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ORTHOGONAL RANDOM VECTORS AND THE
HURWITZ-RADON-ECKMANN THEOREM


N. VAKHANIA


Abstract. In several different aspects of algebra and topology the
following problem is of interest: find the maximal number of unitary
antisymmetric operators Ui in H = Rn with the property UiUj =
−UjUi (i 6= j). The solution of this problem is given by the
Hurwitz-Radon-Eckmann formula. We generalize this formula in two
directions: all the operators Ui must commute with a given arbitrary
self-adjoint operator and H can be infinite-dimensional. Our second
main result deals with the conditions for almost sure orthogonality of
two random vectors taking values in a finite or infinite-dimensional
Hilbert space H. Finally, both results are used to get the formula
for the maximal number of pairwise almost surely orthogonal random
vectors in H with the same covariance operator and each pair having
a linear support in H ⊕H.


The paper is based on the results obtained jointly with N.P.Kan-
delaki (see [1,2,3]).


1. Introduction. Two kinds of results will be given in this paper. One
is of stochastic nature and deals with random vectors taking values in a
finite- or infinite- dimensional real Hilbert space H. The other is algebraic
or functional-analytic, and deals with unitary operators in H. Our initial
problem was to find conditions for almost sure orthogonality of random
vectors with values in H. Then the question arose: what is the maximal
number of pairwise almost surely orthogonal random vectors in H. The
analysis of this question led us to a problem which is a natural extension
of an old problem in linear algebra, finally solved in 1942. It can be called
the Hurwitz-Radon-Eckmann (HRE) problem in recognition of the authors
who made the crucial contribution in obtaining the final solution during the
different stages of the investigation.


In Section 2 we give the formulation of this problem, provide its solution,
and also give a brief enumeration of areas in which this problem is of primary
interest. In Section 3 we give the solution of the generalized HRE problem.
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Section 4 is for the conditions of almost sure orthogonality of two random
vectors in H. In Section 5 we give an analysis of these conditions. In Section
6 our initial problem of determining the maximal number of pairwise ortho-
gonal random vectors is solved under some restrictions. These restrictions
simplify the problem, so that the generalized HRE formula can provide the
solution. Finally, in Section 7 we give the proofs of the theorems formulated
in previous sections.


2. The Hurwitz-Radon-Eckmann Theorem. In this section we deal
only with the finite-dimensional case: H = Rn. To begin the formulation
of the problem, we first recall that a linear operator U : Rn → Rn is called
unitary (or orthogonal) if U∗ = U−1 (and hence it preserves the distances).


HRE Problem. Find the maximal number of unitary operators Ui :
Rn → Rn satisfying the following conditions (I is the identity operator):


U2
i = −I, UiUj = −UjUi, i 6= j. (1)


The solution of this problem is the number ρ(n)−1, where ρ(n) is defined
as follows: represent the number n as a product of an odd number and a
power of two, n = (2a(n)+1)2b(n), and divide b(n) by 4, b(n) = c(n)+4d(n),
where 0 ≤ c(n) ≤ 3. Then


ρ(n) = 2c (n) + 8d(n). (2)


The HRE problem is directly connected with the problem of orthogonal
multiplication in vector spaces. A bilinear mapping p : Rn × Rk → Rn is
called an orthogonal multiplication if ‖p(x, y)‖ = ‖x‖ · ‖y‖ for all x ∈ Rn


and y ∈ Rk. An orthogonal multiplication Rn×Rk → Rn exists if k ≤ ρ(n)
and it can easily be constructed if we have k − 1 unitary operators satis-
fying conditions (1). Conversely, if we have an orthogonal multiplication
Rn × Rk → Rn then we can easily construct k − 1 unitary operators with
the properties (1). Of course, there can be different sets of orthogonal oper-
ators satisfying (1), and correspondingly, there can be different orthogonal
multiplications Rn × Rk → Rn.


Formula (2) shows that we always have ρ(n) ≤ n. The equality ρ(n) = n
holds only for n = 1, 2, 4, 8 and so there exists an inner multiplication in
Rn only for those values of the dimension (and Rn becomes an algebra for
those n). For n = 1, the corresponding algebra is the usual algebra of real
numbers. For n = 2, 4, and 8 we can choose the unitary operators in such
a way that the corresponding algebras will, respectively, be the algebras
of complex numbers, quaternions, and Kelly numbers. Properties like (1)
arose also in the theory of representation of Clifford algebras.


