ON THE CORRECT FORMULATION OF A MULTIDIMENSIONAL PROBLEM FOR STRICTLY HYPERBOLIC EQUATIONS OF HIGHER ORDER

S. KHARIBEGASHVILI

ABSTRACT. A theorem of the unique solvability of the first boundary value problem in the Sobolev weighted spaces is proved for higher-order strictly hyperbolic systems in the conic domain with special orientation.

In the space \mathbb{R}^n , n > 2, let us consider a strictly hyperbolic equation of the form

$$p(x,\partial)u(x) = f(x), \tag{1}$$

where $\partial = (\partial_1, \dots, \partial_n)$, $\partial_j = \partial/\partial x_j$, $p(x,\xi)$ is a real polynomial of order 2m, m > 1, with respect to $\xi = (\xi_1, \dots, \xi_n)$, f is the known function and u is the unknown function. It is assumed that in equation (1) the coefficients at higher derivatives are constant and the other coefficients are finite and infinitely differentiable in \mathbb{R}^n .

Let D be a conic domain in R^n , i.e., D together with a point $x \in D$ contains the entire beam tx, $0 < t < \infty$. Denote by Γ the cone ∂D . It is assumed that D is homeomorphic onto the conic domain $x_1^2 + \cdots + x_{n-1}^2 - x_n^2 < 0$, $x_n > 0$ and $\Gamma' = \Gamma \setminus O$ is a connected (n-1)-dimensional manifold of the class C^{∞} , where O is the vertex of the cone Γ .

Consider the problem: Find in the domain D the solution u(x) of equation (1) by the boundary conditions

$$\frac{\partial^{i} u}{\partial \nu^{i}}\Big|_{\Gamma'} = g_{i}, \quad i = 0, \dots, m - 1,$$
 (2)

where $\nu = \nu(x)$ is the outward normal to Γ' at a point $x \in \Gamma'$, and g_i , $i = 0, \ldots, m-1$, are the known real functions.

Note that the problem (1), (2) is considered in [1–6] for a hyperbolic-type equation of second order when Γ is a characteristic conoid. In [7] this

¹⁹⁹¹ Mathematics Subject Classification. 35L35.

problem is considered for a wave equation when the conic surface Γ is not characteristic at any point and has a time-type orientaton. A multidimensional analogue of the problem is treated in [8–10] for the case when one part of the cone Γ is characteristic and the other part is a time-type hyperplane. Other multidimensional analogues of the Goursat problem for hyperbolic systems of first and second order are investigated in [11–15].

In this paper we consider the question whether the problem (1), (2) can be correctly formulated in special weighted spaces $W_{\alpha}^{k}(D)$ when the cone Γ is assumed not to be characteristic but having a quite definite orientation.

Denote by $p_0(\xi)$ the characteristic polynomial of the equation (1), i.e., the higher homogeneous part of the polynomial $p(x,\xi)$. The strict hyperbolicity of the equation (1) implies the existence of a vector $\zeta \in R^n$ such that the straight line $\xi = \lambda \zeta + \eta$, where $\eta \in R^n$ is an arbitrarily chosen vector not parallel to ζ and λ is the real parameter, intersects the cone of normals $K: p_0(\xi) = 0$ of the equation (1) at 2m different real points. In other words, the equation $p_0(\lambda \zeta + \eta) = 0$ with respect to λ has 2m different real roots. The vector ζ is called a spatial-type normal. As is well-known, a set of all spatial-type normals form two connected centrally-symmetric convex conic domains whose boundaries K_1 and K_{2m} give the internal cavity of the cone of normals K [3]. The surface $S \subset R^n$ is called characteristic at a point $x \in S$ if the normal to S at the point x belongs to the cone K.

Let the vector ζ be a spatial-type normal and the vector $\eta \neq 0$ change in the plane orthogonal to ζ . Then for λ the roots of the characteristic polynomial $p_0(\lambda \zeta + \eta)$ can renumerated so that $\lambda_{2m}(\eta) < \lambda_{2m-1}(\eta) < \cdots < \lambda_1(\eta)$. It is obvious that the vectors $\lambda_i(\eta)\zeta + \eta$ cover the cavities K_i of K when the η changes on the plane othogonal to ζ . Since $\lambda_{m-j}(\eta) = -\lambda_{m+j+1}(-\eta)$, $0 \leq j \leq m-1$, the cones K_{m-j} and K_{m+j+1} are centrally symmetric with respect to the point $(0,\ldots,0)$. As is well-known, by the bicharacteristics of the equation (1) we understand straight beams whose orthogonal planes are tangential planes to one of the cavities K_i at the point different from the vertex.

