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ON THE CORRECT FORMULATION OF A
MULTIDIMENSIONAL PROBLEM FOR STRICTLY
HYPERBOLIC EQUATIONS OF HIGHER ORDER


S. KHARIBEGASHVILI


Abstract. A theorem of the unique solvability of the first boundary
value problem in the Sobolev weighted spaces is proved for higher-
order strictly hyperbolic systems in the conic domain with special
orientation.


In the space Rn, n > 2, let us consider a strictly hyperbolic equation of
the form


p(x, ∂)u(x) = f(x), (1)


where ∂ = (∂1, . . . , ∂n), ∂j = ∂/∂xj , p(x, ξ) is a real polynomial of order
2m, m > 1, with respect to ξ = (ξ1, . . . , ξn), f is the known function and u
is the unknown function. It is assumed that in equation (1) the coefficients
at higher derivatives are constant and the other coefficients are finite and
infinitely differentiable in Rn.


Let D be a conic domain in Rn, i.e., D together with a point x ∈ D
contains the entire beam tx, 0 < t < ∞. Denote by Γ the cone ∂D. It is
assumed that D is homeomorphic onto the conic domain x2


1 + · · ·+ x2
n−1 −


x2
n < 0, xn > 0 and Γ′ = Γ\O is a connected (n− 1)-dimensional manifold


of the class C∞, where O is the vertex of the cone Γ.
Consider the problem: Find in the domain D the solution u(x) of equa-


tion (1) by the boundary conditions


∂iu
∂νi


∣


∣


∣


Γ′
= gi, i = 0, . . . , m− 1, (2)


where ν = ν(x) is the outward normal to Γ′ at a point x ∈ Γ′, and gi,
i = 0, . . . , m− 1, are the known real functions.


Note that the problem (1), (2) is considered in [1–6] for a hyperbolic-
type equation of second order when Γ is a characteristic conoid. In [7] this


1991 Mathematics Subject Classification. 35L35.


141







142 S. KHARIBEGASHVILI


problem is considered for a wave equation when the conic surface Γ is not
characteristic at any point and has a time-type orientaton. A multidimen-
sional analogue of the problem is treated in [8–10] for the case when one part
of the cone Γ is characteristic and the other part is a time-type hyperplane.
Other multidimensional analogues of the Goursat problem for hyperbolic
systems of first and second order are investigated in [11–15].


In this paper we consider the question whether the problem (1), (2) can
be correctly formulated in special weighted spaces W k


α(D) when the cone Γ
is assumed not to be characteristic but having a quite definite orientation.


Denote by p0(ξ) the characteristic polynomial of the equation (1), i.e., the
higher homogeneous part of the polynomial p(x, ξ). The strict hyperbolicity
of the equation (1) implies the existence of a vector ζ ∈ Rn such that the
straight line ξ = λζ + η, where η ∈ Rn is an arbitrarily chosen vector not
parallel to ζ and λ is the real parameter, intersects the cone of normals
K : p0(ξ) = 0 of the equation (1) at 2m different real points. In other
words, the equation p0(λζ + η) = 0 with respect to λ has 2m different real
roots. The vector ζ is called a spatial-type normal. As is well-known, a set
of all spatial-type normals form two connected centrally-symmetric convex
conic domains whose boundaries K1 and K2m give the internal cavity of
the cone of normals K [3]. The surface S ⊂ Rn is called characteristic at a
point x ∈ S if the normal to S at the point x belongs to the cone K.


Let the vector ζ be a spatial-type normal and the vector η 6= 0 change
in the plane orthogonal to ζ. Then for λ the roots of the characteristic
polynomial p0(λζ +η) can renumerated so that λ2m(η) < λ2m−1(η) < · · · <
λ1(η). It is obvious that the vectors λi(η)ζ + η cover the cavities Ki of
K when the η changes on the plane othogonal to ζ. Since λm−j(η) =
−λm+j+1(−η), 0 ≤ j ≤ m − 1, the cones Km−j and Km+j+1 are centrally
symmetric with respect to the point (0, . . . , 0). As is well-known, by the
bicharacteristics of the equation (1) we understand straight beams whose
orthogonal planes are tangential planes to one of the cavities Ki at the point
different from the vertex.


