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ON THE UNIQUENESS THEOREMS FOR THE
EXTERNAL PROBLEMS OF THE COUPLE-STRESS

THEORY OF ELASTICITY

T. BUCHUKURI AND T. GEGELIA

Abstract. A formula is obtained for the asymptotic representation
of solutions of the basic equations of the couple-stress theory of elas-
ticity. The formula is used in proving the uniqueness theorems of the
external boundary value problems.

0. Let Ω+ be a bounded domain in the three-dimensional Euclidean space
R3, and Ω− a complement of Ω+ to the entire space R3:Ω− = R3 \Ω

−
. The

boundary value problems formulated for the domain Ω− are called external.
The uniqueness theorems for the external boundary value problems are valid
only under some restrictions of the class of solutions at infinity ([1], [2]).
These restrictions arose naturally from the Green formulas and consist in
the requirement that both the solution and its derivatives vanish at infinity.
The weakening of the restrictions is important from both the theoretical and
the practical standpoints (for example, in constructing effective solutions).
This question is discussed in the monograph [1] devoted specially to uni-
queness theorems of the theory of elasticity.

In recent years new results have been obtained for the external static
problems of the classical theory of elasticity [3]-[7]. In these works the
authors have succeeded in weakening essentially the restrictions at infinity
imposed on the class of solutions in which the uniqueness theorems are
proved. The results were obtained by two different methods: in [4], [5]
the proof was based on Korn’s inequality, whereas in [3], [6], [7] use was
made of the asymptotic representation of solutions in the neighborhood of
an isolated singular point (in particular, in the neighborhood of the point at
infinity). However, both methods were applied to the system of equations
containing only derivatives of higher (second) order. The system of static
equations of the classical elasticity theory is also such a system.

In this paper we show that the method of asymptotic representations of
solutions in the neighborhood of an isolated singular point (see [3], [6], [7])
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can be as well applied to systems of equations containing derivatives of both
higher and lower orders. This is exemplified by the system of static equa-
tions of the couple-stress theory of elasticity for a homogeneous anisotropic
medium containing derivatives of second order, as well as derivatives of first
and zero orders. Here we have derived the asymptotic representation of
the solution of the said system in the neighborhood of the point at infinity,
which has enabled us to prove new uniqueness theorems for the external
boundary value problems of the couple-stress theory of elasticity.

The derivation of asymptotic representations largely rests on the behavior
of the fundamental solution of the considered system at infinity.

1. A homogeneous system of the couple-stress theory of a homogeneous
anisotropic micropolar elastic medium is written in the form [2], [9]

cijlk
∂2uk

∂xj∂xl
− cjilmεklm

∂ωk

∂xj
= 0,

cjmlkεijm
∂uk

∂xl
+ c′jilk

∂2ωk

∂xj∂xl
− cjmlpεijmεklpωk = 0, i = 1, 2, 3,

(1)

where u = (u1, u2, u3) is the displacement vector, ω = (ω1, ω2, ω3) is the
rotation vector, εijk is the Levi-Civita symbol, cjilk, c′jilk (i, j, l, k = 1, 2, 3)
are the elastic constants. Here and in what follows the repetition of the
index in the product means summation over this index.

It is assumed that the elastic coefficients cijkl and c′ijkl satisfy the sym-
metry conditions

cijkl = cklij , c′ijkl = c′klij (2)

and the energetic form is positive-definite

cijklξijξkl + c′ijklηijηkl > 0 for ξijξij + ηijηij 6= 0. (3)

Let

A(∂x) ≡ ‖Aik(∂x)‖6×6,

Aik(∂x) ≡ cjilk
∂2

∂xj∂xl
, i, k = 1, 2, 3;

Ai,k+3(∂x) ≡ −cjilmεklm
∂

∂xj
, i, k = 1, 2, 3;

Ai+3,k(∂x) ≡ cjmlkεijm
∂

∂xl
, i, k = 1, 2, 3;

