ON THE STABILITY OF SOLUTIONS OF LINEAR BOUNDARY VALUE PROBLEMS FOR A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

M. ASHORDIA

ABSTRACT. Linear boundary value problems for a system of ordinary differential equations are considered. The stability of the solution with respect to small perturbations of coefficients and boundary values is investigated.

Let $\mathcal{P}_0: [a,b] \to \mathbb{R}^{n \times n}$ and $q_0: [a,b] \to \mathbb{R}^n$ be integrable matrix- and vector-functions, respectively, $c_0 \in \mathbb{R}^n$, and let $l_0 : C([a, b]; \mathbb{R}^n) \to \mathbb{R}^n$ be a linear continuous operator such that the boundary value problem

$$\frac{dx}{dt} = \mathcal{P}_0(t)x + q_0(t), \tag{1}$$

$$t_0(x) = c_0 \tag{2}$$

has the unique solution x_0 . Consider the sequences of integrable matrixand vector-functions, $\mathcal{P}_k : [a, b] \to \mathbb{R}^{n \times n}$ (k = 1, 2, ...), and $q_k : [a, b] \to \mathbb{R}^n$ (k = 1, 2, ...), respectively, the sequence of constant vectors $c_k \in \mathbb{R}^n$ (k = $1, 2, \ldots$) and the sequence of linear continuous operators $l_k : C([a, b]; \mathbb{R}^n) \to$ \mathbb{R}^n (k = 1, 2, ...). In [1,2], sufficient conditions are given for the problem

$$\frac{dx}{dt} = \mathcal{P}_k(t)x + q_k(t),\tag{3}$$

$$l_k(x) = c_k \tag{4}$$

to have a unique solution x_k for any sufficiently large k and

$$\lim_{k \to +\infty} x_k(t) = x_0(t) \quad \text{uniformly on } [a, b].$$
(5)

In the present paper, necessary and sufficient conditions are established for the sequence of boundary value problems of the form (3), (4) to have the above-mentioned property.

¹⁹⁹¹ Mathematics Subject Classification. 34B05.

Throughout the paper the following notations and definitions will be used:

 $\mathbb{R}=]-\infty,+\infty[;$

 \mathbb{R}^n is a space of real column *n*-vectors $x = (x_i)_{i=1}^n$ with the norm

$$||x|| = \sum_{i=1}^{n} |x_i|;$$

 $\mathbb{R}^{n \times n}$ is a space of real $n \times n$ matrices $X = (x_{ij})_{i,j=1}^n$ with the norm

$$||X|| = \sum_{i,j=1}^{n} |x_{ij}|;$$

if $X = (x_{ij})_{i,j=1}^n \in \mathbb{R}^{n \times n}$, then diag X is a diagonal matrix with diagonal components x_{11}, \ldots, x_{nn} ; X^{-1} is an inverse matrix to X; E is an identity $n \times n$ matrix;

 $C([a,b];\mathbb{R}^n)$ is a space of continuous vector-functions $x:[a,b]\to\mathbb{R}^n$ with the norm

$$||x||_{c} = \max\{||x(t)|| : a \le t \le b\};$$

 $\widetilde{C}([a,b];\mathbb{R}^n)$ and $\widetilde{C}([a,b];\mathbb{R}^{n\times n})$ are the sets of absolutely continuous vector- and matrix- functions, respectively;

 $L([a, b]; \mathbb{R}^n)$ and $L([a, b]; \mathbb{R}^{n \times n})$ are the sets of vector- and matrix-functions $x : [a, b] \to \mathbb{R}^n$ and $X : [a, b] \to \mathbb{R}^{n \times n}$, respectively, whose components are Lebesgue-integrable;

||l|| is the norm of the linear continuous operator $l: C([a, b]; \mathbb{R}^n) \to \mathbb{R}^n$.

The vector-function $x : [a, b] \to \mathbb{R}^n$ is said to be a solution of the problem (1),(2) if it belongs to $\widetilde{C}([a, b]; \mathbb{R}^n)$ and satisfies the condition (2) and the system (1) a.e. on [a, b].

