

Georgian Mathematical Journal
1(1994), No. 1, 47-52


MEASURES OF CONTROLLABILITY


J. L. LIONS


Abstract. We introduce here a new notion, the measure of control-
lability aimed at expressing that one system is ”more controllable”
than another one. First estimates are given.


1. Introduction


Let Ω be an open set in Rn, bounded or not, with boundary Γ, smooth
or not.


In the domain Ω and for t > 0, we consider the system whose state
y : y(x, t) = y(x, t; v) is given as follows:


∂y
∂t


+ Ay = v(x, t)χO in Ω× {t > 0}, (1.1)


where A = second order elliptic operator in Ω (its coefficients are not nec-
essarily smooth and they may depend on t),
O = open set ⊂ Ω,
χO = characteristic function of O,
v = v(x, t) = control function.
We add to (1.1) the initial and boundary conditions respectively given


by


y(x, 0) = y0(x) in Ω, y0 given in L2(Ω), (1.2)


and


y = 0 on Γ× {t > 0}. (1.3)


Under reasonable conditions on the coefficients of A (cf.for instance J.L.Lions
[3]), and assuming that


v ∈ L2(O × (0, T )), (1.4)
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equations (1.1),(1.2),(1.3) admit a unique solution y, which is such that


y,
∂y
∂xi


∈ L2(Ω× (0, T )). (1.5)


This defines the state of the system, with distributed control with support
in O.


Remark 1.1. Boundary condition (1.3) is taken here to fix ideas . What
follows readily applies to other situations corresponding to other boundary
conditions.


Remark 1.2. All what follows readily extends to higher order parabolic
equations, to systems of parabolic equations and actually to all evolution
equations, provided they are linear. This will be reported elsewhere. Cf.
also the Remarks of the last section of this paper.


Remark 1.3. One knows that (J.L.Lions [3]) after a possible change on a
set of 0 measure, the function t → y(t) = y(·, t) is continuous from [0, T ] →
L2(Ω).


Approximate controllability is defined as follows (cf. for instance J.L.Lions
[4]). We are given T and y1 ∈ L2(Ω). Let B denote the unit ball in L2(Ω)
and let β be a positive number arbitrarily small.


It is known (J.L.Lions [5]) that, when v spans L2(O × (0, T )), the func-
tions y(·, T ; v) describe an affine space in L2(Ω) which is dense in L2(Ω).
Therefore one can always find functions v (controls) such that


y(T ; v) ∈ y1 + βB (1.6)


and there are infinitely many v’s such that (1.6) takes place. One says
that the system is approximately controllable. It is natural to look for the
(actually unique) element v such that


1
2


∫∫


O×(0,T )
v2dx dt = min (1.7)


where v is restricted to those elements such that (1.6) takes place.
The question we want to address here is the following: when can we say


that a system is more controllable than another one?
In this question we assume that Ω and that O do not change. Then the


min in (1.7) is a quantity which depends on A, y0, y1 and β and T . We
write


inf
v


1
2


∫∫


O×(0,T )
v2dx dt = M(A, y0, y1, β, T ),


y(T ; v) ∈ y1 + βB.
(1.8)
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We have to introduce a quantity which is independent of y0 and of y1 but
which only depends on the sets described by y0 and by y1.


We shall assume


y0 ∈ α0B, y1 ∈ α1B (1.9)


and we introduce as a ”measure of controllability” the quantity


M(A, α0, α1, β, T ) = sup
y0∈α0B
y1∈α1B


M(A, y0, y1, β, T ). (1.10)


Remark 1.4. This quantity seems to be introduced here for the first time.
The study of the function


A → M(A,α0, α1, β, T ) (1.11)


leads to many seemingly interesting open questions. We shall return to
these questions in other occasions.


Remark 1.5. It is not obvious that the quantity introduced in (1.9) is
always finite. Indeed this quantity is finite iff β > α1.


Remark 1.6. We shall give below a number of simple formulas reducing
the number of variables α0, α1, β to actually one variable.


We are now going to give a formula for M(A,α0, α1, β, T ) which is based
on duality arguments.