Ai+3,k+3(∂x) ≡ c′jilk
∂2

∂xj∂xl
− cjmlpεijmεklp, i, k = 1, 2, 3.
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Denote by U = (U1, . . . , U6) the six-component vector Ui = ui and Ui+3 =
ωi (i = 1, 2, 3). Then the system (1) is written in the matrix form

A(∂x)U = 0
(

Aik(∂x)Uk = 0
)

. (4)

2. Let us establish the properties of the fundamental matrix Φ = ‖Φij‖6×6
of the operator A(∂x) in the neighborhood of the point at infinity. By virtue
of the definition of the fundamental matrix we have

Aik(∂x)Φkj(x) = δijδ(x), i, j = 1, . . . , 6,

where δij is the Kronecker symbol and δ is the Dirac function. Using the
Fourier transform

ϕ̂(ξ) ≡ F [ϕ](ξ) =
∫

R3
eix·ξϕ(x) dx,

from this equality we obtain

−Aik(ξ)̂Φkj(ξ) = δij ,

i, j = 1, . . . 6,

where

A(ξ) ≡ ‖Aik(ξ)‖6×6,

Aik(ξ) = cjilkξjξl, Ai,k+3(ξ) = icjilmεklmξj ,

Ai+3,k(ξ) = −icjmlkεijmξl,

Ai+3,k+3(ξ) = c′jilkξjξl + cjmlpεijmεklp,

i, k = 1, 2, 3.

(5)

The matrix A(ξ) is the invertible one if |ξ| ≡ (ξiξi)1/2 6= 0. Indeed, if
|ξ| 6= 0 and ηi ≡ ξi/|ξ|, then

detA(ξ) = |ξ|6 det B(η, |ξ|),
B(η, ρ) ≡ ‖Bik(η, ρ)‖6×6,

Bik(η, ρ) = Aik(η), i ≤ 3 or k ≤ 3;

Bi+3,k+3(η, ρ) = ρ2c′jilkηjηl + cjmlpεijmεklp, i ≤ 3, k ≤ 3.

(6)

Now we will prove that det B(η, ρ) 6= 0 for η 6= 0. Consider the expression

Bik(η, ρ)UiUk = cjilkηjηluiuk + ρ2c′jilkηjηlωiωk + cjmlpεijmεklpωiωk.

By virtue of (3) we have the estimates

cjilkηjηluiuk ≥ c0(ηjui)(ηjui) = |η|2couiui,

c′jilkηjηlωiωk ≥ c0(ηjωi)(ηjωi) = |η|2coωiωi,

cjmlpεijmεklpωiωk ≥ c0(εijmωi)(εkjmωk) = 2coωiωi
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for some positive number c0. Therefore

Bik(η, ρ)UiUk ≥ |η2|c0uiui + |η|2ρ2c0ωiωi + 2c0ωiωi > 0

if U 6= 0 and η 6= 0. Therefore det B(η, ρ) 6= 0 for η 6= 0.
Let us represent det B(η, r) as follows:

det B(η, ρ) =
6

∑

k=0

ak(η)ρk,

where ak(η) are homogeneous polynomials of η of order k+6. In particular,

a0(η) = det B(η, 0).

As proved above,

a0(η) 6= 0,
6

∑

k=0

ak(η)ρk 6= 0 for η 6= 0. (7)

Write det A(ξ) in the form

det A(ξ) = |ξ|6
6

∑

k=0

ak(η)|ξ|k. (8)

By virtue of (7) A(ξ) is the invertible matrix for |ξ| 6= 0. Therefore

̂Φik(ξ) = −A−1
ik (ξ), i, k = 1, . . . , 6.

