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ON THE STABILITY OF SOLUTIONS OF LINEAR
BOUNDARY VALUE PROBLEMS FOR A SYSTEM OF

ORDINARY DIFFERENTIAL EQUATIONS

M. ASHORDIA

Abstract. Linear boundary value problems for a system of ordinary
differential equations are considered. The stability of the solution
with respect to small perturbations of coefficients and boundary val-
ues is investigated.

Let P0 : [a, b] → Rn×n and q0 : [a.b] → Rn be integrable matrix- and
vector-functions, respectively, c0 ∈ Rn, and let l0 : C([a, b];Rn) → Rn be a
linear continuous operator such that the boundary value problem

dx
dt

= P0(t)x + q0(t), (1)

l0(x) = c0 (2)

has the unique solution x0. Consider the sequences of integrable matrix-
and vector-functions, Pk : [a, b] → Rn×n (k = 1, 2, . . . ), and qk : [a, b] → Rn

(k = 1, 2, . . . ), respectively, the sequence of constant vectors ck ∈ Rn (k =
1, 2, . . . ) and the sequence of linear continuous operators lk : C([a, b];Rn) →
Rn (k = 1, 2, . . . ). In [1,2], sufficient conditions are given for the problem

dx
dt

= Pk(t)x + qk(t), (3)

lk(x) = ck (4)

to have a unique solution xk for any sufficiently large k and

lim
k→+∞

xk(t) = x0(t) uniformly on [a, b]. (5)

In the present paper, necessary and sufficient conditions are established
for the sequence of boundary value problems of the form (3),(4) to have the
above-mentioned property.
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Throughout the paper the following notations and definitions will be
used:
R =]−∞, +∞[;
Rn is a space of real column n-vectors x = (xi)n

i=1 with the norm

‖x‖ =
n

∑

i=1

|xi|;

Rn×n is a space of real n× n matrices X = (xij)n
i,j=1 with the norm

‖X‖ =
n

∑

i,j=1

|xij |;

if X = (xij)n
i,j=1 ∈ Rn×n, then diag X is a diagonal matrix with diagonal

components x11, . . . , xnn; X−1 is an inverse matrix to X; E is an identity
n× n matrix;

C([a, b];Rn) is a space of continuous vector-functions x : [a, b] → Rn with
the norm

‖x‖c = max{‖x(t)‖ : a ≤ t ≤ b};
˜C([a, b];Rn) and ˜C([a, b];Rn×n) are the sets of absolutely continuous

vector- and matrix- functions, respectively;
L([a, b];Rn) and L([a, b];Rn×n) are the sets of vector- and matrix-functions

x : [a, b] → Rn and X : [a, b] → Rn×n, respectively, whose components are
Lebesgue-integrable;
‖l‖ is the norm of the linear continuous operator l : C([a, b];Rn) → Rn.
The vector-function x : [a, b] → Rn is said to be a solution of the problem

(1),(2) if it belongs to ˜C([a, b];Rn) and satisfies the condition (2) and the
system (1) a.e. on [a, b].

Definition 1. We shall say that the sequence (Pk, qk, lk) (k = 1, 2, . . . )
belongs to S(P0, q0, l0) if for every c0 ∈ Rn and ck ∈ Rn (k = 1, 2, . . . )
satisfying the condition

lim
k→+∞

ck = c0 (6)

the problem (3),(4) has the unique solution xk for any sufficiently large k
and (5) holds.

Along with (1),(2) and (3),(4) we shall consider the corresponding homo-
geneous problems

dx
dt

= P0(t)x, (10)

l0(x) = 0 (20)
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and

dx
dt

= Pk(t)x, (30)

lk(x) = 0. (40)

Theorem 1. Let

lim
k→+∞

lk(y) = l0(y) for y ∈ ˜C([a, b];Rn) (7)

and

lim
k→+∞

sup ‖lk‖ < +∞. (8)