The HRE problem first appeared in the investigation of the classical
problem of computing the maximal number of linearly independent vector
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fields on the surface Sn−1 of the unit ball in Rn. The linear vector fields were
considered first, and the final result for this case given by B.Eckmann (1942)
represents this number as ρ(n)− 1. As was later shown by J.Adams (1962)
with the implementation of the K-theory, this number does not increase
if we consider, instead of linear vector fields, general (continuous) vector
fields.


The information given in this section can be found with discussions and
further references among others in [4], Chapter 10.


3. The Generalized HRE Problem and Its Solution. Now and in
what follows H can be infinite-dimensional, and in this case we suppose
that it is separable. The statement that a continuous linear operator U is
unitary means that the image im U = H and U∗ = U−1.


Let B be a given arbitrary continuous self-adjoint linear operator in H.
Generalized HRE Problem. Find the maximal number of unitary op-


erators Ui in H satisfying conditions (1) along with the additional condition
UiB = BUi for all i.


Clearly, if H = Rn and B = I, this problem coincides with the HRE
problem. To formulate the solution of this problem we need the following
auxiliary assertion.


Theorem on Multiplicity of the Spectrum (see [5], Theorem VII.6).
For any continuous linear self-adjoint operator B there exists a decomposi-
tion H = H1 ⊕H2 ⊕ · · · ⊕H∞ that satisfies the following conditions:


a) Each Hm (m = 1, 2, · · · ,∞) is invariant with respect to B;
b) The restriction of B to Hm is an operator of homogeneous multiplic-


ity m, i.e., is unitarily equivalent to the operator of multiplication by the
independent variable in the product of m copies of the space L2(µm);


c) The measures µm are given on the spectrum of B, are finite, and are
mutually singular for different m (in fact, it is not the measures themselves
that are of importance, but the collections of corresponding sets of zero mea-
sure).


Remark. For some m the measures µm can be zero; the collection of the
remaining m is denoted by M. Now let


ρ(B) = min
m∈M


ρ(m), (3)


where ρ(m) is defined by the equality (2) for m=1, 2, · · · and ρ(∞) = ∞.
Note that if the operator B has purely point spectrum, then the relation


(3) gives
ρ(B) = min


j
ρ(mj),


where m1, m2 · · · are the multiplicities of eigenvalues λ1, λ2, · · · of B. In
particular, ρ(I) = ρ(n) if H = Rn and ρ(I) = ∞ if H is infinite-dimensional.
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Now we give the formulation of one of the main results of this paper.


Theorem 1 (Solution of the Generalized HRE problem). The
maximal number of unitary operators in H satisfying conditions (1) and
also commuting with B is equal to ρ(B)− 1.


Remark 1. For the case H = Rn and B = I this theorem gives the HRE
result. However, our proof of Theorem 1 is based on the HRE theorem and,
of course, we do not pretend to have a new proof for it.


Remark 2. As has been noted, ρ(I) = ∞ if H is infinite-dimensional.
Thus Theorem 1 says that in the infinite-dimensional case there exists an
infinite set of unitary operators satisfying the condition (1).


As an easy consequence of Theorem 1 we get the following simple asser-
tions.


Corollary 1. No self-adjoint operator having an eigenvalue of an odd
multiplicity can commute with a unitary antisymmetric operator.


Corollary 2. There does not exist a compact self-adjoint operator in
H which commutes with infinitely many unitary operators satisfying condi-
tion (1).


4. Orthogonality Conditions for Two Random Vectors. We begin
this section with some preliminaries which are meant mostly for those read-
ers who usually do not deal with probabilistic terminology. (This prelim-
inary material can be found with detailed discussions and proofs in [6],
Chapter 3). Let (Ω,B, P ) be a basic probability space, i.e., a triple where Ω
is an abstract set, B is some σ-algebra of its subsets and P is a normed mea-
sure on B, P (Ω) = 1. Let ξ be a random vector with values in H. Because
of the assumed separability of H the two main definitions of measurable sets
in H coincide and a random vector means nothing but a Borel measurable
function Ω → H. We will assume for simplicity that ξ is centered (has zero
mean):


E(ξ|h) = 0 for all h ∈ H,


where E stands for the integral over Ω with respect to the measure P and
(·|·) denotes the scalar product in H. We will consider only random vectors
having weak second order:


E(ξ|h)2 < +∞ for all h ∈ H.