Assume that there exists a plane π0 such that π0 ∩ Km = {(0,. . . ,0)}.
This means that the cones K1, . . . , Km are located on one side of π0 and
the cones Km+1, . . . , K2m on the other. Set K∗


i = ∩η∈Ki{ξ ∈ Rn : ξ·η < 0},
where ξ · η is the scalar product of ξ and η. Since π0 ∩Km = {(0, . . . , 0)},
K∗


i is a conic domain and K∗
m ⊂ K∗


m−1 ⊂ · · · ⊂ K∗
1 , K∗


m+1 ⊂ K∗
m+2 ⊂ · · · ⊂


K∗
2m. It is easy to verify that ∂(K∗


i ) is a convex cone whose generatrices
are bicharacteristics; note that in this case none of the bicharacteristics of
the equation (1) comes from the point (0, . . . , 0) into the cone ∂(K∗


m) or
∂(K∗


m+1) [3].
Let us consider


Condition 1. The surface Γ′ is characteristic at none of its points and
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each generatrix of the cone Γ has the direction of a spatial-type normal;
moreover, Γ ⊂ K∗


m ∪ 0 or Γ ⊂ K∗
m+1 ∪ 0.


Denote by W k
α(D), k ≥ 2m, −∞ < α < ∞, the functional space with


the norm [16]


‖u‖2W k
α(D) =


k
∑


i=0


∫


D
r−2α−2(k−i)


∥


∥


∥


∂iu
∂xi


∥


∥


∥


2
dx,


where


r = (x2
1 + · · ·+ x2


n)
1
2 ,


∂iu
∂xi =


∂iu
∂xi1


1 · · · ∂xin
n


, i = i1 + · · ·+ in.


The space W k
α(Γ) is defined in a similar manner.


Consider the space


V = W k+1−2m
α−1 (D)×


m−1
∏


i=0


W k−i
α− 1


2
(Γ).


Assume that to the problem (1), (2) there corresponds the unbounded
operator


T : W k
α(D) → V


with the domain of definition ΩT = W k+1
α−1(D) ⊂ W k


α(D), acting by the
formula


Tu =
(


p(x, ∂)u, u
∣


∣


∣


Γ′
, . . . ,


∂iu
∂νi


∣


∣


∣


Γ′
, . . . ,


∂m−1u
∂νm−1


∣


∣


∣


Γ′


)


, u ∈ ΩT .


It is obvious that the operator T admits the closure T .
The function u is called a strong solution of the problem (1), (2) of the


class W k
α(D) if u ∈ ΩT , Tu = (f, g0, . . . , gm−1) ∈ V , which is equivalent


to the existence of a sequence ui ∈ ΩT = W k+1
α−1(D) such that ui → u in


W k
α(D) and


(


p(x, ∂)ui, ui|Γ′ , . . . , ∂m−1ui
∂νm−1


∣


∣


Γ′
)


→ (f, g0, . . . , gm−1) in V .
Below, by a solution of the problem (1), (2) of the class W k


α(D) we will
mean a strong solution of this problem in the sense as indicated above.


We will prove


Theorem. Let condition 1 be fulfilled. Then there exists a real number
α0 = α0(k) > 0 such that for α ≥ α0 the problem (1), (2) is uniquely
solvable in the class W k


α(D) for any f ∈ W k+1−2m
α−1 (D), gi ∈ W k−i


α− 1
2
(Γ),


i = 0, . . . ,m− 1, and to obtain the solution u we have the estimate


‖u‖W k
α(D) ≤ c


(
m−1
∑


i=1


‖gi‖W k−i


α− 1
2
(Γ) + ‖f‖W k+1−2m


α−1 (D)


)


, (3)
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where c is a positive constant not depending on f , gi, i = 0, . . . ,m− 1.


Proof. First we will show that the corollaries of condition 1 are the following
conditions: Take any point P ∈ Γ′ and choose a Cartesian system x0


1, . . . , x0
n


connected with this point and having vertex at P such that the x0
n-axis is


directed along the generatrix of Γ passing through P and the x0
n−1-axis is


directed along the inward normal to Γ at this point.