Then
(

(Pk, qk, lk)
)+∞
k=1 ∈ S(P0, q0, l0) (9)

if and only if there exist sequences of matrix- and vector-functions, Φk ∈
˜C([a, b];Rn×n) (k = 1, 2, . . . ) and ϕk ∈ ˜C([a, b];Rn) (k = 1, 2, . . . ), respec-
tively, such that

lim
k→+∞

sup
∫ b

a
‖P∗k (τ)‖ dτ < +∞ (10)

and

lim
k→+∞

Φk(t) = 0, (11)

lim
k→+∞

ϕk(t) = 0, (12)

lim
k→+∞

∫ t

a
P∗k (τ) dτ =

∫ t

a
P0(τ) dτ, (13)

lim
k→+∞

∫ t

a
q∗k(τ) dτ =

∫ t

a
q0(τ) dτ (14)

uniformly on [a, b], where

P∗k (t) ≡ [E − Φk(t)] · Pk(t)− Φ′k(t), (15)

q∗k(t) ≡ [E − Φk(t)][Pk(t)ϕk(t) + qk(t)− ϕ′k(t)]. (16)

Theorem 1′. Let (7)and (8) be satisfied. The (9) holds if and only if
there exist sequences of matrix- and vector-functions, Φk ∈ ˜C([a, b];Rn×n)
(k = 1, 2, . . . ) and ϕk ∈ ˜C([a, b];Rn) (k = 1, 2, . . . ), respectively, such that

lim
k→+∞

sup
∫ b

a
‖P∗k (τ)− diagP∗k (τ)‖ dτ < +∞ (17)
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and the conditions (11)–(13) and

lim
k→+∞

∫ t

a
exp

(

−
∫ τ

a
diagP∗k (s)ds

)

· q∗k(τ) dτ =

=
∫ t

a
exp

(

−
∫ τ

a
diagP0(s)ds

)

· q0(τ) dτ (18)

are fulfilled uniformly on [a, b], where

P∗k (t) ≡ [Pk(t)− Φk(t)Pk(t)− Φ′k(t)] · [E − Φk(t)]−1 (19)

and q∗k(t) is the vector-function defined by (16).

Before proving this theorems, we shall give a theorem from [1] and some
of its generalizations.

Theorem 20. Let the conditions (6)–(8),

lim
k→+∞

sup
∫ b

a
‖Pk(τ)‖ dτ < +∞ (20)

hold and let the following conditions

lim
k→+∞

∫ t

a
Pk(τ) dτ =

∫ t

a
P0(τ) dτ, (21)

lim
k→+∞

∫ t

a
qk(τ) dτ =

∫ t

a
q0(τ) dτ (22)

hold uniformly on [a, b]. Then (9) is satisfied1.

Theorem 2. Let there exist sequences of matrix- and vector-functions,
Φk ∈ ˜C([a, b];Rn×n) (k = 1, 2, . . . ) and ϕk ∈ ˜C([a, b];Rn) (k = 1, 2, . . . ),
respectively, such that the conditions (10),

lim
k→+∞

[ck − lk(ϕk)] = c0 (23)

hold and let the conditions (11),(13),(14) be fulfilled uniformly on [a, b],
where P∗k(t) and q∗k(t) are the matrix- and vector-functions defined by (15)
and (16), respectively. Let, moreover, conditions (7),(8) hold. Then for any
sufficiently large k the problem (3),(4) has the unique solution xk and

lim
k→+∞

‖xk − ϕk − x0‖c = 0.

1See [1], Theorem 1.2.
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Proof. The transformation z = x− ϕk reduces the problem (3),(4) to

dz
dt

= Pk(t)z + rk(t), (24)

lk(z) = ck1, (25)

where rk(t) ≡ Pk(t)ϕk(t) + qk(t)− ϕ′k(t), ck1 = ck − lk(ϕk) (k = 1, 2, . . . ).
Let us show that for any sufficiently large k the homogeneous problem

(30),(40) has only trivial solution.
Suppose this proposition is invalid. It can be assumed without loss of

generality that for every natural k the problem (30),(40) has the solution
xk for which

‖xk‖c = 1. (26)

Moreover, it is evident that the vector-function xk is the solution of the
system

dx
dt

= P∗k (t)x + [Φk(t) · xk(t)]′. (27)

According to (11) and (26)

lim
k→+∞

[Φk(t) · xk(t)] = 0

uniformly on [a, b]. Therefore the conditions of Theorem 20 are fulfilled for
the sequence of problems (27),(40). Hence

lim
k→+∞

‖xk‖c = 0,

which contradicts (26). This proves that the problem (30),(40) has only
trivial solution.

From this fact it follows that for any sufficiently large k the problem
(24),(25) has the unique solution zk.