Definition 1. We shall say that the sequence $(\mathcal{P}_k, q_k, l_k)$ (k = 1, 2, ...) belongs to $S(\mathcal{P}_0, q_0, l_0)$ if for every $c_0 \in \mathbb{R}^n$ and $c_k \in \mathbb{R}^n$ (k = 1, 2, ...) satisfying the condition

$$\lim_{k \to +\infty} c_k = c_0 \tag{6}$$

the problem (3),(4) has the unique solution x_k for any sufficiently large k and (5) holds.

Along with (1),(2) and (3),(4) we shall consider the corresponding homogeneous problems

$$\frac{dx}{dt} = \mathcal{P}_0(t)x,\tag{1}_0$$

$$l_0(x) = 0 \tag{20}$$

and

$$\frac{dx}{dt} = \mathcal{P}_k(t)x,\tag{30}$$

$$l_k(x) = 0. \tag{40}$$

Theorem 1. Let

$$\lim_{k \to +\infty} l_k(y) = l_0(y) \quad \text{for } y \in \widetilde{C}([a,b];\mathbb{R}^n)$$
(7)

and

$$\lim_{k \to +\infty} \sup \|l_k\| < +\infty.$$
(8)

Then

$$\left(\left(\mathcal{P}_{k}, q_{k}, l_{k}\right)\right)_{k=1}^{+\infty} \in S(\mathcal{P}_{0}, q_{0}, l_{0})$$

$$(9)$$

if and only if there exist sequences of matrix- and vector-functions, $\Phi_k \in \widetilde{C}([a,b];\mathbb{R}^{n\times n})$ $(k=1,2,\ldots)$ and $\varphi_k \in \widetilde{C}([a,b];\mathbb{R}^n)$ $(k=1,2,\ldots)$, respectively, such that

$$\lim_{k \to +\infty} \sup \int_{a}^{b} \|\mathcal{P}_{k}^{*}(\tau)\| \, d\tau < +\infty \tag{10}$$

and

$$\lim_{k \to +\infty} \Phi_k(t) = 0, \tag{11}$$

$$\lim_{k \to +\infty} \varphi_k(t) = 0, \tag{12}$$

$$\lim_{k \to +\infty} \int_{a}^{t} \mathcal{P}_{k}^{*}(\tau) \, d\tau = \int_{a}^{t} \mathcal{P}_{0}(\tau) \, d\tau, \tag{13}$$

$$\lim_{k \to +\infty} \int_{a}^{t} q_{k}^{*}(\tau) \, d\tau = \int_{a}^{t} q_{0}(\tau) \, d\tau \tag{14}$$

uniformly on [a, b], where

$$\mathcal{P}_k^*(t) \equiv [E - \Phi_k(t)] \cdot \mathcal{P}_k(t) - \Phi'_k(t), \qquad (15)$$

$$q_k^*(t) \equiv [E - \Phi_k(t)] [\mathcal{P}_k(t)\varphi_k(t) + q_k(t) - \varphi_k'(t)].$$
(16)

Theorem 1'. Let (7) and (8) be satisfied. The (9) holds if and only if there exist sequences of matrix- and vector-functions, $\Phi_k \in \widetilde{C}([a,b]; \mathbb{R}^{n \times n})$ (k = 1, 2, ...) and $\varphi_k \in \widetilde{C}([a,b]; \mathbb{R}^n)$ (k = 1, 2, ...), respectively, such that

$$\lim_{k \to +\infty} \sup \int_{a}^{b} \|\mathcal{P}_{k}^{*}(\tau) - \operatorname{diag} \mathcal{P}_{k}^{*}(\tau)\| \, d\tau < +\infty \tag{17}$$