Let us now estimate the elements of the matrix ̂Φ(ξ). First we will prove
the validity of the representation

̂Φik(ξ) = ̂Φ(1)
ik (ξ) + ̂Φ(2)

ik (ξ),

i, k = 1, . . . , 6,
(9)

where ̂Φ(1)
ik (ξ) are homogeneous functions of order −2 for i, k = 1, 2, 3, of

order −1 for i = 1, 2, 3 and k = 4, 5, 6, and for i = 4, 5, 6 and k = 1, 2, 3; of
order 0 for i, k = 4, 5, 6; ̂Φ(2)

ik (ξ) admits the estimates

|∂α
̂Φ(2)

ik (ξ)| ≤ cα|ξ|−|α|−1, i ≤ 3, k ≤ 3;

|∂α
̂Φ(2)

ik (ξ)| ≤ cα|ξ|−|α|, i ≤ 3, k ≥ 4 or i ≥ 4, k ≤ 3;

|∂α
̂Φ(2)

ik (ξ)| ≤ cα|ξ|1−|α|, i ≥ 4, k ≥ 4,

(10)

|ξ| 6= 0, α is an arbitrary multiindex, and cα = const.
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Let F ≡ (F1, . . . , F6) be some vector and Vi ≡ A−1
ik Fk. Repeating the

above arguments for the matrix B(η, r), we can readily prove

Aik(ξ)ViVk ≥ c0|ξ|2ViVi + 2c0

4
∑

i=1

V 2
i . (11)

Let us fix the index p. If Fk = δkp, k = 1, . . . , 6, then Vi = A−1
ik (ξ)δkp =

A−1
ip (ξ) (i = 1, . . . , 6). The substitution of the obtained value of Vi in (11)

leads to

A−1
pp (ξ) ≥ c0|ξ|2

6
∑

k=1

(

A−1
kp (ξ)

)2
+ 2c0

6
∑

k=4

(

A−1
kp (ξ)

)2
. (12)

Hence

6
∑

k,p=1

(

A−1
kp (ξ)

)2 ≤ 1
c0|ξ|2

6
∑

p=1

A−1
pp (ξ) ≤ c1

|ξ|2
(

6
∑

k,p=1

(

A−1
kp (ξ)

)2
)1/2

,

|A−1
kp (ξ)| ≤ c1|ξ|−2, c1 = const, k, p = 1, . . . , 6.

(13)

From (12) and (13) we obtain

6
∑

k=4

(

A−1
kp (ξ)

)2 ≤ 1
2c0

A−1
pp (ξ) ≤ c1

2c0
|ξ|−2,

|A−1
kp (ξ)| ≤ c2|ξ|−1, k = 4, 5, 6; p = 1, . . . , 6.

(14)

Since Aik(ξ) = Aki(−ξ) (i, k = 1, . . . , 6), from (14) we have

|A−1
kp (ξ)| ≤ c2|ξ|−1, c1 = const, k = 1, . . . , 6; p = 4, 5, 6. (14′)

Considering (12) for p ≥ 4, we obtain

6
∑

k,p=4

(

A−1
kp (ξ)

)2 ≤ 1
2c0

6
∑

p=4

A−1
pp (ξ) ≤ c1

(
6

∑

k,p=4

(

A−1
kp (ξ)

)2
)1/2

.

Therefore

|A−1
kp (ξ)| ≤ c1, k, p = 4, 5, 6. (15)

Now we will prove the representation (9). Let i ≤ 3 and k ≤ 3. Write
̂Φik(ξ) in the form

̂Φik(ξ) = −A−1
ik (iξ) = − Mik(ξ)

det A(ξ)
,
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where Mik(ξ) is the cofactor of the element Aik(ξ) in the matrix A(ξ).
Therefore Mik(ξ) is the polynomial of ξ. Since det A(ξ) = |ξ|6 det B(η, |ξ|)
and |̂Φik(ξ)| ≤ c|ξ|−2, it is obvious that Mik(ξ) is represented in the form

Mik(ξ) = |ξ|4
6

∑

j=0

bik
j (η)|ξ|j ,

where bj(η) is the homogeneous polynomial of η of order j+4 (j = 1, . . . , 6).
Thus

̂Φik(ξ) = − 1
|ξ|2

∑6
j=0 bik

j (η)|ξ|j
∑6

j=0 aj(η)|ξ|j
.