Assume that there exists a plane π_0 such that $\pi_0 \cap K_m = \{(0,\ldots,0)\}$. This means that the cones K_1,\ldots,K_m are located on one side of π_0 and the cones K_{m+1},\ldots,K_{2m} on the other. Set $K_i^* = \cap_{\eta \in K_i} \{\xi \in R^n : \xi \cdot \eta < 0\}$, where $\xi \cdot \eta$ is the scalar product of ξ and η . Since $\pi_0 \cap K_m = \{(0,\ldots,0)\}$, K_i^* is a conic domain and $K_m^* \subset K_{m-1}^* \subset \cdots \subset K_1^*$, $K_{m+1}^* \subset K_{m+2}^* \subset \cdots \subset K_{2m}^*$. It is easy to verify that $\partial(K_i^*)$ is a convex cone whose generatrices are bicharacteristics; note that in this case none of the bicharacteristics of the equation (1) comes from the point $(0,\ldots,0)$ into the cone $\partial(K_m^*)$ or $\partial(K_{m+1}^*)$ [3].

Let us consider

Condition 1. The surface Γ' is characteristic at none of its points and

each generatrix of the cone Γ has the direction of a spatial-type normal; moreover, $\Gamma \subset K_m^* \cup 0$ or $\Gamma \subset K_{m+1}^* \cup 0$.

Denote by $W_{\alpha}^{k}(D)$, $k \geq 2m$, $-\infty < \alpha < \infty$, the functional space with the norm [16]

$$||u||_{W_{\alpha}^{k}(D)}^{2} = \sum_{i=0}^{k} \int_{D} r^{-2\alpha - 2(k-i)} \left| \left| \frac{\partial^{i} u}{\partial x^{i}} \right| \right|^{2} dx,$$

where

$$r = (x_1^2 + \dots + x_n^2)^{\frac{1}{2}}, \quad \frac{\partial^i u}{\partial x^i} = \frac{\partial^i u}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}}, \quad i = i_1 + \dots + i_n.$$

The space $W^k_{\alpha}(\Gamma)$ is defined in a similar manner. Consider the space

$$V = W_{\alpha-1}^{k+1-2m}(D) \times \prod_{i=0}^{m-1} W_{\alpha-\frac{1}{2}}^{k-i}(\Gamma).$$

Assume that to the problem (1), (2) there corresponds the unbounded operator

$$T: W_{\alpha}^{k}(D) \to V$$

with the domain of definition $\Omega_T = W_{\alpha-1}^{k+1}(D) \subset W_{\alpha}^k(D)$, acting by the formula

$$Tu = \left(p(x, \partial)u, u \Big|_{\Gamma'}, \dots, \frac{\partial^{i} u}{\partial \nu^{i}} \Big|_{\Gamma'}, \dots, \frac{\partial^{m-1} u}{\partial \nu^{m-1}} \Big|_{\Gamma'} \right), \quad u \in \Omega_{T}.$$

It is obvious that the operator T admits the closure \overline{T} .

The function u is called a strong solution of the problem (1), (2) of the class $W_{\alpha}^k(D)$ if $u \in \Omega_{\overline{T}}$, $\overline{T}u = (f, g_0, \dots, g_{m-1}) \in V$, which is equivalent to the existence of a sequence $u_i \in \Omega_T = W_{\alpha-1}^{k+1}(D)$ such that $u_i \to u$ in $W_{\alpha}^k(D)$ and $(p(x,\partial)u_i, u_i|_{\Gamma'}, \dots, \frac{\partial^{m-1}u_i}{\partial \nu^{m-1}}|_{\Gamma'}) \to (f, g_0, \dots, g_{m-1})$ in V.

Below, by a solution of the problem (1), (2) of the class $W_{\alpha}^{k}(D)$ we will mean a strong solution of this problem in the sense as indicated above.

