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A SELF-ADJOINT “SIMULTANEOUS CROSSING OF THE
AXIS”

KURT KREITH

Abstract. By constructing the corresponding Green’s function in a
trapezoidal domain, we establish the existence of self-adjoint realiza-
tions of A = ∂2

∂t2 −
∂2

∂s2 incorporating boundary conditions of the
form u(s, 0) = u(s, T ) = 0. Such operators correspond to the histori-
cally important concept of a ”simultaneous crossing of the axis” for
vibrating strings.

1. Introduction. Given Poisson’s equation

∆u ≡ uxx + uyy = f(x, y) in R,

u = 0 on ∂R
(1.1)

in a rectangle
R = {(x, y) : 0 ≤ x ≤ h, 0 ≤ y ≤ k},

separation of variables leads to the Fourier series solution

u(x, y) =
∑

amn sin
mπx

h
sin

nπy
k

with

amn =
−4

hkπ2(m2

h2 + n2

k2 )

∫∫

R
f(x, y) sin

mπx
h

sin
nπy
k

dx dy. (1.2)

The validity of this formal solution is related to the fact that ∆ has a self-
adjoint realization in L2(R) corresponding to the boundary condition u = 0
on ∂R.

If one naively attempts to use the same approach to

Au ≡ uxx − uyy = f(x, y) in R,

u = 0 on ∂R,
(1.3)
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separation of variables again provides the same form of series solution. How-
ever, now

amn =
−4

hkπ2(m2

h2 − n2

k2 )

∫∫

R
f(x, y) sin

mπx
h

sin
nπy
k

dx dy, (1.4)

and the fact that the Dirichlet problem is not well posed for (1.3) is reflected
by the sign change in going from (1.2) to (1.4). While the series solution for
u(x, y) makes formal sense for irrational values of h/k, its instability pre-
cludes the existence of a Green’s function G(x, y; ξ, η) and a corresponding
representation of this “solution” in the form

u(x, y) =
∫∫

R
G(x, y; ξ, η)f(ξ, η)dξ dη.

One therefore would not expect to find a self-adjoint realization of A in
L2(R) corresponding to u = 0 on ∂R.

The fact remains, however, that problems such as (1.3) have a certain
appeal. Replacing x by a spatial variable s and y by a temporal variable t,
it is natural, in the theory of vibrating strings, to consider

Au ≡ utt − uss = f(s, t),

u(s, 0) = u(s, T ) = 0.
(1.5)

Here the boundary conditions can be interpreted as calling for a “simulta-
neous crossing of the axis” at t = 0 and t = T . As described by Cannon
and Dostrovski [1], the physical concept played an important role in early
attempts by both Brook Taylor and Johann Bernoulli to model vibrating
strings.

Also, if one interprets the classical Sturmian theory for (py′)′+ qy = 0 in
terms of the motion of a mass p(t) subject to a linear restoring force −q(t)y,
then it becomes very attractive to consider (1.5) as part of an effort to gen-
eralize Sturmian theory to hyperbolic PDEs (see, for example, [4]). While
one would not expect to find a self-adjoint realization of A corresponding to
(1.3), there do exist both historical and mathematical reasons for seeking
self-adjoint realizations which incorporate (1.5).

The purpose of this paper is to show that, by considering (1.5) on a
trapezoid

R = {(s, t) : t ≤ s ≤ L− t; 0 ≤ t ≤ T} (1.6)

with L ≥ 2T > 0, it becomes possible to establish self-adjoint realizations
of (1.5) in terms of additional boundary conditions on the characteristics

s− t = 0 and s + t = L (0 ≤ t ≤ T ).
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In case L = 2T , these results are related to ones obtained by Kalmenov [2],
albeit by very different techniques.

2. Fundamental Singularities. If one seeks a representation of solutions
of y′′ = f(x) in the form

y =
∫ x−

a
Γ(x, ξ)f(ξ)dξ +

∫ b

x+
Γ(x, ξ)f(ξ)dξ,

two applications of Leibniz’s rule readily lead to the conditions

Γxx = 0 for x 6= ξ, Γ(x, x−)− Γ(x, x+) = 0,

and
Γx(x, x−)− Γx(x, x+) = 1

as characterizing a fundamental singularity for d2

dx2 . In [3] this familiar idea
is extended to obtain a characterization of a fundamental singularity for

∂2

∂x∂y . Representing the solution of uxy = f(x, y) in the form

u(x, y)=
∫ y−

c

[

∫ x−

a
Γ(x, y; ξ, η)f(ξ, η)dξ+

∫ b

x+
Γ(x, y; ξ, η)f(ξ, η)dξ

]

dη+

+
∫ d

y+

[

∫ x−

a
Γ(x, y; ξ, η)f(ξ, η)dξ +

∫ b

x+
Γ(x, y; ξ, η)f(ξ, η)dξ

]

dη,

repeated applications of Leibniz’s rule lead to the following characterization
of a fundamental singularity for ∂2

∂x∂y :

(i) Γxy = 0 for x 6= ξ and y 6= η,

(ii) Γx(x, y; ξ, y−) = Γx(x, y; η, y+),

Γy(x, y;x−, η) = Γy(x, y; x+, η),

(iii) Γ(x, y;x−, y−)− Γ(x, y;x−, y+)− Γx(x, y;x+, y−) +

+ Γ(x, y; x+, y+) = 1.