Condition 2. The surface Γ′ is characteristic at none of its points. Each
generatrix of the cone Γ has the direction of a spatial-type normal, and
exactly m characteristic planes of equation (1) pass through the (n − 2)-
dimensional plane x0


n = x0
n−1 = 0 connected with an arbitrary point P ∈ Γ′


into the angle x0
n > 0, x0


n−1 > 0.


Denote by p̃0(ξ) the characteristic polynomial of the equation (1) written
in terms of the coordinate system x0


1, . . . , x0
n, connected with an arbitrarily


chosen point P ∈ Γ′.


Condition 3. The surface Γ′ is characteristic at none of its point. Each
generatrix of the cone Γ has the direction of a spatial-type normal and for
Re s > 0 the number of roots λj(ξ1, . . . , ξn−2, s), if we take into account
the multiplicity of the polynomial p̃0(iξ1, . . . , iξn−2, λ, s) with Re λj < 0, is
equal to m, i =


√
−1.


When condition 3 is fulfilled, the polynomial p̃0(iξ1, . . . , iξn−2, λ, s) can
be written as the product ∆−(λ)∆+(λ), where for Re s > 0 the roots of the
polynomials ∆−(λ) and ∆+(λ) lie, respectively, to the left and to the right
of the imaginary axis, while the coefficients are continuous for s, Re s ≥
0, (ξ1, . . . , ξn−2) ∈ Rn−2, ξ2


1 + · · · + ξ2
n−2 + |s|2 = 1 [17]. On the left side


of the boundary conditions (2) to the differential operator bj(x, ∂), 0 ≤
j ≤ m− 1, written in terms of the coordinate system x0


1, . . . , x0
n connected


with the point P ∈ Γ′, there corresponds the characteristic polynomial
bj(ξ) = ξj


n−1. Therefore, since the degree of the polynomial ∆−(λ) is equal
to m, the following condition will be fulfilled:


Condition 4. For any point P ∈Γ′ and any s, Re s≥ 0, and (ξ1, ..., ξn−2)∈
Rn−2 such that ξ2


1+· · ·+ξ2
n−2+|s|2 =1, the polynomials bj(iξ1, ..., iξn−2, λ, s) =


λj , j = 0, . . . , m − 1, are linearly independent, like the polynomials of λ
modulo ∆−(λ).


We will now show that condition 1 implies condition 2, while the latter
implies condition 3. Let us consider the case Γ ⊂ K∗


m+1 ∪ O. The second
case Γ ⊂ K∗


m ∪O is treated similarly.
Let P ∈ Γ′ and x0


1, . . . , x0
n be the coordinate system connected with this


point. Since the generatrix γ of the cone Γ passing through this point is
a spatial-type normal, the plane x0


n = 0 passing through the point P is
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a spatial-type plane. Denote by K∧
j the boundary of the convex shell of


the set Kj and by K⊥
j the set which is the union of all bicharacteristics


corresponding to the cone Kj and coming out of the point O along the
outward normal to Kj , 1 ≤ j ≤ 2m. It is obvious that (K∧


j )∗ = K∗
j ,


∂(K∗
j ) = (K∧


j )⊥. We will show that the plane π1, parallel to the plane
x0


n = 0 and passing through the point (0, . . . , 0), is the plane of support to
the cone K∧


m at the point (0, . . . , 0). Indeed, it is obvious that the plane
N · ξ = 0, N ∈ Rn\(0, . . . , 0), ξ ∈ Rn is the plane of support to K∧


m at the
point (0, . . . , 0) iff the normal vector N to this plane taken with the sign + or
− belongs to the conic domain closure (K∧


m)∗ = K∗
m. Now it remains for us


to note that the conic domains K∗
m and K∗


m+1 are centrally symmetric with
respect to the point (0, . . . , 0), and the generatrix Γ passing through the
point P is perpendicular to the plane π1 and, by the condition, belongs to
the set K∗


m+1∪O. Since x0
n = 0 is a spatial-type plane, the two-dimensional


plane σ : x0
1 = · · · = x0


n−2 = 0 passing through the generatrix γ which is
directed along the spatial-type normal intersects the cone of normals Kp of
equation (1) with vertex at the point P by 2m different real straight lines
[3]. The planes orthogonal to these straight lines and passing through the
(n − 2)-dimensional plane x0


n = x0
n−1 = 0 give all 2m characteric planes


passing through the (n−2)-dimensional plane x0
n = x0


n−1 = 0. The straight
lines x0


n = 0 and x0
n−1 = 0 divide the two-dimensional plane σ into four


right angles


σ1 : x0
n−1 > 0, x0


n > 0; σ2 : x0
n−1 < 0, x0


n > 0;


σ3 : x0
n−1 < 0, x0


n < 0; σ4 : x0
n−1 > 0, x0


n < 0.