We will prove

Theorem. Let condition 1 be fulfilled. Then there exists a real number $\alpha_0 = \alpha_0(k) > 0$ such that for $\alpha \geq \alpha_0$ the problem (1), (2) is uniquely solvable in the class $W_{\alpha}^k(D)$ for any $f \in W_{\alpha-1}^{k+1-2m}(D)$, $g_i \in W_{\alpha-\frac{1}{2}}^{k-i}(\Gamma)$, $i = 0, \ldots, m-1$, and to obtain the solution u we have the estimate

$$||u||_{W_{\alpha}^{k}(D)} \le c \left(\sum_{i=1}^{m-1} ||g_{i}||_{W_{\alpha-\frac{1}{2}}^{k-i}(\Gamma)} + ||f||_{W_{\alpha-1}^{k+1-2m}(D)} \right), \tag{3}$$

where c is a positive constant not depending on f, g_i , i = 0, ..., m-1.

Proof. First we will show that the corollaries of condition 1 are the following conditions: Take any point $P \in \Gamma'$ and choose a Cartesian system x_1^0, \ldots, x_n^0 connected with this point and having vertex at P such that the x_n^0 -axis is directed along the generatrix of Γ passing through P and the x_{n-1}^0 -axis is directed along the inward normal to Γ at this point.

Condition 2. The surface Γ' is characteristic at none of its points. Each generatrix of the cone Γ has the direction of a spatial-type normal, and exactly m characteristic planes of equation (1) pass through the (n-2)-dimensional plane $x_n^0 = x_{n-1}^0 = 0$ connected with an arbitrary point $P \in \Gamma'$ into the angle $x_n^0 > 0$, $x_{n-1}^0 > 0$.

Denote by $\widetilde{p_0}(\xi)$ the characteristic polynomial of the equation (1) written in terms of the coordinate system x_1^0, \ldots, x_n^0 , connected with an arbitrarily chosen point $P \in \Gamma'$.

Condition 3. The surface Γ' is characteristic at none of its point. Each generatrix of the cone Γ has the direction of a spatial-type normal and for $\operatorname{Re} s > 0$ the number of roots $\lambda_j(\xi_1, \ldots, \xi_{n-2}, s)$, if we take into account the multiplicity of the polynomial $\widetilde{p_0}(i\xi_1, \ldots, i\xi_{n-2}, \lambda, s)$ with $\operatorname{Re} \lambda_j < 0$, is equal to $m, i = \sqrt{-1}$.

When condition 3 is fulfilled, the polynomial $\widetilde{p_0}(i\xi_1,\ldots,i\xi_{n-2},\lambda,s)$ can be written as the product $\Delta_-(\lambda)\Delta_+(\lambda)$, where for Re s>0 the roots of the polynomials $\Delta_-(\lambda)$ and $\Delta_+(\lambda)$ lie, respectively, to the left and to the right of the imaginary axis, while the coefficients are continuous for s, Re $s\geq 0$, $(\xi_1,\ldots,\xi_{n-2})\in R^{n-2}$, $\xi_1^2+\cdots+\xi_{n-2}^2+|s|^2=1$ [17]. On the left side of the boundary conditions (2) to the differential operator $b_j(x,\partial)$, $0\leq j\leq m-1$, written in terms of the coordinate system x_1^0,\ldots,x_n^0 connected with the point $P\in\Gamma'$, there corresponds the characteristic polynomial $b_j(\xi)=\xi_{n-1}^j$. Therefore, since the degree of the polynomial $\Delta_-(\lambda)$ is equal to m, the following condition will be fulfilled:

Condition 4. For any point $P \in \Gamma'$ and any s, $\operatorname{Re} s \geq 0$, and $(\xi_1, ..., \xi_{n-2}) \in \mathbb{R}^{n-2}$ such that $\xi_1^2 + \cdots + \xi_{n-2}^2 + |s|^2 = 1$, the polynomials $b_j(i\xi_1, ..., i\xi_{n-2}, \lambda, s) = \lambda^j$, j = 0, ..., m-1, are linearly independent, like the polynomials of λ modulo $\Delta_{-}(\lambda)$.

We will now show that condition 1 implies condition 2, while the latter implies condition 3. Let us consider the case $\Gamma \subset K_{m+1}^* \cup O$. The second case $\Gamma \subset K_m^* \cup O$ is treated similarly.

