we obtain

µnρ2
j ≤ ρj

m
∑

i=1

l
∑

k=1

ρk

∫ b

a
(τ − a)n−2mλim(a, b; τ)hijk(τ)dτ +

+ρj

∫ b

a
(τ − a)n−2mσ1m(a, b; τ)hj(τ)dτ (j = 1, . . . , l).

Hence by virtue of (2.6) we have

µnρ ≤ Hρ +
∫ b

a
(τ − a)n−2mσ1m(a, b; τ)h(τ)dτ,

where ρ = (ρj)l
j=1. In view of (1.9) and the notation (2.10) from the latter

inequality we find

ρ ≤ (µnE −H)−1
∫ b

a
(τ − a)n−2mσ1m(a, b; τ)h(τ)dτ

and

‖ρ‖ ≤ ‖(µnE −H)−1‖
∫ b

a
(τ − a)n−2mσ1m(a, b; τ)‖h(τ)‖dτ = l−

1
2 ρ0.

Hence
∫ b

a
‖u(m)(τ)‖2dτ ≤ l‖ρ‖2 ≤ ρ2

0.

On the other hand, in view of (2.19)

‖u(i−1)(t)‖ ≤ σim(a, b; t)‖ρ‖ ≤ ρ0σim(a, b; t) for a < t < b

(i = 1, . . . ,m).

Therefore, the estimates (2.8) and (2.9) hold.

In a similar manner we prove

Lemma 2.4. Let Hi :]a, b] → Rl×l
+ (i = 1, . . . , m), and let h :]a, b] → Rl

+
be measurable matrix and vector functions satisfying the conditions (1.10)-
(1.12). Then for any solution u ∈ ˜Cn−1,m(]a, b];Rl) of the problem (2.7),
(1.3) we have the estimates

∫ b

a
‖u(m)(τ)‖2dτ ≤ ρ2

0
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and ‖u(i−1)(t)‖ ≤ ρ0(t− a)m−i+ 1
2 for a < t < b (i = 1, . . . ,m), where

ρ0 =

√
l

(m− 1)!
√

2m− 1
‖(µnE −H)−1‖

∫ b

a
(τ − a)n−m− 1

2 ‖h(τ)‖ dτ,

H =
m

∑

i=1

1

(m−1)!(m−i)!
√

(2m−1)(2m−2i+1)

∫ b

a
(τ−a)n−iHi(τ)dτ,

and E is the unit l × l matrix.

§ 3. Proof of the main results

Proof of Theorem 1.1. Let ρ0 and σim(a, b; t) (i = 1, . . . , m) be respectively
the number and functions from Lemma 2.2 and

ϕ(t) = 4n sup{q(t, x1, . . . , xm) : ‖xi‖ ≤ ρ0σim(a, b; t)

(i = 1, . . . ,m)}. (3.1)

Then due to (1.6), (2.1) holds with I = In(a, b).
For k = n − m − 1, ρ0, and ϕ, by virtue of Lemma 2.1 there exists a

continuous function ρ : In(a, b) → R+ such that estimates (2.4) are valid
for any vector function v ∈ ˜Ck

loc(In(a, b);Rl) satisfying the conditions (2.2)
and (2.3).

Let

ρi(t) =

{

ρ0σim(a, b; t) for i ∈ {1, . . . ,m}
ρ(t) for i ∈ {m + 1, . . . , n}

(3.2)

and f∗(t) = sup{‖f(t, x1, . . . , xn)‖ : ‖xi‖ ≤ ρi(t) (i = 1, . . . , n)}. For any
i ∈ {1, . . . , n} and ξ = (ξp)l

p=1 we set

χip(t, ξ) =

{

ξp for |ξp| ≤ ρi(t)
ρi(t) sign ξp for |ξp| > ρi(t)

,

χi(t, ξ) =
(

χip(t, ξ)
)l
p=1.

(3.3)

Let j be an arbitrary natural number,

Inj(a, b) =

{

[a + b−a
3j , b− b−a

3j ] for n = 2m
[a + b−a

3j , b] for n = 2m + 1
,

fj(t, x1, . . . , xn) =

=

{

f(t, χ1(t, x1), . . . , χn(t, xn)) for t ∈ Inj(a, b)
0 for t ∈ [a, b]\Inj(a, b)

, (3.4)
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f∗j (t) =

{

f∗(t) for t ∈ Inj(a, b)
0 for t ∈ [a, b]\Inj(a, b)

.