This restriction is less than the demand of strong second order (E‖ξ‖2 <
+∞) and coincides with it only if H is finite-dimensional.
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For any random vector ξ having weak second order we can define an
analogue of covariance matrix which will be a continuous linear operator
B : H → H defined by the relation


(Bh|g) = E(ξ|h)(ξ|g), h, g ∈ H (4)


(we recall that ξ is assumed to be centered).
Any covariance operator is self-adjoint and positive: (Bh|h) ≥ 0, h ∈ H.
If we have two random vectors ξ1 and ξ2 we can define also the cross-


covariance (or mutual covariance) operator T = Tξ1ξ2 as follows (we assume
again, for simplicity, that ξ1 and ξ2 are centered):


(Th|g) = E(ξ1|h)(ξ2|g). h, g ∈ H.


The cross-covariance operator T is also a continuous linear operator and
satisfies the condition


(Th|g)2 ≤ (B1h|h)(B2g, g), h, g ∈ H, (5)


where Bi is the covariance operator for ξi(i = 1, 2).
The pair (ξ1, ξ2) can be regarded as a random vector with values in


the Hilbert space H ⊕ H and the usual definition, like (4), of covariance
operator can be applied. Then, using the fact that the inner product in
the Hilbert direct sum H ⊕H is given as the sum of the inner products of
the components, we easily get that the covariance operator K of the pair
(ξ1, ξ2) is determined by a 2× 2 matrix with operator-valued elements:


K =
(


B1, T ∗


T, B2


)


,


where T ∗ is the operator adjoint to T (in fact it is equal to Tξ2ξ1).
Now we can formulate the main result of this section, which gives suf-


ficient conditions for almost sure (P -almost everywhere) orthogonality of
random vectors ξ1 and ξ2. It may seem somewhat surprising that the con-
ditions can be expressed only in terms of the covariance operator K (second
moment characteristics) and more specific properties of the distribution
have no effect.


Theorem 2. If the covariance operator K satisfies the conditions


T ∗B1 = −B1T, TB2 = −B2T ∗, T 2 = −B2B1, (6)


then any (centered) random vector (ξ1, ξ2) with this covariance operator has
almost surely orthogonal components, i.e., P{(ξ1|ξ2) = 0} = 1.
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Generally speaking, condition (6) is not necessary. Here is a simple ex-
ample: ξ1 = ε1ζ, ξ2 = ε2Uζ, where ε1 and ε2 are independent Bernoulli
random variables (P{εi = 1} = P{εi = −1} = 1/2; i = 1, 2), U is a
continuous linear antisymmetric operator in H(U∗ = −U), and ζ is any
nondegenerate random vector in H.


However, the necessity holds for a wide class of distributions, containing
Gaussian ones.


Theorem 3. If the support of random vector ξ = (ξ1, ξ2) is a linear
subspace of H ⊕H, then conditions (6) are also necessary for ξ1 and ξ2 to
be almost surely orthogonal.


5. Analysis of the Orthogonality Conditions. The orthogonality con-
ditions (6) are in fact an operator equation with triples (B1, B2, T ) as its
solutions. For the special case H = R2 the general solution of this equation
can easily be given. For the case H = Rn with n > 2 and, especially, for the
infinite-dimensional case we cannot expect to have the same simple picture.
However some basic properties of solutions can be described.


We begin with simple properties.


Theorem 4. If conditions (6) hold for the operators B1, B2, T , then the
following assertions are true:


a) ker B1 ⊂ kerT, kerB2 ⊂ ker T ∗; (7)
imT ∗ ⊂ imB1, imT ⊂ imB2; (8)


b) T commutes with B1 if and only if it commutes with B2 and this
happens if and only if T ∗ = −T . In this case we have also B1B2 = B2B1;


c) T = T ∗ only if T = 0;
d) TT ∗ is not necessarily equal to T ∗T (so T is not necessarily a normal


operator);
e) TB2B1 = B2B1T, T ∗B1B2 = B1B2T ∗;
f) If B1 = B2, then TB = BT and T ∗ = −T ;
g) In the finite-dimensional case H = Rn with an odd n, either kerB1 6= 0


or ker B2 6= 0;
h) In any finite-dimensional case the trace of T is zero;
i) In the two-dimensional case H = R2 we always have B1B2 = B2B1.


The main part of the next theorem shows that conditions (6) for the
covariance operator of a random vector (ξ1, ξ2) are essentially equivalent
to the existence of a linear antisymmetric connection between the com-
ponents. To avoid the word “essentially,” we assume that one of the co-
variance operators B1 or B2 is nonsingular. Suppose for definiteness that
kerB1 = 0 (B1h = 0 ⇒ h = 0). This assumption implies that the inverse
operator B−1


1 exists; in general it is unbounded, and not defined on the
whole of H but only on the range im B1. Consider the operator TB−1


1 on
this dense linear manifold. It is easy to verify that under conditions (6)
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TB−1
1 is always closable. Denote the closure by U and its domain by D(U).