and the conditions (11)–(13) and

$$\lim_{k \to +\infty} \int_{a}^{t} \exp\left(-\int_{a}^{\tau} \operatorname{diag} \mathcal{P}_{k}^{*}(s) ds\right) \cdot q_{k}^{*}(\tau) d\tau =$$
$$= \int_{a}^{t} \exp\left(-\int_{a}^{\tau} \operatorname{diag} \mathcal{P}_{0}(s) ds\right) \cdot q_{0}(\tau) d\tau$$
(18)

are fulfilled uniformly on [a, b], where

$$\mathcal{P}_{k}^{*}(t) \equiv [\mathcal{P}_{k}(t) - \Phi_{k}(t)\mathcal{P}_{k}(t) - \Phi_{k}'(t)] \cdot [E - \Phi_{k}(t)]^{-1}$$
(19)

and $q_k^*(t)$ is the vector-function defined by (16).

Before proving this theorems, we shall give a theorem from [1] and some of its generalizations.

Theorem 2₀. Let the conditions (6)–(8),

$$\lim_{k \to +\infty} \sup \int_{a}^{b} \|\mathcal{P}_{k}(\tau)\| \, d\tau < +\infty \tag{20}$$

hold and let the following conditions

$$\lim_{k \to +\infty} \int_{a}^{t} \mathcal{P}_{k}(\tau) \, d\tau = \int_{a}^{t} \mathcal{P}_{0}(\tau) \, d\tau, \tag{21}$$

$$\lim_{k \to +\infty} \int_{a}^{t} q_k(\tau) \, d\tau = \int_{a}^{t} q_0(\tau) \, d\tau \tag{22}$$

hold uniformly on [a, b]. Then (9) is satisfied¹.

Theorem 2. Let there exist sequences of matrix- and vector-functions, $\Phi_k \in \widetilde{C}([a,b]; \mathbb{R}^{n \times n})$ (k = 1, 2, ...) and $\varphi_k \in \widetilde{C}([a,b]; \mathbb{R}^n)$ (k = 1, 2, ...), respectively, such that the conditions (10),

$$\lim_{k \to +\infty} [c_k - l_k(\varphi_k)] = c_0 \tag{23}$$

hold and let the conditions (11),(13),(14) be fulfilled uniformly on [a, b], where $\mathcal{P}_k^*(t)$ and $q_k^*(t)$ are the matrix- and vector-functions defined by (15) and (16), respectively. Let, moreover, conditions (7),(8) hold. Then for any sufficiently large k the problem (3),(4) has the unique solution x_k and

$$\lim_{k \to +\infty} \|x_k - \varphi_k - x_0\|_c = 0.$$

¹See [1], Theorem 1.2.

Proof. The transformation $z = x - \varphi_k$ reduces the problem (3),(4) to

$$\frac{dz}{dt} = \mathcal{P}_k(t)z + r_k(t), \tag{24}$$

$$l_k(z) = c_{k1},\tag{25}$$

where $r_k(t) \equiv \mathcal{P}_k(t)\varphi_k(t) + q_k(t) - \varphi'_k(t), \ c_{k1} = c_k - l_k(\varphi_k) \ (k = 1, 2, ...).$

Let us show that for any sufficiently large k the homogeneous problem $(3_0), (4_0)$ has only trivial solution.

Suppose this proposition is invalid. It can be assumed without loss of generality that for every natural k the problem $(3_0), (4_0)$ has the solution x_k for which

$$\|x_k\|_c = 1. (26)$$

Moreover, it is evident that the vector-function x_k is the solution of the system

$$\frac{dx}{dt} = \mathcal{P}_k^*(t)x + [\Phi_k(t) \cdot x_k(t)]'.$$
(27)

According to (11) and (26)

$$\lim_{k \to +\infty} [\Phi_k(t) \cdot x_k(t)] = 0$$

uniformly on [a, b]. Therefore the conditions of Theorem 2₀ are fulfilled for the sequence of problems (27),(4₀). Hence

$$\lim_{k \to +\infty} \|x_k\|_c = 0,$$

which contradicts (26). This proves that the problem $(3_0), (4_0)$ has only trivial solution.