Setting

̂Φ(1)
ik (ξ) = − 1

|ξ|2
· bik

0 (η)
a0(η)

= − 1
|ξ|2

bik
0

( ξ
|ξ|

)

a0
( ξ
|ξ|

) ,

̂Φ(2)
ik (ξ) = − 1

|ξ|

∑6
j=1(a0(η)bik

j (η)− bik
0 (η)aj(η))|ξ|j−1

a0(η)
∑6

j=0 aj(η)|ξ|j
,

(16)

we obtain the required representation (9), since ̂Φ(1)
ik (ξ) is a homogeneous

function of ξ of order −2 and ̂Φ(2)
ik (ξ) satisfies the condition (10) for i, k =

1, 2, 3.
In a similar manner one can prove the validity of the representation (9)

for the rest of i and k.
Let us now estimate the matrix Φ(x). From the equality (9) we have

Φik(x) = Φ(1)
ik (x) + Φ(2)

ik (x), i, k = 1, . . . , 6. (17)

The first term in (17) is the inverse Fourier transform of the homogeneous
function ̂Φ(1)

ik (ξ), and therefore Φ(1)
ik (ξ) is a homogeneous function of order

−3− q, where q is the order of the homogeneous function ̂Φ(1)
ik (ξ). Thus for

Φ(1)
ik (ξ) we have the estimates

|∂αΦ(1)
ik (x)| ≤ c|x|−|α|−1, i ≤ 3, k ≤ 3;

|∂αΦ(1)
ik (x)| ≤ c|x|−|α|−2, i ≤ 3, k ≥ 4 or i ≥ 3, k ≤ 4;

|∂αΦ(1)
ik (x)| ≤ c|x|−|α|−3, i, k ≥ 4, c = const.

(18)
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Next we will estimate the second term in (17). It will be shown that in
the neighborhood of the point at infinity

∂αΦ(2)
ik (x) = o(|x|−|α|−1), i ≤ 3, k ≤ 3;

∂αΦ(2)
ik (x) = o(|x|−|α|−2), i ≤ 3, k ≥ 4 or i ≥ 3, k ≤ 4;

∂αΦ(2)
ik (x) = o(|x|−|α|−3), i ≥ 4, k ≥ 4.

(19)

We introduce the functions ω0 and ω1, where ω1 = 1−ω0 and ω0 possesses
the following properties:

ω0 ∈ C∞(R3), supp ω0 ⊂ B(0, 1), ω0(x) = 1 if |x| ≤ 1
2
.

Here B(0, 1) is the ball with center 0 and radius 1 in R3. Obviously,

̂Φ(2)
ik (ξ) = ̂Φ(2)

ik (ξ)ω0(ξ) + ̂Φ(2)
ik (ξ)ω1(ξ),

Φ(2)
ik (x) =

0
Φ

(2)
ik (x)+

1
Φ

(2)
ik (x),

where
0
Φ

(2)
ik (x) = F−1[̂Φ(2)

ik ω0](x),
1
Φ

(2)
ik (x) = F−1[̂Φ(2)

ik ω1](x).

F−1 is the inverse Fourier transform operator.
Let i ≤ 3, k ≤ 3 and |β| < α + 2. Then by virtue of (10) the function

∂β(ξα
̂Φ(2)

ik (ξ)ω0(ξ)) is absolutely integrable on R3 and therefore the inverse
Fourier transform of this function tends to zero at infinity, but

F−1[∂β(ξα
̂Φ(2)

ik (ξ)ω0(ξ))](x) = (−1)|α|i|α|+|β|xβ∂α 0
Φ

(2)
ik (x).

Thus, if |β| = |α|+ 1, then

lim
|x|→∞

xβ∂α 0
Φ

(2)
ik (x) = 0

and therefore

∂α 0
Φ

(2)
ik (x) = o(|x|−|α|−1). (20)

Let us estimate
1
Φ

(2)
ik (x). If n ≥ |α|+ 2, then

∆n(ξα
̂Φ(2)

ik (ξ)ω1(ξ)) ∈ L1(R3)

and the Fourier transform of this expression tends to zero at infinity:

(−1)n|x|2n∂α 1
Φ

(2)
ik (x) = o(1).
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Therefore for any n ≥ |α|+ 2

∂α 1
Φ

(2)
ik (x) = o(|x|−2n). (21)

Equations (20) and (21) imply the first estimate in (19). The rest of the
estimates are proved in the same manner.