Clearly, im B1 ⊂ D(U) ⊂ H. In some cases we can have D(U) = H and
then U is continuous. Finally, denote by Γ the graph of U , i.e.,


Γ = {(x,Ux), x ∈ D(U)}


and let also
Γ′ = {(Ux, x), x ∈ D(U)}.


Theorem 5. Suppose that the covariance operator K of the random vec-
tor (ξ1, ξ2) satisfies conditions (6) and kerB1 = 0. Then the following as-
sertions are true:


a) im K = Γ, ker K = Γ′;
b) D(U∗) ⊃ D(U) and U∗ = −U on D(U);
c) B2 = −UB1U , and, moreover, D(U) is a dense Bortel set in H,P{ξ1∈


D(U)}=1 and P{ξ2 = Uξ1} = 1.


Remark 1. If instead of ker B1 = 0 we assume ker B2 = 0, then we can
introduce the operator V , which is the closure of T ∗B−1


2 . Of course, for V
the theorem is again true (with natural slight alterations). If both B1 and
B2 are nonsingular, we can introduce both U and V ; they will be convertible
and we will have U−1 = V .


Remark 2. Let both B1 and B2 be nonsingular. Then we have both U
and V . Generally, neither U nor V is necessarily extended to a continuous
operator in H. The example below shows that in fact all four possibilities
can be realized.


Example 1. Let some basis in H be fixed and B1 be given as a diagonal
matrix with positive numbers λ1, λ2, . . . on the diagonal. Let B2 be also
diagonal with the positive numbers a2


1λ2, a2
1λ1, a2


2λ4, a2
2λ3, a2


3λ6, a2
3λ5, . . .


on the diagonal. Finally let T be quasi-diagonal with the following two-
dimensional blocks on the diagonal:


(


0, a1λ2


−a1λ1, 0


)


,
(


0, a2λ4


−a2λ3, 0


)


,
(


0, a3λ6


−a3λ5, 0


)


, . . .


Remark 3. Let A denote the linear operator determined in H⊕H by the
matrix ‖Aij‖, where A11 = A22 = O and A12 = A21 = I, and let d = AK.
Conditions (6) can be written as d2 = O (“differentiality” of d). According
to assertion a in Theorem 5 we have im d = ker d (and get zero homology),
provided B1 or B2 is nonsingular. If this is not the case, then the inclusion
im d ⊂ ker d (which is a consequence of d2 = O) can be strict. Here is a
simple example.
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Example 2. H = R4, B1 and B2 are given by diagonal matrices with
the numbers λ1 > 0, λ2 > 0, λ3 = λ4 = 0 and µ1 = µ2 = µ3 = 0,
µ4 > 0 respectively, and T = 0.


Remark 4. According to assertion c of the theorem, any triple (B1, B2, T )
with nonsingular B1, satisfying conditions (6) can be given with the pair
of operators (B,U) by the following relations: B1 = B, B2 = −UBU ,
T = UB. In a finite-dimensional case the converse is also true: any pair of
operators (B,U), where B is an arbitrary nonsingular self-adjoint positive
operator and U is an arbitrary antisymmetric operator, gives the triple satis-
fying conditions (6). In the infinite-dimensional case, as shown by Example
1, unbounded operators can arise in the direct assertion. Therefore, if we
want to obtain the general solution of the system (6) we should either con-
fine the collection of possible pairs (B,U) or extend the triples (B1, B2, T )
to admit unbounded operators. However, when B1 = B2, unbounded oper-
ators do not occur and the problem of the description of the general solution
of (6) can be solved using only continuous operators.


Theorem 6. If B1 = B2 = B (ker B = 0), then D(U) = H and hence
U is continuous. Furthermore, we have UB = BU, U2 = −I and so the
antisymmetric operator U is also unitary (U∗ = U−1).


6. Systems of Pairwise Orthogonal Random Vectors. Now we con-
sider systems of k > 2 random vectors and look for conditions of pairwise
almost sure orthogonality. A direct application of the conditions for two ran-
dom vectors to each pair of the system might yield a solution, but the latter
would be too complicated to be of interest. Therefore, to ease the problem
we impose some restrictions on the systems under consideration. Namely, we
assume that all random vectors ξ1, ξ2, . . . , ξk have the same covariance oper-
ator B, and that each pair (ξi, ξj) has a linear support in H⊕H. We assume
also, without loss of generality, that ker B = 0 and all ξi are centered. Such
systems of random vectors we call S(H,B)–systems. An S(H,B)–system
ξ1, ξ2, . . . , ξk is said to be an SO(H,B)–system if P{(ξi|ξj) = 0} = 1 for
i, j = 1, 2, . . . , k; i 6= j.