From this fact it follows that for any sufficiently large k the problem (24),(25) has the unique solution z_k .

It can easily be shown that the vector-function z_k satisfies the system

$$\frac{dz}{dt} = \mathcal{P}_k^*(t)z + r_k^*(t), \tag{28}$$

where $r_k^*(t) = [\Phi_k(t) \cdot z_k(t)]' + q_k^*(t)$. Show that

$$\lim_{k \to +\infty} \sup \|z_k\|_c < +\infty.$$
⁽²⁹⁾

Let this proposal be invalid. Assume without loss of generality that

$$\lim_{k \to +\infty} \|z_k\|_c = +\infty.$$
(30)

Put

$$u_k(t) = ||z_k||_c^{-1} \cdot z_k(t)$$
 for $t \in [a, b]$ $(k = 1, 2, ...).$

Then in view of (25) and (28), for every natural k the vector-function $u_k(t)$ will be the solution of the boundary value problem

$$\frac{du}{dt} = \mathcal{P}_k^*(t)u + s_k(t),$$
$$l_k(u) = \|z_k\|_c^{-1} \cdot c_{k1},$$

where $s_k(t) = ||z_k||_c^{-1} \cdot r_k^*(t)$. Equations (11),(14),(23), and (30) imply

$$\lim_{k \to +\infty} [\|z_k\|_c^{-1} \cdot c_{k1}] = 0$$

and

$$\lim_{k \to +\infty} \int_{a}^{t} s_{k}(\tau) \, d\tau = 0$$

uniformly on [a, b]. Hence, according to (10) and (13), the conditions of Theorem 2₀ are fulfilled for the sequence of the last boundary value problems. Therefore

$$\lim_{k \to +\infty} \|u_k\|_c = 0.$$

This equality contradicts the conditions $||u_k||_c = 1$ (k = 1, 2, ...). The inequality (29) is proved.

In view of (11), (14), and (29)

$$\lim_{k \to +\infty} \int_a^t r_k^*(\tau) \, d\tau = \int_a^t q_0(\tau) \, d\tau$$

uniformly on [a, b].

Applying Theorem 20 to the sequence of the problems (28), (25), we again show that

$$\lim_{k \to +\infty} \|z_k - x_0\|_c = 0. \quad \Box$$

Corollary 1. Let (6)-(8),

$$\lim_{k \to +\infty} \sup \int_{a}^{b} \left\| \mathcal{P}_{k}(\tau) - \Phi_{k}(\tau) \mathcal{P}_{k}(\tau) - \Phi_{k}'(\tau) \right\| d\tau < +\infty$$

hold and let the conditions (11),(21),(22),

$$\lim_{k \to +\infty} \int_a^t \Phi_k(\tau) \mathcal{P}_k(\tau) \, d\tau = \int_a^t \mathcal{P}^*(\tau) \, d\tau$$

and

$$\lim_{k \to +\infty} \int_a^t \Phi_k(\tau) q_k(\tau) \, d\tau = \int_a^t q^*(\tau) \, d\tau$$

be fulfilled uniformly on [a,b], where $\Phi_k \in \widetilde{C}([a,b]; \mathbb{R}^{n \times n})$ (k = 1, 2, ...), $\mathcal{P}^* \in L([a,b]; \mathbb{R}^{n \times n})$, $q^* \in L([a,b]; \mathbb{R}^n)$. Let, moreover, the system

$$\frac{dx}{dt} = \mathcal{P}_0^*(t)x + q_0^*(t),$$

where $\mathcal{P}_0^*(t) \equiv \mathcal{P}_0(t) - \mathcal{P}^*(t)$, $q_0^*(t) \equiv q_0(t) - q^*(t)$, have a unique solution satisfying the condition (2). Then

$$((\mathcal{P}_k, q_k, l_k))_{k=1}^{+\infty} \in S(\mathcal{P}_0^*, q_0^*, l_0).$$