It can easily be shown that the vector-function zk satisfies the system

dz
dt

= P∗k (t)z + r∗k(t), (28)

where r∗k(t) = [Φk(t) · zk(t)]′ + q∗k(t).
Show that

lim
k→+∞

sup ‖zk‖c < +∞. (29)

Let this proposal be invalid. Assume without loss of generality that

lim
k→+∞

‖zk‖c = +∞. (30)
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Put
uk(t) = ‖zk‖−1

c · zk(t) for t ∈ [a, b] (k = 1, 2, . . . ).

Then in view of (25) and (28), for every natural k the vector-function uk(t)
will be the solution of the boundary value problem

du
dt

= P∗k (t)u + sk(t),

lk(u) = ‖zk‖−1
c · ck1,

where sk(t) = ‖zk‖−1
c · r∗k(t). Equations (11),(14),(23), and (30) imply

lim
k→+∞

[‖zk‖−1
c · ck1] = 0

and

lim
k→+∞

∫ t

a
sk(τ) dτ = 0

uniformly on [a, b]. Hence, according to (10) and (13), the conditions of The-
orem 20 are fulfilled for the sequence of the last boundary value problems.
Therefore

lim
k→+∞

‖uk‖c = 0.

This equality contradicts the conditions ‖uk‖c = 1 (k = 1, 2, . . . ). The
inequality (29) is proved.

In view of (11),(14), and (29)

lim
k→+∞

∫ t

a
r∗k(τ) dτ =

∫ t

a
q0(τ) dτ

uniformly on [a, b].
Applying Theorem 20 to the sequence of the problems (28),(25), we again

show that
lim

k→+∞
‖zk − x0‖c = 0.

Corollary 1. Let (6)–(8),

lim
k→+∞

sup
∫ b

a
‖Pk(τ)− Φk(τ)Pk(τ)− Φ′k(τ)‖ dτ < +∞

hold and let the conditions (11),(21),(22),

lim
k→+∞

∫ t

a
Φk(τ)Pk(τ) dτ =

∫ t

a
P∗(τ) dτ

and

lim
k→+∞

∫ t

a
Φk(τ)qk(τ) dτ =

∫ t

a
q∗(τ) dτ
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be fulfilled uniformly on [a, b], where Φk ∈ ˜C([a, b];Rn×n) (k = 1, 2, . . . ),
P∗ ∈ L([a, b];Rn×n), q∗ ∈ L([a, b];Rn). Let, moreover, the system

dx
dt

= P∗0 (t)x + q∗0(t),

where P∗0 (t) ≡ P0(t) − P∗(t), q∗0(t) ≡ q0(t) − q∗(t), have a unique solution
satisfying the condition (2). Then

(

(Pk, qk, lk)
)+∞
k=1 ∈ S(P∗0 , q∗0 , l0).

Proof. It suffices to assume in Theorem 2 that ϕk(t) ≡ 0 and to notice that

lim
k→+∞

∫ t

a
[E − Φk(τ)] · Pk(τ) dτ =

∫ t

a
P∗0 (τ) dτ

and

lim
k→+∞

∫ t

a
[E − Φk(τ)] · qk(τ) dτ =

∫ t

a
q∗0(τ) dτ

uniformly on [a, b].

Corollary 2. Let (6)–(8) hold, and let there exist a natural number m
and matrix-functions Poj ∈ L([a, b],Rn×n) (j = 1, . . . , m) such that

lim
k→+∞

[Pkm(t)− Pk(t)] = 0,

lim
k→+∞

∫ t

a
[E + Pkm(τ)−Pk(τ)] · Pk(τ) dτ =

∫ t

a
P0(τ) dτ,

lim
k→+∞

∫ t

a
[E + Pkm(τ)−Pk(τ)] · qk(τ) dτ =

∫ t

a
q0(τ) dτ

uniformly on [a, b], where

Pk1(t) ≡ Pk(t), Pk j+1(t) ≡ Pkj(t)−
∫ t

a
[Pkj(τ)− P0j(τ)] dτ

(j = 1, . . . , m).

Let, moreover,

lim
k→+∞

sup
∫ b

a
‖[E + Pkm(τ)− Pk(τ)] · Pk(τ) +

+[Pkm(τ)− Pk(t)]′‖dτ < +∞.