One can readily see that exactly m characteristic planes of equation (1) pass
through the (n−2)-dimensional plane x0


n = x0
n−1 = 0 into the angle x0


n > 0,
x0


n−1 iff exactly m straight lines from the intersection of σ4 with the two-
dimensional plane σ pass into the angle KP . The latter fact really occurs,
since: 1) the plane x0


n = 0 is the plane of support to K∧
m and therefore to all


K1, . . . , K2m; 2) the planes x0
n = 0, x0


n−1 = 0 are not characteristic because
the generatrices of Γ have a spatial-type direction and Γ is not characteristic
at the point P .


Now it will be shown that condition 2 implies condition 3. By virtue
of condition 2 the plane x0


n−1 = 0 is not characteristic and therefore for λ
the polynomial p̃0(iξ1, . . . , iξn−2, λ, s) has exactly 2m roots. In this case, if
Re s > 0, the number of roots λj(ξ1, . . . , ξn−2, s), with the multiplicity of
the polynomial p̃0(iξ1, . . . , iξn−2, λ, s) taken into account, will be equal to m
provided that Re λj < 0. Indeed, recalling that equation (1) is hyperbolic,
the equation p̃0(iξ1, . . . , iξn−2, λ, s) = 0 has no purely imaginary roots with
respect to λ. Since the roots λj are continuous functions of s, we can
determine the number of roots λj with Re λj < 0 by passing to the limits
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as Re s → +∞. Since the equality


p̃0(iξ1, . . . , iξn−2λ, s) = s2mp̃0
(


i
ξ1


s
, . . . , i


ξn−2


s
,
λ
s
, 1


)


holds, it is clear that the ratios λj/s , where λj are the roots of the
equation p̃0(iξ1, . . . , iξn−2, λ, s) = 0, tend to the roots µj of the equation
p̃0(0, . . . 0, µ, 1) = 0 as Re s → +∞. The latter roots are real and different
because equation (1) is hyperbolic. If s is taken positive and sufficiently
large, then for µj 6= 0 we have λj = sµj + o(s). But µj 6= 0, since the
plane x0


n = 0 is not characteristic. Therefore the number of roots λj with
Re λj < 0 coincides with the number of roots µj with µj < 0. Since the char-
acteristic planes of equation (1), passing through the (n − 2)-dimensional
plane x0


n = x0
n−1 = 0, are determined by the equalities µjx0


n−1 + x0
n =


0, j = 1, . . . , 2m, condition 2 implies that for Re λj < 0 the number of
roots λj is equal to m.


We give another equivalent description of the space W k
α(D). On the unit


sphere Sn−1 : x2
1 + · · ·+ x2


n = 1 choose a coordinate system (ω1, . . . , ωn−1)
such that in the domain D the transformation


I : τ = log r, ωj = ωj(x1, . . . , xn), j = 1, . . . , n− 1,


is one-to-one, nondegenerate, and infinitely differentiable. Since the cone
Γ = ∂D is strictly convex at the point O(0, . . . , 0), such coordinates evi-
dently exist. As a result of the above transformation, the domain D will
become the infinite cylinder G bounded by the infinitely differentiable sur-
face ∂G = I(Γ′).


Introduce the functional space Hk
γ (G), −∞ < γ < ∞, with the norm


‖v‖2Hk
γ (G) =


k
∑


i1+j=0


∫


G
e−2γτ


∥


∥


∥


∂i1+jv
∂τ i1∂ωj


∥


∥


∥


2
dω dτ


where
∂i1+jv


∂τ i1∂ωj =
∂i1+jv


∂τ i1∂ωj1
1 · · · ∂ωjn−1


n−1


, j = j1 + · · ·+ jn−1.