Let $P \in \Gamma'$ and x_1^0, \ldots, x_n^0 be the coordinate system connected with this point. Since the generatrix γ of the cone Γ passing through this point is a spatial-type normal, the plane $x_n^0 = 0$ passing through the point P is

a spatial-type plane. Denote by K_i^{\wedge} the boundary of the convex shell of the set K_j and by K_j^{\perp} the set which is the union of all bicharacteristics corresponding to the cone K_i and coming out of the point O along the outward normal to K_j , $1 \leq j \leq 2m$. It is obvious that $(K_i^{\wedge})^* = K_i^*$, $\partial(K_i^*) = (K_i^{\wedge})^{\perp}$. We will show that the plane π_1 , parallel to the plane $x_n^0 = 0$ and passing through the point $(0, \ldots, 0)$, is the plane of support to the cone K_m^{\wedge} at the point $(0,\ldots,0)$. Indeed, it is obvious that the plane $N \cdot \xi = 0, \ N \in \mathbb{R}^n \setminus (0, \dots, 0), \ \xi \in \mathbb{R}^n$ is the plane of support to K_m^{\wedge} at the point $(0, \ldots, 0)$ iff the normal vector N to this plane taken with the sign + or – belongs to the conic domain closure $(K_m^{\wedge})^* = K_m^*$. Now it remains for us to note that the conic domains K_m^* and K_{m+1}^* are centrally symmetric with respect to the point $(0, \ldots, 0)$, and the generatrix Γ passing through the point P is perpendicular to the plane π_1 and, by the condition, belongs to the set $K_{m+1}^* \cup O$. Since $x_n^0 = 0$ is a spatial-type plane, the two-dimensional plane $\sigma: x_1^0 = \cdots = x_{n-2}^0 = 0$ passing through the generatrix γ which is directed along the spatial-type normal intersects the cone of normals K_p of equation (1) with vertex at the point P by 2m different real straight lines [3]. The planes orthogonal to these straight lines and passing through the (n-2)-dimensional plane $x_n^0 = x_{n-1}^0 = 0$ give all 2m characteric planes passing through the (n-2)-dimensional plane $x_n^0 = x_{n-1}^0 = 0$. The straight lines $x_n^0 = 0$ and $x_{n-1}^0 = 0$ divide the two-dimensional plane σ into four right angles

$$\sigma_1: x_{n-1}^0 > 0, \ x_n^0 > 0; \ \sigma_2: x_{n-1}^0 < 0, \ x_n^0 > 0;$$

 $\sigma_3: x_{n-1}^0 < 0, \ x_n^0 < 0; \ \sigma_4: x_{n-1}^0 > 0, \ x_n^0 < 0.$

One can readily see that exactly m characteristic planes of equation (1) pass through the (n-2)-dimensional plane $x_n^0 = x_{n-1}^0 = 0$ into the angle $x_n^0 > 0$, x_{n-1}^0 iff exactly m straight lines from the intersection of σ_4 with the two-dimensional plane σ pass into the angle K_P . The latter fact really occurs, since: 1) the plane $x_n^0 = 0$ is the plane of support to K_m^{\wedge} and therefore to all K_1, \ldots, K_{2m} ; 2) the planes $x_n^0 = 0$, $x_{n-1}^0 = 0$ are not characteristic because the generatrices of Γ have a spatial-type direction and Γ is not characteristic at the point P.

Now it will be shown that condition 2 implies condition 3. By virtue of condition 2 the plane $x_{n-1}^0 = 0$ is not characteristic and therefore for λ the polynomial $\widetilde{p_0}(i\xi_1,\ldots,i\xi_{n-2},\lambda,s)$ has exactly 2m roots. In this case, if $\operatorname{Re} s > 0$, the number of roots $\lambda_j(\xi_1,\ldots,\xi_{n-2},s)$, with the multiplicity of the polynomial $\widetilde{p_0}(i\xi_1,\ldots,i\xi_{n-2},\lambda,s)$ taken into account, will be equal to m provided that $\operatorname{Re} \lambda_j < 0$. Indeed, recalling that equation (1) is hyperbolic, the equation $\widetilde{p_0}(i\xi_1,\ldots,i\xi_{n-2},\lambda,s) = 0$ has no purely imaginary roots with respect to λ . Since the roots λ_j are continuous functions of s, we can determine the number of roots λ_j with $\operatorname{Re} \lambda_j < 0$ by passing to the limits