3. The derivation of the asymptotic representation formula for the solution
of the system (1) in the neighborhood of the point at infinity is based on
the Green formulas. We will give these formulas.

Let Ω be a bounded domain in R3 with a piecewise-smooth boundary
∂Ω, U = (U1, . . . , U6), V = (V1, . . . , V6), U ∈ C2(Ω̄) and V ∈ C2(Ω̄). Then

∫

Ω
(Vi(x)AikUk(x)− Uk(x)Aki(∂x)Vi(x))dx =

=
∫

∂Ω
(Vi(y)Tik(∂y, ν)Uk(y)− Uk(y)Tki(∂y, ν)Vi(y))dy S, (22)

where T (∂y, ν) ≡ ‖Tik(∂y)‖6×6 is the boundary stress operator defined on
∂Ω by the relations

Tik(∂y, ν) = cjilkνj
∂

∂yl
,

Ti,k+3(∂y, ν) = −cjilmνjεklm,

Ti+3,k(∂y, ν) = 0,

Ti+3,k+3(∂y, ν) = c′jilkνj
∂

∂yl
, i, k = 1, 2, 3.

(23)

Here ν = (ν1, ν2, ν3) is the unit normal to ∂Ω at the point y, external with
respect to Ω.

If U = (U1, . . . , U6) is the solution of the system (1) in the domain Ω,
belonging to the class C2(Ω) ∩ C1(Ω̄), then ∀x ∈ Ω:

uj(x) =
∫

∂Ω
(Ui(y)Tik(∂y, ν)Φkj(y − x)−

−Φkj(y − x)Tki(∂y, ν)Ui(y))dy S. (24)

The formulas (22) and (24) are proved by the standard techniques [2],
[6], [8].
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4. Let us formulate the theorem of the asymptotic representation of a
solution of the system (1) in the neighborhood of the point at infinity.

Theorem 1. Let Ω be a domain from R3 containing the neighborhood of
the point at infinity, let U be a solution of the system (1) in Ω of the class
C2(Ω), and let

Ui(z) = o(|z|p+1), i = 1, . . . , 6 (25)

in the neighborhood of the point at infinity, where p is a nonnegative integer
number. Then the representation

Uj(x) =
∑

|α|≤p

c(α)
j xα +

∑

|β|≤q

d(β)
k ∂βΦjk(x) + ψj(x)

j = 1, . . . , 6
(26)

holds in the neigborhood of the point at infinity. Here c(α)
j and d(β)

k are the
constants, α = (α1, α2, α3) and β = (β1, β2, β3) are the multiindexes, q is
an arbitrary nonnegative integer number, and the function ψj admits the
estimate

∂γψj(x) = O(|x|−2−|γ|−q), j = 1, . . . , 6 (27)

in the neighborhood of |x| = ∞, where γ ≡ (γ1, γ2, γ3) is an arbitrary mul-
tiindex.

Moreover, each of the three terms on the right-hand side of (26) is the
solution of the system (1) in the neighborhood of |x| = ∞.

Proof. Let x ∈ Ω, and let a positive number r be chosen such that
x ∈ B(0, r/8) and R3\B(0, r/8) ⊂ Ω. Write the formula (24) for the domain
Ωr ≡ B(0, r) ∩ Ω. We will have

Uj(x) =
∫

∂Ω

(

Ui(y)Tik(∂y, ν)Φkj(y − x)−

−Φkj(y − x)Tki(∂y, ν)Ui(y)
)

dyS +

+
∫

∂B(0,r)

(

Ui(y)Tik(∂y, ν)Φkj(y − x)−

−Φkj(y − x)Tki(∂y, ν)Ui(y)
)

dyS. (28)
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Represent Φkj(y−x), in the neighborhood of the point y, by the Taylor’s
formula

Φkj(y − x) =
∑

|α|≤p+1

(−1)|α|xα

α!
∂αΦkj(y) + Rkj(x, y),

Rkj(x, y) =
∑

|α|≤p+2

(−1)|α|xα

α!
∂αΦkj(y − θx), 0 < θ < 1.