Proof. It suffices to assume in Theorem 2 that $\varphi_k(t) \equiv 0$ and to notice that

$$\lim_{k \to +\infty} \int_a^t [E - \Phi_k(\tau)] \cdot \mathcal{P}_k(\tau) \, d\tau = \int_a^t \mathcal{P}_0^*(\tau) \, d\tau$$

and

$$\lim_{k \to +\infty} \int_a^t [E - \Phi_k(\tau)] \cdot q_k(\tau) \, d\tau = \int_a^t q_0^*(\tau) \, d\tau$$

uniformly on [a, b]. \Box

Corollary 2. Let (6)–(8) hold, and let there exist a natural number m and matrix-functions $\mathcal{P}_{oj} \in L([a,b], \mathbb{R}^{n \times n})$ $(j = 1, \ldots, m)$ such that

$$\lim_{k \to +\infty} [\mathcal{P}_{km}(t) - \mathcal{P}_{k}(t)] = 0,$$
$$\lim_{k \to +\infty} \int_{a}^{t} [E + \mathcal{P}_{km}(\tau) - \mathcal{P}_{k}(\tau)] \cdot \mathcal{P}_{k}(\tau) d\tau = \int_{a}^{t} \mathcal{P}_{0}(\tau) d\tau,$$
$$\lim_{k \to +\infty} \int_{a}^{t} [E + \mathcal{P}_{km}(\tau) - \mathcal{P}_{k}(\tau)] \cdot q_{k}(\tau) d\tau = \int_{a}^{t} q_{0}(\tau) d\tau$$

uniformly on [a, b], where

$$\mathcal{P}_{k1}(t) \equiv \mathcal{P}_k(t), \quad \mathcal{P}_{k\,j+1}(t) \equiv \mathcal{P}_{kj}(t) - \int_a^t [\mathcal{P}_{kj}(\tau) - \mathcal{P}_{0j}(\tau)] d\tau$$
$$(j = 1, \dots, m).$$

Let, moreover,

$$\lim_{k \to +\infty} \sup \int_{a}^{b} \| [E + \mathcal{P}_{km}(\tau) - \mathcal{P}_{k}(\tau)] \cdot \mathcal{P}_{k}(\tau) + [\mathcal{P}_{km}(\tau) - \mathcal{P}_{k}(t)]' \| d\tau < +\infty.$$

Then (9) holds.

M. ASHORDIA

Theorem 2'. Let there exist sequences of matrix- and vector-functions, $\Phi_k \in C([a,b]; \mathbb{R}^{n \times n}) \ (k = 1, 2, ...) \ and \ \varphi_k \in C([a,b]; \mathbb{R}^n) \ (k = 1, 2, ...),$ respectively, such that the conditions (17),(23) hold, and let the conditions (11),(13), and (18) be fulfilled uniformly on [a,b]. Here $\mathcal{P}_k^*(t)$ and $q_k^*(t)$ are the matrix- and vector-functions defined by (19) and (16), respectively. Then the conclusion of Theorem 2 is true.

Proof. In view of (14), we may assume without loss of generality that for every natural k the matrix $E - \Phi_k(t)$ is invertible for $t \in [a, b]$.

For every $k \in \{0, 1, ...\}$ and $t \in [a, b]$ assume

$$\mathcal{P}_{0}^{*}(t) = \mathcal{P}_{0}(t), \quad q_{0}^{*}(t) = q_{0}(t), \quad \Phi_{0}(t) = 0, \quad \varphi_{0}(t) = 0,$$

$$c_{k1} = c_{k} - l_{k}(\varphi_{k}), \quad Q_{k}(t) = H_{k}(t) \cdot [\mathcal{P}_{k}^{*}(t) - \operatorname{diag} \mathcal{P}_{k}^{*}(t)] \cdot H_{k}^{-1}(t),$$

$$r_{k}(t) = H_{k}(t) \cdot q_{k}^{*}(t),$$

where

$$H_k(t) = \exp\left(-\int_a^t \operatorname{diag} \mathcal{P}_k^*(\tau) \, d\tau\right)$$

Moreover, assume

$$l_k^*(z) = l_k(x)$$
 for $z \in C([a,b]; \mathbb{R}^n)$,

where $x(t) = [E - \Phi_k(t)]^{-1} \cdot H_k^{-1}(t) \cdot z(t)$. From (13) it follows that $l_k^* : C([a,b];\mathbb{R}^n) \to \mathbb{R}^n$ (k = 0, 1, ...) is a sequence of linear continuous operators for which conditions (7) and (8) are satisfied.