Let now (ξ1, ξ2, . . . , ξk) be any SO(H,B)–system. Fix one of ξi’s, say ξ1,
and consider the pairs (ξ1, ξ2), (ξ1, ξ3), . . . , (ξ1, ξk). Denote by Ti the cross-
covariance operator Tξ1ξi and let Ui = TiB−1(i = 2, 3, . . . , k). According
to Theorem 3 and Theorem 6 we have ξi = Uiξ1 almost surely, and each of
the Ui’s is unitary and commutes with B, and also we have U2


i = −I. It
is easy to show that orthogonality of ξi and ξj gives the condition UiUj =
−UjUi, and if we apply Theorem 1, we get k ≤ ρ(B). Conversely, let
now U2, U3, . . . , Uρ(B) be ρ(B) − 1 unitary operators from the generalized
HRE problem which exist again by Theorem 1. Let also ξ1 be any centered
random vector with a linear support in H and with covariance operator B.
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It is easy to verify that (ξ1, U2ξ1, U3ξ1, . . . , Uρ(B)ξ1) is an SO(H, B)–system.
Therefore, we have derived the following result.


Theorem 7. For any covariance operator B there exists an SO(H,B)-
system containing ρ(B) random vectors and this is the maximal number of
random vectors forming any SO(H, B)-system.


Finally we give some corollaries of this theorem concerning Gaussian
random vectors.


Corollary 1. For any natural number k there exists an SO(Rn, B)–
system consisting of k Gaussian random vectors (n and B should be chosen
properly).


Corollary 2. For any natural number k there exists an SO(H, B)–sys-
tem consisting of k Gaussian random vectors such that H is infinite-di-
mensional and the Gaussian random vectors are also infinite-dimensional.


Corollary 3. There does not exist an infinite SO(H,B)-system consist-
ing of Gaussian random vectors.


Remark. Corollary 3 means that an infinite system of centered Gaussian
random vectors which are pairwise almost surely orthogonal does not exist
if: a) all pairs of the system have linear supports in H ⊕H; b) all vectors
of the system have the same covariance operator. In connection with this
we note that such kind of system does exist if we drop either one of these
two restrictions.


7. Proofs of the Results.
Proof of Theorem 1. The proof is performed in two steps. First we


consider the case of the operator B having a homogeneous multiplicity.


Lemma 1. Let B be a linear bounded operator of homogeneous multi-
plicity m (1 ≤ m ≤ ∞). There exist k (0 ≤ k ≤ ∞) unitary operators
satisfying conditions (1) and commuting with B if and only if k ≤ ρ(m)− 1
(we recall that ρ(∞) is defined as ∞).


Proof. According to the condition on B there exists a linear isometry v
from H onto Lm


2 (µ) such that B = v−1B̄v, where Lm
2 (µ) is the Hilbert


direct sum of m copies of L2(µ) with some finite Borel measure µ supported
by a compact set M ⊂ R1 and B̄ is the operator from Lm


2 (µ) to itself defined
by the equality


(B̄f)(λ) = λf(λ), λ ∈ M.


Here f = (f1, f2, . . . , fm) with fi ∈ L2(µ) (i = 1, 2, . . . , m) for the case of
finite m and f = (f1, f2, . . . ) with the additional assumption


∑


‖fi‖2 < ∞
if m = ∞.
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Consider first the case m < ∞. To prove the sufficiency part of the
lemma we construct ρ(m) − 1 unitary operators Ūi in Lm


2 (µ) that satisfy
conditions (1) and commute with B̄; the operators Ui = v−1Ūiv will solve
the problem in H. By virtue of classical HRE theorem there exist ρ(m)− 1
orthogonal operators ˜Ui in Rm satisfying conditions (1). Let ‖˜Ui(p, q)‖
(p, q = 1, 2, . . . , m) be the matrix of ˜Ui in the natural basis of Rm, and
define the operator Ūi : Lm


2 (µ) → Lm
2 (µ) as Ūif = g (i = 1, 2, . . . , ρ(m)−1),


where


gp(λ) =
m


∑


q=1


˜Ui(p, q)fq(λ), p = 1, 2, . . . , m. (9)


It is easy to check that the operators Ū1, Ū2, . . . , Ūρ(m)−1 have all the
needed properties.