2. Duality Formula for the Measure of Controllability


We introduce the decomposition


y(x, t; v) = y(v) = y0 + z(v) (2.1)


where


∂y0


∂t
+ Ay0 = 0,


y0(0) = y0, y0 = 0 on Γ× (0, T )
(2.2)


and


∂z
∂t


+ Az = vχO ,


z(0) = 0, z = 0 on Γ× (0, T ).
(2.3)


Then


M(A, y0, y1, β, T ) = inf
1
2


∫∫


O×(0,T )
v2dx dt,


z(T ; v) ∈ y1 − y0(T ) + βB.
(2.4)
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We introduce the convex functions defined by


F0(v) =
1
2


∫∫


O×(0,T )
v2dx dt, v ∈ L2(O × (0, T )), (2.5)


F1(f) =


{


0 if f ∈ y1 − y0(T ) + βB,


+∞ otherwise in L2(Ω).
(2.6)


We define the linear operator L by


Lv = z(T ; v). (2.7)


One has


L ∈ L(L2(O × (0, T )); L2(Ω)). (2.8)


With those notations (this is only a matter of definition)


M(A, y0, y1, β, T ) = inf
v∈L2(O×(0,T ))


F0(v) + F1(Lv). (2.9)


The next step is to use Fenchel-Rockafellar duality (cf. T.R.Rockafellar [6]
and the presentation made in I.Ekeland and R.Temam [1]).


In general, the conjugate function F ∗i of Fi is defined by


F ∗i (f) = sup
f̂


[(f, ̂f)− Fi( ̂f)].


With these definitions, one has


F ∗0 (v) = F0(v),


F ∗1 (f) = (f, y1 − y0(T )) + β‖f‖,


where ‖f‖ ∈
(


∫


Ω
f2dx


) 1
2 .


(2.10)


Let L∗ denote the adjoint of L. Then (T.R.Rockafellar, loc.cit.)


inf
v∈L2(O×(0,T ))


F0(v)+F1(Lv)=


− inf
f∈L2(Ω)


F ∗0 (L∗f)+F ∗1 (−f).
(2.11)


The operator L∗ is given as follows. If f is given in L2(Ω), we solve


− ∂ψ
∂t


+ A∗ψ = 0, t < T,


ψ(x, T ) = f(x) in Ω,


ψ = 0 on Γ× {t < T},


(2.12)


where A∗ = adjoint of A.
This problem admits a unique solution ψ(x, t) = ψ(x, t; f) = ψ(f).
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Then one easily verifies that


L∗f = ψχO . (2.13)


Using this result, (2.11), and (2.10), we obtain


M(A, y0, y1, β, T ) =− inf
f∈L2(Ω)


1
2


∫∫


O×(0,T )
ψ2dx dt−


− (f, y1 − y0(T )) + β‖f‖.
(2.14)


If we multiply (2.12) by y0, we obtain after integration by parts


−(f, y0(T )) + (ψ(0), y0) = 0 (2.15)


so that (2.14) can be written


M(A, y0, y1, β, T ) =


= − inf
f∈L2(Ω)


1
2


∫∫


O×(0,T )
v2dx dt−


− (f, y1) + (ψ(0), y0) + ‖f‖.


(2.16)


By definition


M(A,α0, α1, β, T ) =


= sup
y0∈α0B,y1∈α1B


M(A, y0, y1, β, T ) = (using (2.16)) =


= − inf
y0∈α0B,y1∈α1B,f∈L2(Ω)


1
2


∫∫


O×(0,T )
ψ2dx dt−


− (f, y1) + (ψ(0), y0) + β‖f‖,


(2.17)


i.e.


M(A,α0, α1, β, T ) =


= inf
f


[1
2


∫∫


O×(0,T )
ψ2dx dt +


+ (β − α1)‖f‖ − α0‖ψ(0)‖
]


.


(2.18)


In summary:


the measure of controllability is given by formula (2.18),
where ψ = ψ(f) is given by (2.12).


(2.19)


Remark 2.1. One can show that the inf
f


in (2.18) is finite iff β > α1.
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One has


M(A,α0, α1, β, T ) = M(A,α0, 0, β − α1, T ), β > α1. (2.20)


Therefore it suffices to consider the following situation:


sup
y0∈αβ


inf
1
2


∫∫


O×(0,T )
v2dx dt = M0(A,α, β, T ),


y(T ; v) ∈ βB
(2.21)


(Then M(A,α0, α1, β, T ) = M0(A,α0, β − α1, T )).
One verifies directly that


M0(A,α, β, T ) = α2M0(A, 1,
β
α


, T ), (2.22)


M0(A,α, β, T ) =


{


0 for β large enough,
increases to +∞ as β decreases to 0.


(2.23)


Remark 2.2. Formula (2.18) is constructive. One can deduce from it
numerical algorithms for the approximation of M . Cf. R.Glowinski and
J.L.Lions [2].
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