For every $k \in \{0, 1, ...\}$ the transformation

$$z(t) = H_k(t) \cdot [E - \Phi_k(t)] \cdot [x(t) - \varphi_k(t)] \text{ for } t \in [a, b]$$
(31)

reduces the problem (3),(4) to

$$\frac{dz}{dt} = Q_k(t)z + r_k(t), \qquad (32)$$

$$l_k^*(z) = c_{k1} (33)$$

and the problem (1),(2) to

$$\frac{dz}{dt} = Q_0(t)z + r_0(t), \tag{34}$$

$$dt = Q_0(t)z + V_0(t), \tag{34}$$
$$dt^*(z) = c_0. \tag{35}$$

In view of (13) and (17) from Lemma 1.1 ([1], p.9) it follows that

$$\lim_{k \to +\infty} \int_{a}^{t} Q_{k}(\tau) \, d\tau = \int_{a}^{t} Q_{0}(\tau) \, d\tau$$

uniformly on [a, b]. According to Theorem 2₀ from the above and from (7),(8),(17),(18),(23) it follows that the problem (32),(33) has the unique solution z_k for any sufficiently large k, and

$$\lim_{k \to +\infty} \|z_k - z_0\|_c = 0,$$

where z_0 is the unique solution of the problem (34),(35). Therefore (11),(13) and (31) show that the statement of the theorem is true. \Box

Corollary 3. Let the conditions (6)-(8),

$$\lim_{k \to +\infty} \sup \int_{a}^{b} \|\mathcal{P}_{k}(\tau) - \operatorname{diag} \mathcal{P}_{k}(\tau)\| \, d\tau < +\infty$$

hold and let (21) and

$$\lim_{k \to +\infty} \int_{a}^{t} \exp\left(-\int_{a}^{\tau} \operatorname{diag} \mathcal{P}_{k}(s) ds\right) \cdot q_{k}(\tau) d\tau =$$
$$= \int_{a}^{t} \exp\left(-\int_{a}^{\tau} \operatorname{diag} \mathcal{P}_{0}(s) ds\right) \cdot q_{0}(\tau) d\tau$$

be fulfilled uniformly on [a, b]. Then (9) holds.

Remark. As compared with Theorem 2_0 and the results of [2], it is not assumed in Theorems 2 and 2' that the equalities (21) and (22) hold uniformly on [a, b]. Below we will give an example of a sequence of boundary value problems for linear systems for which (9) holds but (21) is not fulfilled uniformly on [a, b].

Example. Let a = 0, $b = 2\pi$, n = 2, and for every natural k and $t \in [0, 2\pi]$, let

$$\begin{split} \mathcal{P}_{k}(t) &= \begin{pmatrix} 0 & p_{k1}(t) \\ 0 & p_{k2}(t) \end{pmatrix}, \ \mathcal{P}_{0}(t) &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \\ \varphi_{k}(t) &= q_{k}(t) = q_{0}(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \\ p_{k1}(t) &= \begin{cases} (\sqrt{k} + \sqrt[4]{k}) \sin kt & \text{for } t \in I_{k}, \\ \sqrt{k} \sin kt & \text{for } t \in [0, 2\pi] \backslash I_{k}; \\ p_{k2}(t) &= \begin{cases} -\alpha'_{k}(t) \cdot [1 - \alpha_{k}(t)]^{-1} & \text{for } t \in I_{k}, \\ 0 & \text{for } t \in [0, 2\pi] \backslash I_{k}; \\ \end{cases} \\ \beta_{k}(t) &= \int_{0}^{t} [1 - \alpha_{k}(\tau)] \cdot p_{k1}(\tau) \, d\tau; \\ \beta_{k}(t) &= \begin{cases} 4\pi^{-1}(\sqrt[4]{k} + 1)^{-1} \sin kt & \text{for } t \in I_{k}, \\ 0 & \text{for } t \in [0, 2\pi] \backslash I_{k}, \end{cases} \end{split}$$