To prove the necessity part of the lemma we have to show that k ≤
ρ(m) − 1 if U1, U2, . . . , Uk is any system of unitary operators satisfying
(1) and commuting with B. Let Ūi = vUiv−1 and B̄ = vBv−1 be the
corresponding isometric images of Ui and B. These are the operators acting
from Lm


2 (µ) to itself. Any linear operator Lm
2 (µ) → Lm


2 (µ) can be written
in a standard way as an m×m matrix with entries that are L2(µ) → L2(µ)
operators. Let ‖Ūi(p, q)‖ be the matrix of the operator Ūi (i = 1, 2, . . . , k;
p, q = 1, 2, . . . ,m). Since ŪiB̄ = B̄Ui, we have Ūif0(B̄) = f0(B̄)Ūi for
any continuous function f0 : R1 → R1. Clearly, the operator f0(B̄) is
the multiplication by the function f0. Therefore for all i = 1, 2, . . . , k and
f ∈ Lm


2 (µ) we have the following m relations (p = 1, 2, . . . ,m):
m


∑


q=1


[


Ūi(p, q)f0fq
]


(λ) = f0(λ)
m


∑


q=1


[


Ūi(p, q)fq
]


(λ).


If we take now f = (f1, f2, . . . , fm) with fq ≡ 0 for q 6= s and fs ≡ 1
(s = 1, 2, . . . ,m), we get


[


Ūi(p, s)f0
]


(λ) = V̄i(p, s; λ)f0(λ) (10)


where
V̄i(p, s;λ) =


[


Ūi(p, s)1
]


(λ).


Since the operators Ūi(p, s) are bounded, the relations (10) hold not only
for continuous f0 but also for all f0 ∈ L2(µ). Now it can be shown by
elementary reasonings that for almost all fixed values of λ the Rm → Rm


operators corresponding to the k matrices ‖V̄i(p, q)‖ are unitary and satisfy
conditions (1). Therefore, k ≤ ρ(m)− 1 by the classical HRE theorem.


To finish the proof of the lemma, we consider the case m = ∞. In this
case only the sufficiency part is to be proved. The existence of an infinite
system of unitary operators in H satisfying conditions (1) was proved in
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[7]. The proof that we give here (see also [3]) is based on the same idea,
although the use of block matrices simplifies the technique of the proof.


Let ∆i be a quadratic matrix of order 2i with the second (nonprincipal)
diagonal consisting of +1’s in the upper half and −1’s in the lower half
and all other entries equal to zero. Denote by ˜Ui (i = 1, 2, . . . ) the infinite
diagonal block matrix with the matrices ∆i on the (principal) diagonal.
Clearly, ∆i are unitary and ∆2


i = −I. Hence ˜Ui are unitary and ˜U2
i = −I.


To prove the property ˜Ui ˜Uj = −˜Uj ˜Ui (i 6= j), it is convenient to consider
˜Uj (if j < i) as a diagonal block matrix with the matrices (blocks) of the
same order 2i as in the case of ˜Ui. This can be achieved by combining 2i−j


diagonal blocks of ˜Uj in one with zeros as other entries. Denote this matrix
(block) of order 2i by ∆j,i. Now ˜Uj is a diagonal block matrix with the
diagonal blocks ∆j.i of the same order 2i, and it is enough to show that
∆i∆j,i = −∆j,i∆i. For this, recall that ∆j,i is a diagonal block matrix
with 2i−j diagonal blocks of order 2j each, and represent ∆i also as a block
matrix with the blocks of order 2j each. This way we get a block matrix
with blocks that are all zero matrices except those situated on the second
(nonprincipal) diagonal which are δ in the uppeer half and −δ in the lower
one. Here δ is the matrix of order 2j with +1’s on the second (nonprincipal)
diagonal and all other entries equal to zero. Now it is quite easy to show that
the needed equality ∆i∆j,i = −∆j,i∆i is a consequence of the elementary
one: ∆jδ = −δ∆j , and this completes the proof of ρ(∞) = ∞. The proof
of the lemma is also finished now: define the operators Ūi (i = 1, 2, . . . )in
Lm


2 (µ), m = ∞, by the relations (9) with m = ∞; it can easily be checked
that the operators Ūi (i = 1, 2, . . . ) satisfy conditions (1) and commute with
B̄.