As shown in [16], a function u(x) ∈ W k
α(D) iff ũ = u(I−1(τ, ω)) ∈


Hk
(α+k)−n


2
(G), and the estimates


c1‖ũ‖Hk
(α+k)−n


2
(G) ≤ ‖u‖W k


α(D) ≤ c2‖ũ‖Hk
(α+k)−n


2
(G)


hold, where I−1 is the inverse transformation of I and the positive constants
c1 and c2 do not depend on u.


It can be easily verified that the condition v ∈ Hk
γ (G) is equivalent to


the condition e−γτv ∈ W k(G), where W k(G) is the Sobolev space. Denote







HYPERBOLIC EQUATIONS OF HIGHER ORDER 147


by Hk
γ (∂G) a set of ψ such that e−γτψ ∈ W k(∂G), and by W k


α− 1
2
(Γ) a set


of all ϕ for which ϕ̃ = ϕ(I−1(τ, ω)) ∈ Hk
(α+k)−n


2
(∂G). Assume that


‖ϕ‖W k
α− 1


2
(Γ) = ‖ϕ̃‖Hk


(α+k)−n
2
(∂G).


Spaces W k
α(D) possess the following simple properties:


1) if u ∈ W k
α(D), then ∂iu


∂xi ∈ W k−i
α (D), 0 ≤ i ≤ k;


2) W k+1
α−1(D) ⊂ W k


α(D);
3) if u ∈ W k+1


α−1(D), then by the well-known embedding theorems we have
u
∣


∣


Γ ∈ W k
α− 1


2
(Γ), ∂iu


∂νi


∣


∣


Γ′ ∈ W k−i
α− 1


2
(Γ), i = 1, . . . , m− 1;


4) if u ∈ W k+1
α−1(D), then f = p(x, ∂)u ∈ W k+1−2m


α−1 (D).
In what follows we will need, in spaces W k


α(D), W k
α− 1


2
(Γ), other norms


depending on the parameter γ = (α + k)− n
2 and equivalent to the original


norms.
Set


Rn
ω,τ = {−∞ < τ < ∞, −∞ < ωi < ∞, i = 1, . . . , n− 1},


Rn
ω,τ,+ = {(ω, τ) ∈ Rn


ω,τ : ωn−1 > 0}, ω′ = (ω1, . . . , ωn−2),


Rn−1
ω′,τ = {−∞ < τ < ∞, −∞ < ωi < ∞, i = 1, . . . , n− 2}.


Denote by ṽ(ξ1, . . . , ξn−2, ξn−1, ξn−iγ) the Fourier transform of the function
e−γτv(ω, τ), i.e.,


ṽ(ξ1, . . . , ξn−1, ξn − iγ) = (2π)−
n
2


∫


v(ω, τ)e−iωξ′−iτξn−γτdω dτ,


i =
√
−1, ξ′ = (ξ1, . . . , ξn−1),


and by v̂(ξ, . . . , ξn−2, ωn−1, ξn − iγ) the partial Fourier transform of the
function e−γτv(ω, τ) with respect to ω′,τ .


We can introduce the following equivalent norms:


|||v|||2Rn,k,γ =
∫


Rn
(γ2 + |ξ|2)k‖ṽ(ξ1, . . . , ξn−1, ξn − iγ)‖2dξ,


|||v|||2Rn
+,k,γ =


∫ ∞


0


∫


Rn−1


k
∑


j=0


(γ2 + |ξ′|2)k−j ×


×
∥


∥


∥


∂j


∂ωj
n−1


v̂(ξ1, . . . , ξn−2, ωn−1, ξn − iγ)
∥


∥


∥


2
dξ′dωn−1,


in the above-considered spaces Hk
γ (Rn


ω,τ ) and Hk
γ (Rn


ω,τ,+).
Let ϕ1, . . . , ϕN be the partitioning of unity into G′ = G ∩ {τ = 0},


where G = I(D), i.e.,
∑N


j=1 ϕj(ω) ≡ 1 in G′, ϕj ∈ C∞(G
′
), the supports of
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functions ϕ1, . . . , ϕN−1 lie in the boundary half-neighborhoods, while the
support of function ϕN lies inside G′. Then for γ = (α+k)− n