where $I_k = \bigcup_{m=0}^{k-1} 2mk^{-1}\pi, (2m+1)k^{-1}\pi$ [. Let, moreover, for every $k \in \{0, 1, \ldots\}, Y_k(t)$ be the fundamental matrix of the system (3_0) satisfying

$$Y_k(a) = E.$$

It can easily be shown that for every natural k we have

$$Y_0(t) = E, \quad Y_k(t) = \begin{pmatrix} 1 & \beta_k(t) \\ 0 & 1 - \alpha_k(t) \end{pmatrix} \quad \text{for } t \in [0, 2\pi]$$

and

$$\lim_{k \to +\infty} Y_k(t) = Y_0(t)$$

uniformly on $[0, 2\pi]$, since

$$\lim_{k \to +\infty} \|\alpha_k\|_c = \lim_{k \to +\infty} \|\beta_k\|_c = 0.$$

Note that

$$\lim_{k \to +\infty} \int_0^{2\pi} p_{k1}(t) \, dt = 2 \lim_{k \to +\infty} \sqrt[4]{k} = +\infty.$$

Therefore neither the conditions of Theorem 2_0 nor the results of [2] are fulfilled.

On the other hand, if we assume that

$$\Phi_k(t) = E - Y_k^{-1}(t) \text{ for } t \in [0, 2\pi] \ (k = 1, 2, ...),$$

then the conditions of Theorems 2 and 2' will be fulfilled, and if we put

$$\Phi_k(t) = \begin{pmatrix} \alpha_k(t) & \beta_k(t) \\ 0 & 0 \end{pmatrix} \text{ for } t \in [0, 2\pi] \ (k = 1, 2, \dots),$$

then in this case only the conditions of Theorem 2 will be fulfilled, since

$$\lim_{k \to +\infty} \sup \int_0^{2\pi} |p_{k2}(t)| \, dt = +\infty.$$

Proof of Theorem 1. The sufficiency follows from Theorem 2, since in view of (6),(8), and (12), condition (23) holds.

Let us show the necessity. Let $c_k \in \mathbb{R}^n$ (k = 0, 1, ...) be an arbitrary sequence satisfying (6) and let $e_j = (\delta_{ij})_{i=1}^n$ (j = 1, ..., n), where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

In view of (9), we may assume without loss of generality that for every natural k the problem (3),(4) has the unique solution x_k .

For any $k \in \{0, 1, ...\}$ and $j \in \{1, ..., m\}$ assume

$$y_{kj}(t) = x_k(t) - x_{kj}(t) \quad (t \in [a, b]),$$

where x_{oj} and x_{kj} (k = 1, 2, ...) are the unique solutions of (1) and (3) satisfying

$$l_0(x) = c_0 - e_j$$
 and $l_k(x) = c_k - e_j$,

respectively. Moreover, for every $k \in \{0, 1, ...\}$ denote by $Y_k(t)$ the matrix-function whose columns are $y_{k1}(t), \ldots, y_{kn}(t)$.