(29)

By virtue of (18) and (19) we readily ascertain that the estimates

|∂β
y Rkj(x, y)| ≤ aβ,p(r)|y|−p−|β|−3, k, j ≤ 3;

|∂β
y Rkj(x, y)| ≤ aβ,p(r)|y|−p−|β|−4, k ≤ 3, j≥4 or k≥4, j≤3;

|∂β
y Rkj(x, y)| ≤ aβ,p(r)|y|−p−|β|−4, k, j ≥ 4

(30)

are fulfilled for any x and y satisfying the conditions |x| < r/8 and r/4 ≤
|y| ≤ r. Taking into account (29), from (28) we obtain

Uj(x) = U (0)
j (x) +

∑

|α|≤p+1

(−1)|α|c(α)
j (r)

α!
xα + Ij(p, r, x),

j = 1, . . . , 6,

(31)

where

U (0)
j (x) ≡

∫

∂Ω

(

Ui(y)Tik(∂y, ν)Φkj(y − x)−

− Φkj(y − x)Tki(∂y, ν)Ui(y)
)

dyS, (32)

c(α)
j (r) ≡

∫

∂Ω

(

Ui(y)Tik(∂y, ν)∂αΦkj(y)−

− ∂αΦkj(y)Tki(∂y, ν)Ui(y)
)

dyS, (33)

Ij(p, r, x) ≡
∫

∂B(0,r)

(

Ui(y)Tik(∂y, ν)Rkj(x, y)−

−Rkj(x, y)Tki(∂y, ν)Ui(y)
)

dyS. (34)

It is not difficult to prove (cf. [6]) that c(α)
j (r) does not depend on r, and,

introducing the notation

c(α)
j ≡ (−1)|α|

α!
c(α)
j (r),

we obtain the equality

Uj(x) = U (0)
j (x) +

∑

|α|≤p+1

c(α)
j xα + Ij(p, r, x),
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from which we conclude that Ij(p, r, x) does not depend on r either. Thus,
if we prove

lim
r→∞

Ij(p, r, x) = 0,

we will obtain

Uj(x) = U (0)
j (x) +

∑

|α|≤p+1

c(α)
j xα. (35)

Let the function ω : R3 → R, ω ∈ C∞0 (R3), supp ω ⊂ B(0, 3)\B(0, 1/3),
ω(y) = 1 for 1/2 < |y| < 2. Then the estimate

|∂αω(r)(y)| ≤ b(α)r−|α| (36)

holds for the function ω(r)(y) ≡ ω(y/r).
Rewriting the formula (22) for the domain B(0, r)\B(0, r/4), in which V

is replaced by the function

V ≡
(

R(r)
1j (x, ·), . . . , R(r)

6j (x, ·)
)

,

R(r)
kj (x, y) ≡ ω(r)(y)Rkj(x, y),

we obtain

Ij(p, r, x) =
∫

B(0,r)\B(0,r/4)
Ui(z)Aik(∂z)R

(r)
kj (x, z) dz,

j = 1, . . . , 6.
(37)

On account of (30) we have the estimates

|Aik(∂z)Rkj(x, z)| ≤ a(x)|z|−p−5, i ≤ 3, j ≤ 3;

|Aik(∂z)Rkj(x, z)| ≤ a(x)|z|−p−6, i ≤ 3, j ≥ 4;

|Aik(∂z)Rkj(x, z)| ≤ a(x)|z|−p−4, i ≥ 4, j ≤ 3;

|Aik(∂z)Rkj(x, z)| ≤ a(x)|z|−p−5, i ≥ 4, j ≥ 4.