as $\operatorname{Re} s \to +\infty$. Since the equality

$$\widetilde{p}_0(i\xi_1,\ldots,i\xi_{n-2}\lambda,s) = s^{2m}\widetilde{p}_0(i\frac{\xi_1}{s},\ldots,i\frac{\xi_{n-2}}{s},\frac{\lambda}{s},1)$$

holds, it is clear that the ratios λ_j/s , where λ_j are the roots of the equation $\widetilde{p_0}(i\xi_1,\ldots,i\xi_{n-2},\lambda,s)=0$, tend to the roots μ_j of the equation $\widetilde{p_0}(0,\ldots 0,\mu,1)=0$ as $\mathrm{Re}\,s\to +\infty$. The latter roots are real and different because equation (1) is hyperbolic. If s is taken positive and sufficiently large, then for $\mu_j\neq 0$ we have $\lambda_j=s\mu_j+o(s)$. But $\mu_j\neq 0$, since the plane $x_n^0=0$ is not characteristic. Therefore the number of roots λ_j with $\mathrm{Re}\,\lambda_j<0$ coincides with the number of roots μ_j with $\mu_j<0$. Since the characteristic planes of equation (1), passing through the (n-2)-dimensional plane $x_n^0=x_{n-1}^0=0$, are determined by the equalities $\mu_jx_{n-1}^0+x_n^0=0$, $j=1,\ldots,2m$, condition 2 implies that for $\mathrm{Re}\,\lambda_j<0$ the number of roots λ_j is equal to m.

We give another equivalent description of the space $W_{\alpha}^{k}(D)$. On the unit sphere $S^{n-1}: x_{1}^{2} + \cdots + x_{n}^{2} = 1$ choose a coordinate system $(\omega_{1}, \ldots, \omega_{n-1})$ such that in the domain D the transformation

$$I: \tau = \log r, \ \omega_j = \omega_j(x_1, \dots, x_n), \ j = 1, \dots, n-1,$$

is one-to-one, nondegenerate, and infinitely differentiable. Since the cone $\Gamma = \partial D$ is strictly convex at the point $O(0, \ldots, 0)$, such coordinates evidently exist. As a result of the above transformation, the domain D will become the infinite cylinder G bounded by the infinitely differentiable surface $\partial G = I(\Gamma')$.

Introduce the functional space $H_{\gamma}^{k}(G)$, $-\infty < \gamma < \infty$, with the norm

$$||v||_{H^k_{\gamma}(G)}^2 = \sum_{i_1+i=0}^k \int_G e^{-2\gamma\tau} \left\| \frac{\partial^{i_1+j} v}{\partial \tau^{i_1} \partial \omega^j} \right\|^2 d\omega \, d\tau$$

where

$$\frac{\partial^{i_1+j}v}{\partial\tau^{i_1}\partial\omega^j} = \frac{\partial^{i_1+j}v}{\partial\tau^{i_1}\partial\omega^{j_1}_1\cdots\partial\omega^{j_{n-1}}_{n-1}}, \quad j = j_1+\cdots+j_{n-1}.$$

As shown in [16], a function $u(x)\in W^k_\alpha(D)$ iff $\widetilde{u}=u(I^{-1}(\tau,\omega))\in H^k_{(\alpha+k)-\frac{n}{2}}(G)$, and the estimates

$$c_1 \|\widetilde{u}\|_{H^k_{(\alpha+k)-\frac{n}{2}}(G)} \le \|u\|_{W^k_{\alpha}(D)} \le c_2 \|\widetilde{u}\|_{H^k_{(\alpha+k)-\frac{n}{2}}(G)}$$

hold, where I^{-1} is the inverse transformation of I and the positive constants c_1 and c_2 do not depend on u.

It can be easily verified that the condition $v \in H^k_{\gamma}(G)$ is equivalent to the condition $e^{-\gamma \tau}v \in W^k(G)$, where $W^k(G)$ is the Sobolev space. Denote

by $H^k_{\gamma}(\partial G)$ a set of ψ such that $e^{-\gamma \tau}\psi \in W^k(\partial G)$, and by $W^k_{\alpha-\frac{1}{2}}(\Gamma)$ a set of all φ for which $\widetilde{\varphi} = \varphi(I^{-1}(\tau,\omega)) \in H^k_{(\alpha+k)-\frac{n}{2}}(\partial G)$. Assume that

$$\|\varphi\|_{W^k_{\alpha-\frac{1}{2}}(\Gamma)} = \|\widetilde{\varphi}\|H^k_{(\alpha+k)-\frac{n}{2}}(\partial G).$$