Clearly, that f∗j : [a, b] → R+ is the Lebesgue integrable function and
on the [a, b] × Rnl the inequality ‖fj(t, x1, . . . , xn)‖ ≤ f∗j (t) holds. On
the other hand the homogeneous differential system u(n) = 0 by boundary
conditions (1.2) has only the trivial solution. Therefore by virtue of the
Conti theorem [1] 1 the differential system u(n) = fj(t, u, . . . , u(n−1)) has a
solution uj ∈ ˜Cn−1

loc ([a, b];Rl) satisfying the boundary conditions (1.2). It
is obvious that uj ∈ ˜Cn−1,m([a, b];Rl). Simultaneously, from (1.4), (3.3),
and (3.4) it follows that uj is the solution of the system of the differential
inequalities (2.7). Therefore by virtue of Lemma 2.2

∫ b

a
‖u(m)

j (τ)‖2 dτ ≤ ρ2
0 (3.5)

and

‖u(i−1)
j (t)‖ ≤ ρ0σim(a, b; t) for a < t < b (i = 1, . . . ,m). (3.6)

From conditions (1.5) and (3.1)-(3.6) it is clear that the vector function
vj(t) = u(m)

j (t) satifies the inequalities (2.2) and (2.3). Hence by Lemma 2.1

‖u(i−1)
j (t)‖ < ρ(t) for t ∈ In(a, b) (i = m + 1, . . . , n). Therefore

‖u(i−1)
j (t)‖ < ρi(t) for a < t < b (i = 1, . . . , n) (3.7)

and

‖u(n)
j (t)‖ ≤ f∗(t) for a < t < b. (3.8)

Moreover, in view of (3.3),(3.4) and (3.7) it is clear that

u(n)
j (t) = f(t, uj(t), . . . , u(n−1)

j (t)) for t ∈ Inj(a, b). (3.9)

Since f∗ ∈ Lloc(In(a, b);R+), the estimates (3.7) and (3.8) imply that the
sequences (u(i−1)

j )+∞j=1 (i = 1, . . . , n) are uniformly bounded and equicontin-
uous on each segment contained in In(a, b). Therefore, by virtue of the
Arcela-Ascoli lemma these sequences can be regarded without loss of gen-
erality as uniformly converging on each segment from In(a, b).

If we set limj→+∞ uj(t) = u(t) for t ∈ In(a, b), then

lim
j→+∞

u(i−1)
j (t) = u(i−1)(t) for t ∈ In(a, b) (i = 1, . . . , n) (3.10)

1See also [8], Corollary 2.1.
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uniformly on each segment contained in In(a, b). Therefore from (3.5) and
(3.6) we obtain

∫ b

a
‖u(m)(τ)‖2 dτ ≤ ρ2

0, (3.11)

‖u(i−1)(t)‖ ≤ ρ0σim(a, b; t) for t ∈ In(a, b) (3.12)

(i = 1, . . . , m).

In view of (3.9) for arbitrary fixed s and t ∈ In(a, b) there exists a natural
number j0 such that

u(n−1)
j (t)− u(n−1)

j (s) =
∫ t

s
f(τ, uj(τ), . . . , u(n−1)

j (τ))dτ

(j = j0, j0 + 1, . . . )

and s, t ∈ Inj(a, b) for j ≥ j0. Passing to the limit in the latter equality by
j → +∞, we obtain

u(n−1)(t)− u(n−1)(s) =
∫ t

s
f(τ, u(τ), . . . , u(n−1)(τ))dτ.

Therefore u is the solution of the system (1.1). Simultaneously, (3.10)-(3.12)
imply that u ∈ ˜Cn−1,m(In(a, b);Rl) and satisfies the boundary conditions
(1.2).

Theorem 1.1′ immediately follows from Theorem 1.1, since in the case
where f(t, x1, . . . , xn) ≡ f(t, x1, . . . , xm) and f ∈ Kloc(In(a, b) × Rml;Rl),
inequality (1.5) is fulfilled automatically and the function q(t, x1, . . . , xm) ≡
‖f(t, x1, . . . , xm)‖ satisfies the condition (1.6).

Proof of Theorem 1.3. (1.13) and (1.14) yield the conditions (1.4′) and
(1.7), where h(t) = |f(t, 0, . . . , 0)|. Therefore by virtue of Theorem 1.1′ the
problem (1.1′), (1.2) is solvable in the class ˜Cn−1,m(In(a, b);Rl).

To complete the proof of the theorem it remains for us to verify that
the problem under consideration has at most one solution in the class
˜Cn−1,m(In(a, b);Rl).

Let u, ū ∈ ˜Cn−1,m(In(a, b);Rl) be two arbitrary solutions of the problem
(1.1′), (1.2). We set v(t) = u(t)− ū(t) for t ∈ In(a, b).

It is clear that v ∈ ˜Cn−1,m(In(a, b);Rl) and v(a+) = · · · = v(m−1)(a+) =
0 , v(b−) = · · · = v(n−m−1)(b−) = 0.

On the other hand, by the condition (1.14) from the equality

v(n)(t) = f(t, u(t), . . . , u(n−1)(t))− f(t, ū(t), . . . , ū(n−1)(t))



ON TWO-POINT BOUNDARY VALUE PROBLEMS 45

we have

(−1)n−m−1S(v(t))v(n)(t) ≥ −
m

∑

i=1

Hi(t)|v(i−1)(t)|.

Therefore due to Lemma 2.2 v(t) ≡ 0, i.e., u(t) ≡ ū(t).

Theorems 1.2 and 1.2′ are proved similarly to Theorems 1.1 and 1.1′,
while Theorem 1.4 is proved similarly to Theorem 1.3 with the only differ-
ence being that Lemma 2.4 is used instead of Lemma 2.2.
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