Then (9) holds.
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Theorem 2′. Let there exist sequences of matrix- and vector-functions,
Φk ∈ ˜C([a, b];Rn×n) (k = 1, 2, . . . ) and ϕk ∈ ˜C([a, b];Rn) (k = 1, 2, . . . ),
respectively, such that the conditions (17),(23) hold, and let the conditions
(11),(13), and (18) be fulfilled uniformly on [a, b]. Here P∗k(t) and q∗k(t) are
the matrix- and vector-functions defined by (19) and (16), respectively. Then
the conclusion of Theorem 2 is true.

Proof. In view of (14), we may assume without loss of generality that for
every natural k the matrix E − Φk(t) is invertible for t ∈ [a, b].

For every k ∈ {0, 1, . . . } and t ∈ [a, b] assume

P∗0 (t) = P0(t), q∗0(t) = q0(t), Φ0(t) = 0, ϕ0(t) = 0,

ck1 = ck − lk(ϕk), Qk(t) = Hk(t) · [P∗k (t)− diagP∗k(t)] ·H−1
k (t),

rk(t) = Hk(t) · q∗k(t),

where

Hk(t) = exp
(

−
∫ t

a
diagP∗k(τ) dτ

)

.

Moreover, assume

l∗k(z) = lk(x) for z ∈ C([a, b];Rn),

where x(t) = [E − Φk(t)]−1 ·H−1
k (t) · z(t).

From (13) it follows that l∗k : C([a, b];Rn) → Rn (k = 0, 1, . . . ) is a
sequence of linear continuous operators for which conditions (7) and (8) are
satisfied.

For every k ∈ {0, 1, . . . } the transformation

z(t) = Hk(t) · [E − Φk(t)] · [x(t)− ϕk(t)] for t ∈ [a, b] (31)

reduces the problem (3),(4) to

dz
dt

= Qk(t)z + rk(t), (32)

l∗k(z) = ck1 (33)

and the problem (1),(2) to

dz
dt

= Q0(t)z + r0(t), (34)

l∗0(z) = c0. (35)

In view of (13) and (17) from Lemma 1.1 ([1], p.9) it follows that

lim
k→+∞

∫ t

a
Qk(τ) dτ =

∫ t

a
Q0(τ) dτ
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uniformly on [a, b]. According to Theorem 20 from the above and from
(7),(8),(17),(18),(23) it follows that the problem (32),(33) has the unique
solution zk for any sufficiently large k, and

lim
k→+∞

‖zk − z0‖c = 0,

where z0 is the unique solution of the problem (34),(35). Therefore (11),(13)
and (31) show that the statement of the theorem is true.

Corollary 3. Let the conditions (6)–(8),

lim
k→+∞

sup
∫ b

a
‖Pk(τ)− diagPk(τ)‖ dτ < +∞

hold and let (21) and

lim
k→+∞

∫ t

a
exp

(

−
∫ τ

a
diagPk(s)ds

)

· qk(τ) dτ =

=
∫ t

a
exp

(

−
∫ τ

a
diagP0(s)ds

)

· q0(τ) dτ

be fulfilled uniformly on [a, b]. Then (9) holds.

Remark. As compared with Theorem 20 and the results of [2], it is
not assumed in Theorems 2 and 2′ that the equalities (21) and (22) hold
uniformly on [a, b]. Below we will give an example of a sequence of boundary
value problems for linear systems for which (9) holds but (21) is not fulfilled
uniformly on [a, b].

Example. Let a = 0, b = 2π, n = 2, and for every natural k and
t ∈ [0, 2π], let

Pk(t) =
(

0 pk1(t)
0 pk2(t)

)

, P0(t) =
(

0 0
0 0

)

,

ϕk(t) = qk(t) = q0(t) =
(

0
0

)

;

pk1(t) =

{

(
√

k + 4
√

k) sin kt for t ∈ Ik,√
k sin kt for t ∈ [0, 2π]\Ik;

pk2(t) =

{

−α′k(t) · [1− αk(t)]−1 for t ∈ Ik,
0 for t ∈ [0, 2π]\Ik;

βk(t) =
∫ t

0
[1− αk(τ)] · pk1(τ) dτ ;

αk(t) =

{

4π−1( 4
√

k + 1)−1 sin kt for t ∈ Ik,
0 for t ∈ [0, 2π]\Ik,
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where Ik = ∪k−1
m=0]2mk−1π, (2m + 1)k−1π[. Let, moreover, for every k ∈

{0, 1, . . . }, Yk(t) be the fundamental matrix of the system (30) satisfying

Yk(a) = E.