Spaces $W_{\alpha}^{k}(D)$ possess the following simple properties:

- 1) if $u \in W_{\alpha}^{k}(D)$, then $\frac{\partial^{i} u}{\partial x^{i}} \in W_{\alpha}^{k-i}(D)$, $0 \le i \le k$;
- 2) $W_{\alpha-1}^{k+1}(D) \subset W_{\alpha}^{k}(D)$;
- 3) if $u \in W^{k+1}_{\alpha-1}(D)$, then by the well-known embedding theorems we have $u|_{\Gamma} \in W_{\alpha-\frac{1}{2}}^{k}(\Gamma), \frac{\partial^{i} u}{\partial \nu^{i}}|_{\Gamma'} \in W_{\alpha-\frac{1}{2}}^{k-i}(\Gamma), i = 1, \dots, m-1;$

4) if $u \in W_{\alpha-1}^{k+1}(D)$, then $f = p(x, \partial)u \in W_{\alpha-1}^{k+1-2m}(D)$. In what follows we will need, in spaces $W_{\alpha}^{k}(D)$, $W_{\alpha-\frac{1}{2}}^{k}(\Gamma)$, other norms depending on the parameter $\gamma = (\alpha + k) - \frac{n}{2}$ and equivalent to the original norms.

Set

$$R_{\omega,\tau}^{n} = \{ -\infty < \tau < \infty, -\infty < \omega_{i} < \infty, i = 1, ..., n-1 \}, R_{\omega,\tau,+}^{n} = \{ (\omega,\tau) \in R_{\omega,\tau}^{n} : \omega_{n-1} > 0 \}, \omega' = (\omega_{1}, ..., \omega_{n-2}), R_{\omega',\tau}^{n-1} = \{ -\infty < \tau < \infty, -\infty < \omega_{i} < \infty, i = 1, ..., n-2 \}.$$

Denote by $\widetilde{v}(\xi_1,\ldots,\xi_{n-2},\xi_{n-1},\xi_n-i\gamma)$ the Fourier transform of the function $e^{-\gamma \tau}v(\omega,\tau)$, i.e.,

$$\widetilde{v}(\xi_1, \dots, \xi_{n-1}, \xi_n - i\gamma) = (2\pi)^{-\frac{n}{2}} \int v(\omega, \tau) e^{-i\omega\xi' - i\tau\xi_n - \gamma\tau} d\omega d\tau,$$

$$i = \sqrt{-1}, \quad \xi' = (\xi_1, \dots, \xi_{n-1}),$$

and by $\hat{v}(\xi,\ldots,\xi_{n-2},\omega_{n-1},\xi_n-i\gamma)$ the partial Fourier transform of the function $e^{-\gamma\tau}v(\omega,\tau)$ with respect to ω',τ .

We can introduce the following equivalent norms:

$$|||v|||_{R^{n},k,\gamma}^{2} = \int_{R^{n}} (\gamma^{2} + |\xi|^{2})^{k} ||\widetilde{v}(\xi_{1},\dots,\xi_{n-1},\xi_{n}-i\gamma)||^{2} d\xi,$$

$$|||v|||_{R^{n}_{+},k,\gamma}^{2} = \int_{0}^{\infty} \int_{R^{n-1}} \sum_{j=0}^{k} (\gamma^{2} + |\xi'|^{2})^{k-j} \times$$

$$\times \left\| \frac{\partial^{j}}{\partial \omega_{n-1}^{j}} \widehat{v}(\xi_{1},\dots,\xi_{n-2},\omega_{n-1},\xi_{n}-i\gamma) \right\|^{2} d\xi' d\omega_{n-1},$$

in the above-considered spaces $H^k_{\gamma}(R^n_{\omega,\tau})$ and $H^k_{\gamma}(R^n_{\omega,\tau,+})$. Let $\varphi_1,\ldots,\varphi_N$ be the partitioning of unity into $G'=G\cap\{\tau=0\}$, where G=I(D), i.e., $\sum_{j=1}^N \varphi_j(\omega)\equiv 1$ in $G',\varphi_j\in C^\infty(\overline{G}')$, the supports of