It can easily be shown that y_{oj} and y_{kj} satisfy (1_0) and (3_0) , respectively, and

$$l_k(y_{kj}) = e_j \quad (j = 1, \dots, n; \ k = 0, 1, \dots).$$
 (36)

If for some k and $\alpha_j \in \mathbb{R}$ (j = 1, ..., n)

$$\sum_{j=1}^{n} \alpha_j y_{kj}(t) = 0 \quad (t \in [a, b]),$$

then, using (36), we have

$$\sum_{j=1}^{n} \alpha_j e_j = 0,$$

and therefore

$$\alpha_1 = \dots = \alpha_n = 0,$$

i.e., Y_0 and Y_k are the fundamental matrices of the systems (1_0) and (3_0) , respectively. Hence, (5) implies

$$\lim_{k \to +\infty} Y_k^{-1}(t) = Y_0^{-1}(t) \text{ uniformly on } [a, b].$$
(37)

Let, for every natural k and $t \in [a, b]$,

$$\Phi_k(t) = E - Y_0(t)Y_k^{-1}(t), \tag{38}$$

$$\varphi_k(t) = x_k(t) - x_0(t). \tag{39}$$

Let us show (10)–(14). Equations (11) and (12) are evident. Moreover, using the equality

$$[Y_k^{-1}(t)]' = -Y_k^{-1}(t)\mathcal{P}_k(t) \quad \text{for } t \in [a,b] \ (k=1,2,\ldots),$$

it can be easily shown that

$$\mathcal{P}_k^*(t) = \mathcal{P}_0(t)Y_0(t)Y_k^{-1}(t) \text{ for } t \in [a,b] \ (k=1,2,\dots)$$

and

$$\int_{a}^{t} q_{k}^{*}(\tau) d\tau = Y_{0}(t)Y_{k}^{-1}(t)x_{0}(t) - Y_{0}(a)Y_{k}^{-1}(a)x_{0}(a) - \int_{a}^{t} \mathcal{P}_{0}(\tau)Y_{0}(\tau)Y_{k}^{-1}(\tau)x_{0}(\tau) d\tau \quad \text{for } t \in [a,b] \ (k = 1, 2, \dots).$$

Therefore, according to (37) the conditions (10),(13), and (14) are fulfilled uniformly on [a, b]. This completes the proof. \Box

The proof of Theorem 1' is analogous. We note only that Φ_k and φ_k are defined as above.

The behavior at $k \to +\infty$ of the solution of the Cauchy problem $(l_k(x) = x(t_0), t_0 \in [a, b])$ and of the Cauchy-Nicoletti problem $(l_k(x) = (x_i(t_i))_{i=1}^n, t_i \in [a, b])$ is considered in [3-5]. Moreover, in [6] the necessary conditions for the stability of the Cauchy problem are investigated.

References

1. I.T.Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Modern problems in mathematics. The latest achievements (Itogi nauki i tekhniki. VINITI Acad. Sci. USSR). Moscow, 1987, V.30, 3-103.

2. M.T.Ashordia and D.G.Bitsadze, On the correctness of linear boundary value problems for systems of ordinary differential equations. (Russian) *Bull. Acad. Sci. Georgian SSR* **142**(1991), No. 3, 473-476.

3. D.G.Bitsadze, On the problem of dependence on the parameter of the solution of multipoint nonlinear boundary value problems. (Russian) *Proc. I.N. Vekua Inst. Appl. Math. Tbilis. State Univ.* **22**(1987), 42-55.

4. J.Kurzweil and J.Jarnik, Iterated Lie brackets in limit processes in ordinary differential equations. *Results in Mathematics, Birkhäuser Verlag. Basel*, 1988, V.14, 125-137.

5. A.M.Samoilenko, Investigation of differential equations with "non-regular" right part. (Russian) *Abhandl. der Deutsch. Akad. Wiss. Berlin. Kl. Math., Phys. und Tech.* 1965, No. 1, 106-113.

6. N.N.Petrov, Necessary conditions of continuity with respect to the parameter for some classes of equations. (Russian) *Vestnik Leningrad. Univ. Mat. Mech. Astronom.* (1965), No. 1, 47-53.

(Received 22.09.1992)

Author's address: I.Vekua Institute of Applied Mathematics of Tbilisi State University 2 University St., 380043 Tbilisi Republic of Georgia