It can easily be shown that for every natural k we have

Y0(t) = E, Yk(t) =
(

1 βk(t)
0 1− αk(t)

)

for t ∈ [0, 2π]

and
lim

k→+∞
Yk(t) = Y0(t)

uniformly on [0, 2π], since

lim
k→+∞

‖αk‖c = lim
k→+∞

‖βk‖c = 0.

Note that

lim
k→+∞

∫ 2π

0
pk1(t) dt = 2 lim

k→+∞

4
√

k = +∞.

Therefore neither the conditions of Theorem 20 nor the results of [2] are
fulfilled.

On the other hand, if we assume that

Φk(t) = E − Y −1
k (t) for t ∈ [0, 2π] (k = 1, 2, . . . ),

then the conditions of Theorems 2 and 2′ will be fulfilled, and if we put

Φk(t) =
(

αk(t) βk(t)
0 0

)

for t ∈ [0, 2π] (k = 1, 2, . . . ),

then in this case only the conditions of Theorem 2 will be fulfilled, since

lim
k→+∞

sup
∫ 2π

0
|pk2(t)| dt = +∞.

Proof of Theorem 1. The sufficiency follows from Theorem 2, since in view
of (6),(8), and (12), condition (23) holds.

Let us show the necessity. Let ck ∈ Rn (k = 0, 1, . . . ) be an arbitrary
sequence satisfying (6) and let ej = (δij)n

i=1 (j = 1, . . . , n), where δij = 1 if
i = j and δij = 0 if i 6= j.

In view of (9), we may assume without loss of generality that for every
natural k the problem (3),(4) has the unique solution xk.

For any k ∈ {0, 1, . . . } and j ∈ {1, . . . ,m} assume

ykj(t) = xk(t)− xkj(t) (t ∈ [a, b]),
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where xoj and xkj (k = 1, 2, . . . ) are the unique solutions of (1) and (3)
satisfying

l0(x) = c0 − ej and lk(x) = ck − ej ,

respectively. Moreover, for every k ∈ {0, 1, . . . } denote by Yk(t) the matrix-
function whose columns are yk1(t), . . . , ykn(t).

It can easily be shown that yoj and ykj satisfy (10) and (30), respectively,
and

lk(ykj) = ej (j = 1, . . . , n; k = 0, 1, . . . ). (36)

If for some k and αj ∈ R (j = 1, . . . , n)
n

∑

j=1

αjykj(t) = 0 (t ∈ [a, b]),

then, using (36), we have
n

∑

j=1

αjej = 0,

and therefore
α1 = · · · = αn = 0,

i.e., Y0 and Yk are the fundamental matrices of the systems (10) and (30),
respectively. Hence, (5) implies

lim
k→+∞

Y −1
k (t) = Y −1

0 (t) uniformly on [a, b]. (37)

Let, for every natural k and t ∈ [a, b],

Φk(t) = E − Y0(t)Y −1
k (t), (38)

ϕk(t) = xk(t)− x0(t). (39)

Let us show (10)–(14). Equations (11) and (12) are evident. Moreover,
using the equality

[Y −1
k (t)]′ = −Y −1

k (t)Pk(t) for t ∈ [a, b] (k = 1, 2, . . . ),

it can be easily shown that

P∗k (t) = P0(t)Y0(t)Y −1
k (t) for t ∈ [a, b] (k = 1, 2, . . . )

and
∫ t

a
q∗k(τ) dτ = Y0(t)Y −1

k (t)x0(t)− Y0(a)Y −1
k (a)x0(a)−

−
∫ t

a
P0(τ)Y0(τ)Y −1

k (τ)x0(τ) dτ for t ∈ [a, b] (k = 1, 2, . . . ).



126 M. ASHORDIA

Therefore, according to (37) the conditions (10),(13), and (14) are fulfilled
uniformly on [a, b]. This completes the proof.

The proof of Theorem 1′ is analogous. We note only that Φk and ϕk are
defined as above.

The behavior at k → +∞ of the solution of the Cauchy problem (lk(x) =
x(t0), t0 ∈ [a, b]) and of the Cauchy-Nicoletti problem (lk(x) = (xi(ti))n

i=1,
ti ∈ [a, b]) is considered in [3-5]. Moreover, in [6] the necessary conditions
for the stability of the Cauchy problem are investigated.
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