functions $\varphi_1, \ldots, \varphi_{N-1}$ lie in the boundary half-neighborhoods, while the support of function φ_N lies inside G'. Then for $\gamma = (\alpha + k) - \frac{n}{2}$ the equalities

$$|||u|||_{G,k,\gamma}^{2} = \sum_{j=1}^{N-1} |||\varphi_{j}u|||_{R_{+,k,\gamma}^{n}}^{2} + |||\varphi_{N}u|||_{R^{n},k,\gamma}^{2},$$

$$|||u|||_{\partial G,k,\gamma}^{2} = \sum_{j=1}^{N-1} |||\varphi_{j}u|||_{R_{\omega',\tau,k,\gamma}^{n-1}}^{2}$$

$$(4)$$

define equivalent norms in the spaces $W_{\alpha}^{k}(D)$ and $W_{\alpha-\frac{1}{2}}^{k}(\Gamma)$, where the norms on the right sides of these equalities are taken in the terms of local coordinates [17].

First we assume that equation (1) contains only higher terms, i.e., $p(x,\xi) \equiv p_0(\xi)$. Equation (1) and the boundary conditions (2) written in terms of the coordinates ω , τ have the form

$$e^{-2m\tau}A(\omega,\partial)u = f,$$

$$e^{-i\tau}B_i(\omega,\partial)u\Big|_{\partial G} = g_i, \quad i = 0,\dots, m-1,$$

or

$$A(\omega, \partial)u = \widetilde{f},\tag{5}$$

$$B_i(\omega, \partial)u\Big|_{\partial G} = \widetilde{g}_i, \quad i = 0, \dots, m - 1,$$
 (6)

where $A(\omega, \partial)$ and $B_i(\omega, \partial)$ are, respectively, the differential operators of orders 2m and i, with infinitely differentiable coefficients depending only on ω , while $\widetilde{f} = e^{2m\tau} f$ and $\widetilde{g}_i = e^{i\tau} g_i$, $i = 0, 1, \ldots, m-1$.

Thus, for the transformation $I: D \to G$, the unbounded operator T of the problem (1), (2) transforms to the unbounded operator

$$\widetilde{T}: H^k_{\gamma}(G) \to H^{k+1-2m}_{\gamma}(G) \times \prod_{i=0}^{m-1} H^{k-i}_{\gamma}(\partial G)$$

with the domain of definition $H^{k+1}_{\gamma}(G)$, acting by the formula

$$\widetilde{T}u = (A(\omega, \partial)u, B_0(\omega, \partial)u\Big|_{\partial G}, \dots, B_{m-1}(\omega, \partial)u\Big|_{\partial G})$$

where $\gamma=(\alpha+k)-\frac{n}{2}$. Note that written in terms of the coordinates $\omega,\, \tau$ the functions $f=(\omega,\tau)\in H^{k+1-2m}_{\gamma-2m}(G),\, g_i(\omega,\tau)\in H^{k-i}_{\gamma-i}(\partial G),\, i=0,\ldots,m-1,$ if $f(x)\in W^{k+1-2m}_{\alpha-1}(D),\, g_i(x)\in W^{k-i}_{\alpha-\frac{1}{2}}(\Gamma),\, i=0,\ldots,m-1.$ Therefore the functions $\widetilde{f}=e^{2m\tau}f\in H^{k+1-2m}_{\gamma}(G),\, \widetilde{g}_i=e^{i\tau}g_i\in H^{k-i}_{\gamma}(\partial G),\, i=0,\ldots,m-1.$

Since by condition 1 each generatrix of the cone Γ has the direction of a spatial-type normal, due to the convexity of K_m each beam coming from the vertex O into the conic domain D also has the direction of a spatial-type normal. Therefore equation (4) is strictly hyperbolic with respect the τ -axis. It was shown above that the fulfillment of condition 1 implies the fulfillment of condition 4. Therefore, according to the results of [17], for $\gamma \geq \gamma_0$, where γ_0 is a sufficiently large number, the operator $\overline{\widetilde{T}}$ has the bounded right inverse operator $\overline{\widetilde{T}}^{-1}$. Thus for any $\widetilde{f} \in H^{k+1-2m}_{\gamma}(G)$, $\widetilde{g}_i \in H^{k-i}_{\gamma}(\partial G)$, $i=0,\ldots,m-1$, when $\gamma \geq \gamma_0$, the problem (5), (6) is uniquely solvable in the space $H^k_{\gamma}(G)$, and for the solution u we have the estimate