Now we can finish the proof of Theorem 1. Clearly, ρ(B) = ρ(m) if B is
of homogeneous multiplicity m, and Lemma 1 coincides with Theorem 1 for
this case. For the general case we will write B as the diagonal matrix with
the restrictions of B to H1, H2, . . . on the diagonal (this is possible because
every Hm is invariant for B). The restriction of B to Hm, m ∈ M, is of
homogeneous multiplicity m, and by Lemma 1 there exist ρ(B)− 1 unitary
operators Um


i (i = 1, 2, . . . , ρ(B) − 1) in each Hm (m ∈ M) that satisfy
conditions (1) and commute with B|Hm . The ρ(B) − 1 unitary operators
corresponding to diagonal matrices with the operators U1


i , U2
i , . . . on the


diagonal satisfy conditions (1) and commute with B.
Finally, let Ui (i = 1, 2, . . . , k) be unitary operators in H satisfying


conditions (1) and commuting with B, and let Hm (m ∈ M) be the invariant
subspaces corresponding to B. Because of commutativity, the subspaces Hm


are invariant also for all Ui and Lemma 1 easily gives that k ≤ ρ(B)−1.


Proof of Theorem 2. Let A denote the 2 × 2 matrix with the operator-
valued elements A11 = A22 = O and A12 = A21 = 1


2I, where O and I
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denote, as before, zero and identity operators. It is obvious that (ξ1|ξ2) =
(Aξ|ξ), ξ = (ξ1, ξ2), and hence the problem is transformed to the problem
of orthogonality of ξ and Aξ in the Hilbert space H1⊕H2. It is easily seen,
using the definition, that the covariance operator of Aξ is AKA. We have
the equalities


(AKA)K = (AK)2 =
1
4


[(


O I
I O


)(


B1, T ∗


T, B2


)]2


=


=
1
4


(


T 2 + B2B1, TB2 + B2T ∗


B1T + T ∗B1, B1B2 + T ∗2


)


= O


and the use of the following lemma ends the proof.


Lemma 2. Let ζ and η be centered random vectors in a Hilbert space
H, with covariance operators Bζ and Bη, respectively. If BζBη = O, then
P{(ζ|η) = 0} = 1.


Proof. The topological support Sζ of a random vector ζ with values in
a (separable) Hilbert space H is defined as the minimal closed set in H
having probability 1, i.e. as the intersection of all closed sets F ⊂ H
such that P{ζ ∈ F} = 1. Denote by l(Sζ) the minimal closed subspace
in H containing Sζ . If h⊥l(Sζ), then h⊥im Bζ and (Bζh, h) = O; hence
(Bζg, h) = 0 for all g ∈ H, and h⊥imBζ . Conversely, if h⊥imBζ then
P{ζ⊥h} = 1 and so the closed subspace orthogonal to h has probability 1;
hence it contains l(Sζ) and we get h⊥l(Sζ). Therefore we have


l(Sζ) = im Bζ . (11)


The condition of the lemma gives that (Bζh|Bηg)! =!0 for all h, g ∈ H.
So, im Bζ⊥im Bη and the application of relation (11) together with the
following obvious relation


P{ζ ∈ l(Sζ), η ∈ l(Sη)} = 1


completes the proof.


Proof of Theorem 3. We have Sξ = imK because of the linearity of Sξ


and the relation (11) written for ξ (recall that Bξ = K). On the other
hand, the condition ξ1⊥ξ2 a.s. gives that Sξ ⊂ L where L = {(u, v), u, v ∈
H, (u|v) = 0}. Therefore, im K ⊂ L and so, for all x, y ∈ H, we have the
relation


(B1x + T ∗y|Tx + B2y) = 0. (12)


If we take y = 0, then we get the relation (T ∗B1x, x) = 0 for all x ∈ H,
which shows that the operator T ∗B1 is antisymmetric and thus proves the
first equality in (6). The second one is proved in the same way by taking
x = 0 in (12). Now the relation (12) gives that (T ∗y|Tx) + (B1x|B2y) =
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((T 2 + B2B1)x|y) = 0 for all x, y ∈ H, and the third equality in (6) is also
proved.


Remark. The necessity of conditions (6) was originally proved for the
case of Gaussian random vectors. The possibility of extension to this more
general case was noticed later by S.A.Chobanyan.