2 the equalities


|||u|||2G,k,γ =
N−1
∑


j=1


|||ϕju|||2Rn
+,k,γ


+ |||ϕNu|||2Rn,k,γ ,


|||u|||2∂G,k,γ =
N−1
∑


j=1


|||ϕju|||2Rn−1
ω′,τ,k,γ


(4)


define equivalent norms in the spaces W k
α(D) and W k


α− 1
2
(Γ), where the


norms on the right sides of these equalities are taken in the terms of local
coordinates [17].


First we assume that equation (1) contains only higher terms, i.e., p(x, ξ) ≡
p0(ξ). Equation (1) and the boundary conditions (2) written in terms of
the coordinates ω, τ have the form


e−2mτA(ω, ∂)u = f,


e−iτBi(ω, ∂)u
∣


∣


∣


∂G
= gi, i = 0, . . . , m− 1,


or


A(ω, ∂)u = ˜f, (5)


Bi(ω, ∂)u
∣


∣


∣


∂G
= g̃i, i = 0, . . . , m− 1, (6)


where A(ω, ∂) and Bi(ω, ∂) are, respectively, the differential operators of
orders 2m and i, with infinitely differentiable coefficients depending only on
ω, while ˜f = e2mτf and g̃i = eiτgi, i = 0, 1, . . . , m− 1.


Thus, for the transformation I : D → G, the unbounded operator T of
the problem (1), (2) transforms to the unbounded operator


˜T : Hk
γ (G) → Hk+1−2m


γ (G)×
m−1
∏


i=0


Hk−i
γ (∂G)


with the domain of definition Hk+1
γ (G), acting by the formula


˜Tu =
(


A(ω, ∂)u,B0(ω, ∂)u
∣


∣


∣


∂G
, . . . , Bm−1(ω, ∂)u


∣


∣


∣


∂G


)


where γ = (α + k) − n
2 . Note that written in terms of the coordinates


ω, τ the functions f = (ω, τ) ∈ Hk+1−2m
γ−2m (G), gi(ω, τ) ∈ Hk−i


γ−i(∂G), i =
0, . . . , m − 1, if f(x) ∈ W k+1−2m


α−1 (D), gi(x) ∈ W k−i
α− 1


2
(Γ), i = 0, . . . , m − 1.


Therefore the functions ˜f = e2mτf ∈ Hk+1−2m
γ (G), g̃i = eiτgi ∈ Hk−i


γ (∂G),
i = 0, . . . ,m− 1.
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Since by condition 1 each generatrix of the cone Γ has the direction of
a spatial-type normal, due to the convexity of Km each beam coming from
the vertex O into the conic domain D also has the direction of a spatial-
type normal. Therefore equation (4) is strictly hyperbolic with respect
the τ -axis. It was shown above that the fulfillment of condition 1 implies
the fulfillment of condition 4. Therefore, according to the results of [17],


for γ ≥ γ0 , where γ0 is a sufficiently large number, the operator ˜T has


the bounded right inverse operator ˜T
−1


. Thus for any ˜f ∈ Hk+1−2m
γ (G),


g̃i ∈ Hk−i
γ (∂G), i = 0, . . . , m − 1, when γ ≥ γ0, the problem (5), (6) is


uniquely solvable in the space Hk
γ (G), and for the solution u we have the


estimate


|||u|||2G,k,γ ≤ C
(


m−1
∑


i=0


|||g̃i|||∂G,k−i,γ +
1
γ
||| ˜f |||G,k+1−2m,γ


)


(7)


with the positive constant C not depending on γ, f and g̃i, i = 0, . . . , m−1.
Hence it immediately follows that the theorem and the estimate (3) are


valid in the case p(x, ξ) ≡ p0(ξ).


Remark. The estimate (7) with the coefficient 1
γ at ||| ˜f |||G,k+1−2m,γ ,


obtained in the appropriately chosen norms (4), enables one to prove the
theorem also when equation (1) contains lower terms, since the latter give
arbitrarily small perturbations for sufficiently large γ.
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