$$|||u|||_{G,k,\gamma}^{2} \le C\left(\sum_{i=0}^{m-1} |||\widetilde{g}_{i}|||_{\partial G,k-i,\gamma} + \frac{1}{\gamma}|||\widetilde{f}|||_{G,k+1-2m,\gamma}\right)$$
(7)

with the positive constant C not depending on γ , f and \widetilde{g}_i , $i = 0, \ldots, m-1$. Hence it immediately follows that the theorem and the estimate (3) are valid in the case $p(x,\xi) \equiv p_0(\xi)$. \square

Remark. The estimate (7) with the coefficient $\frac{1}{\gamma}$ at $|||\widetilde{f}|||_{G,k+1-2m,\gamma}$, obtained in the appropriately chosen norms (4), enables one to prove the theorem also when equation (1) contains lower terms, since the latter give arbitrarily small perturbations for sufficiently large γ .

References

- 1. A.V.Bitsadze, Some classes of partial differential equations. (Russian) *Nauka, Moscow*, 1981.
- 2. S.L.Sobolev, Some applications of functional analysis in mathematical physics. (Russian) *Publ. Sib. Otd. Akad. Nauk SSSR*, *Novosibirsk*, 1962.
 - 3. R.Courant, Partial differential equations. New York-London, 1962.
- 4. M.Riesz, L'integrale de Riemann–Liouville et le problem de Cauchy. *Acta Math.* **81**(1949), 107-125.
- 5. L.Lundberg, The Klein–Gordon equation with light-cone data. *Commun. Math. Phys.* **62**(1978), No. 2, 107-118.
- 6. A.A.Borgardt and D.A.Karnenko, The characteristic problem for the wave equation with mass. (Russian) *Differentsial'nye Uravneniya* **20**(1984), No. 2, 302-308.
- 7. S.L.Sobolev, Some new problems of the theory of partial differential equations of hyperbolic type. (Russian) $Mat.~Sb.~\mathbf{11}(53)(1942)$, No. 3, 155-200.

- 8. A.V.Bitsadze, On mixed type equations on three-dimensional domains. (Russian) *Dokl. Akad. Nauk SSSR* **143**(1962), No. 5, 1017-1019.
- 9. A.M.Nakhushev, A multidimensional analogy of the Darboux problem for hyperbolic equations. (Russian) *Dokl. Akad. Nauk SSSR* **194**(1970), No. 1, 31-34.
- 10. T.Sh.Kalmenov, On multidimensional regular boundary value problems for the wave equation. (Russian) *Izv. Akad. Nauk Kazakh. SSR. Ser. Fiz.-Mat.* (1982), No. 3, 18-25.
- 11. A.A.Dezin, Invariant hyperbolic systems and the Goursat problem. (Russian) *Dokl. Akad. Nauk SSSR* **135**(1960), No. 5, 1042-1045.
- 12. F.Cagnac, Probleme de Cauchy sur la conoide caracteristique. *Ann. Mat. Pure Appl.* **104**(1975), 355-393.
- 13. J.Tolen, Probléme de Cauchy sur la deux hypersurfaces caracteristiques sécantes. $C.R.\ Acad.\ Sci.\ Paris\ Sér.\ A-B\ {\bf 291} (1980),\ No.\ 1,\ A49-A52.$
- 14. S.S.Kharibegashvili, The Goursat problems for some class of hyperbolic systems. (Russian) *Differentsial'nye Uravneniya* **17**(1981), No. 1. 157-164.
- 15. —, On a multidimensional problem of Goursat type for second order strictly hyperbolic systems. (Russian) *Bull. Acad. Sci. Georgian SSR* **117**(1985), No. 1, 37-40.
- 16. V.A.Kondratyev, Boundary value problems for elliptic equations in domains with conic or corner points. (Russian) *Trudy Moskov. Mat. Obshch.* **16**(1967), 209-292.
- 17. M.S.Agranovich, Boundary value problems for systems with a parameter. (Russian) *Mat. Sb.* **84**(126)(1971), No. 1, 27-65.

(Received 25.12.1992)

Author's address: I.Vekua Institute of Applied Mathematics of Tbilisi State University 2 University St., 380043 Tbilisi Republic of Georgia