Proof of Theorem 4. a) Relations (7) are an easy consequence of inequal-
ity (5). Relations (8) follow from (7) because ker A + imA∗ = H for any
linear bounded operator A.


b) It is enough to show that TB1 = B1T gives T ∗ = −T (the implication
TB2 = B2T ⇒ T ∗ = −T can be shown analogously). The condition T ∗B1 =
−B1T gives T ∗x = −Tx for x ∈ im B1. Let now x ∈ kerB1. Then,
according to (7), Tx = 0 and it suffices to show that T ∗x = 0 too, or
(T ∗x|y) = 0 for all y ∈ H. If y ∈ kerB1, this is clear; if y ∈ im B1, then
y = B1z for some z ∈ H and (T ∗x|y) = (x|TB1z) = (B1x|Tz) = 0 since
x ∈ ker B1. The last assertion is an easy consequence of T ∗ = −T (which
gives T ∗2 = T 2).


c) The last equality in (6) shows that if T ∗ = T , then B1B2 = B2B1.
Therefore, B1B2 is a positive operator and (T 2x, x) = −(B2B1x, x) ≤ 0.
On the other hand, (T 2x, x) = (Tx, Tx) ≥ 0). Consequently, Tx = 0 for all
x ∈ H.


d) The counterexample can be given even in R2. Let


B1 =
(


a, 0
0, 0


)


, B2 =
(


0, 0
0, b


)


, T =
(


0, 0
t, 0


)


,


where a > 0, b > 0, t ∈ R1.
e) These equalities immediately follow from the first and second equalities


in (6).
f) If B1 = B2 = B, then T commutes with B2 by virtue of the previous


statement and hence it commutes with B too by virtue of lemma of the
square root (see [5], Theorem VI.9). It is enough now to apply statement b
of this theorem.


g) If n = 2m + 1, then det(T 2) = det(−B2B1) = (−1)2m+1 detB1 ×
detB2 ≤ 0. On the other hand, det(T 2) = (det T )2 ≥ 0. Therefore
det(T 2) = 0 and hence det B1 detB2 = 0.


h) The first condition in (6) gives the relation (Tx|B1x) = 0 which shows
that (Tf |f) = 0 if Bf = λf and λ 6= 0. The last condition λ 6= 0 can
be omitted due to the first relation in (7). Therefore, (Tf |f) = 0 for any
eigenvector of B1, and it is enough to note that in a finite-dimensional space
normed eigenvectors of any self-adjoint operator constitute a basis and the
trace does not depend on the choice of the basis.
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i) It can be checked directly that any linear operator T in R2 with tr T = 0
has the property T 2 = T ∗2. So, this statement is an immediate consequence
of statement h and of the last equality in (6).


Proof of Theorem 5. According to relations (6), we have the equality
TB−1


1 T ∗ = B2 on im B1, and hence if B1x + T ∗y is denoted by h, then
Tx + B2y will be equal to TB−1h. Therefore the following equality in
H ⊕H is true:


{(B1x + T ∗y, Tx + B2y) : x, y ∈ im B1} =


= {(h, TB−1h) : h ∈ imB1},


which gives the first equality in statement a. To prove the second one, note
that kerK is the collection of pairs (x, y) satisfying the system of equations
B1x + T ∗y = 0, Tx + B2y = 0. The first equaition gives, because of the
equality B−1


1 T ∗ = −TB−1
1 on im B1, the relation B1(x−Uy) = 0 and hence


x = Uy. It is also easy to show that the pair (Uy, y) satisfies the second
equation for all y ∈ D(U) as well.


Using again the equality B−1
1 T ∗ = −TB−1


1 on im B1, we get for any fixed
y ∈ im B1 the equality


(TB−1
1 x|y) = −(x|TB−1


1 y) for all x ∈ D(U)


which just means the validity of statement b.
Finally we prove statement c. The equality B2 = −UB1U can be verified


directly. It is clear that D(U) is the projection of Γ on H that is a continuous
one-to-one mapping of the closed set Γ ⊂ H ⊕H into H. Therefore D(U)
is a Borel set (this can be shown, for example, by the Kuratowski theorem,
[6], p.5). Furthermore, any random vector belongs a.s. to its topological
support, and the support of the random vector (ξ1, ξ2) is included in im K
(see relation (11)), which is equal to Γ according to statement a. Therefore,
(ξ1, ξ2) ∈ Γ a.s., which means that ξ1 ∈ D(U) and ξ2 = Uξ1 a.s.


Proof of Theorem 6. The continuity of the everywhere defined closed ope-
rators is well known. We show that D(U) = H. Since ker B = 0, imB = H
and it is enough to show that convergence of Bzn implies convergence of
TB−1(Bzn), zn ∈ H, n = 1, 2 . . . which is easily checked by using T ∗ = −T
(Theorem 4) and T 2 = −B2 (relation 6). Finally, since BT = TB (Theorem
4), UB = TB−1B = BTB−1 = BU , and −B2 = T 2 = (UB)2 = U2B2,
which gives that U2 = −I.
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