Taking these estimates and restrictions (25) into account, we obtain

lim
r→∞

Ij(p, r, x) = 0.

The representation (35) is thus derived. Note that, due to (25), in the
formula (35) the constants c(α)

j = 0 if α = p + 1, and therefore we have the
representation

Uj(x) = U (0)
j (x) +

∑

|α|≤p

c(α)
j xα.

Let us transform this representation in the form (26). To this effect, in
the formula (32) we will represent Φkj(y−x) by the Taylor’s formula. Since
Akj(ξ) = Ajk(−ξ), we have A−1

kj (ξ) = A−1
jk (−ξ), and therefore Φkj(y−x) =
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Φjk(x− y). Choose a positive number r0 such that R3\B(0, r0) ⊂ Ω. Then,
if y ∈ ∂Ω and x ∈ R3\B(0, 2r0), we will have the expansion

Φkj(y − x) = Φjk(x− y) =

=
∑

|α|≤q

(−1)|α|yα

α!
(∂αΦjk)(x) + ψjk(x, y),

ψkj(x, y) =
∑

|α|=q+1

(−1)q+1yα

α!
(∂αΦjk)(x− θy),

0 < θ < 1.

(38)

Applying the estimates (18), (19), we show that

|∂β
x ψjk(x, y)| ≤ c(β)

jk (y)|x|−q−|β|−2,

j ≤ 3, k ≤ 3;

|∂β
x ψjk(x, y)| ≤ c(β)

jk (y)|x|−q−|β|−3,

j ≤ 3, k ≥ 4 or j ≥ 4, k ≤ 3;

|∂β
x ψjk(x, y)| ≤ c(β)

jk (y)|x|−q−β−4,

j ≥ 4, k ≥ 4.

(39)

The substitution of (38) in (32) gives

U (0)
j (x) =

∑

|α|≤q

d(α)
k ∂αΦjk(x) + ψj(x), (40)

ψj(x) = (−1)q
∑

|α|=q

∫

∂Ω
Ui(y)

yα

α!
Tik(∂x, ν)(∂αΦjk)(x)dy S −

−
∫

∂Ω
(Ui(y)Tik(∂x, ν)ψjk(x, y)− ψjk(x, y)Tki(∂y, ν)Ui(y))dy S.

Now, due to (18), (19) and (39), we obtain

|∂γψj(x)| ≤ c(γ)
j |x|−|γ|−2−q, j = 1, . . . , 6. �

Remark. Theorem 1 can also be proved when the condition (25) is re-
placed by the conditions of Theorem 2 from [6].

5. Theorem 1 can be used, in particular, to prove uniqueness theorems
for the external boundary value problems of the couple-stress theory of
elasticity, and to weaken the restrictions imposed on the class of solutions.
As an example, let us consider the first external problem:
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In the domain Ω− with the piecewise-smooth boundary ∂Ω, find a solu-
tion U of the system (1) of the class C1(Ω̄)∩C2(Ω), satisfying the boundary
condition

∀y ∈ ∂Ω : lim
Ω−3x→y

U(x) = ϕ(y)

and the condition at infinity

lim
|x|→∞

U(x) = 0.

Theorem 2. The first external problem of the couple-stress theory of
elasticity has at most one solution.

Proof. Let U be a solution of the first external problem. Then the expansion
(26) holds for U . Setting p = 0, q = 0 in (26), we obtain the equality

Uj(x) = c(0)
j + d(0)

k Φjk(x) + ψj(x), j = 1, . . . , 6.

All terms on the right-hand side of this equality, except c(0)
j , tend to zero

as |x| → ∞. Therefore c(0)
j = 0, j = 1, . . . , 6. Now we conclude from (18),

(19), (27) that

∂αUj(x) = O(|x|−|α|−1), j = 1, 2, 3;

∂αUj(x) = O(|x|−|α|−2), j = 4, 5, 6.

Now, repeating the arguments, say, from [2], we readily obtain the proof
of Theorem 2.

The uniqueness theorems for the other external boundary value problems
of the couple-stress elasticity are proved in a similar manner.
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