Transforming such singularities into the (s, t)-plane by t = y + x, s = y− x

(and taking note of the fact that |J(
x, y
s, t )| = 1

2 ), one obtains, as a special

case, the following

Lemma 2.1. If G(s, t; σ, τ) satisfies

G(s, t; σ, τ) =

{

1
4 for |t− τ | > |s− σ|
0 for |s− σ| > |t− τ |

(2.1)
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or

G(s, t; σ, τ) =

{

− 1
4 for |s− σ| > |t− τ |

0 for |t− τ | > |s− σ|,
(2.2)

then G is a fundamental singularity for A = ∂2

∂t2 −
∂2

∂s2 . Furthermore, G is
symmetric in the sense that G(s, t; σ, τ) = G(σ, τ, s, t).

Proof. Transforming back into the (ξ, η)-plane, the above values for G
yield

Γ(x, y; x−, y−)−Γ(x, y; x−, y+)−Γ(x, y; x+, y−)+Γ(x, y;x+, y+) = 1.

Lemma 2.2. If γ is a real constant and G(s, t; σ, τ) satisfies

G(s, t;σ, τ) =











0 for |t− τ | > |s− σ|
γ for s− σ > |t− τ |
−γ for |σ − s| > |t− τ |,

then G is “nonsingular” in the sense that

A
∫∫

R
G(s, t; σ, τ)f(σ, τ)dσ dτ = 0

for R a neighborhood of (s, t) in the (σ, τ)-plane.

Proof. Transforming back into the (ξ, η)-plane, the above values for G yield

Γ(x, y; x−, y−)− Γ(x, y; x−, y+)− Γ(x, y; x+, y−) + Γ(x, y; x+, y+) = 0

in place of (iii).
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3. Construction of Green’s Functions. To construct symmetric Green’s
functions corresponding to (1.5), we shall apply the method of images to
symmetric fundamental singularities of the form (2.1). In order to satisfy
u(s, 0) = 0, we consider a pair of fundamental singularities to form

H(s, t; σ, τ) = G(s, t; σ, τ)−G(s,−t;σ, τ).

Restricting H(s, t; σ, τ) to the strip 0 ≤ t ≤ T , we have

H(s, t;σ, τ) =

{

0 for |t− τ | > |s− σ|
−1

4 for |τ + t| > |σ − s| > |t− τ |

(see Figure 1). Since H is composed of symmetric singularities, it is again
symmetric.

Noting that H(s, T ;σ, τ) 6= 0, we now reflect about t = T to consider
H(s, t;σ, τ)−H(s, 2T − t;σ, τ) as depicted in Figure 2.
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Figure 2
As confirmed by Lemmas 1.1 and 1.2, this again yields a symmetric

fundamental singularity for A, one which corresponds to u(s, 0) = 0. While
this construction does not, in general, correspond to u(s, T ) = 0, continued
reflections about τ = 0 and τ = T do eventually achieve this condition for
bounded domains. This fact is evident from the fundamental singularity
depicted in Figure 3, which vanishes except in rectangular regions defined
by characteristics emanating from (s, t) and reflected by τ = 0 and τ = T .

Since all these rectangular regions approach the empty set as t → 0 or
t → T , we see that

u(s, t) = A−1f ≡
∫∫

R
H(s, t; σ, τ)f(σ, τ)dσ dτ

does satisfy u(s, 0) = u(s, T ) = 0. Since H(s, t; σ, τ) = H(σ, τ ; s, t), A−1 is a
completely continuous self-adjoint operator in L2(R) whose range manifests
“a simultaneous crossing of the axis”.
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4. The Spacelike Boundary. Given a domain R contained in the rect-
angle 0 ≤ s ≤ S, 0 ≤ t ≤ T , the construction of §3 yields a self-adjoint
realization of A = ∂2

∂t2 −
∂2

∂s2 whose domain satisfies u(s, 0) = u(s, T ) = 0.
What this construction fails in general to do is to characterize the domain
of A in terms of boundary conditions for which

∫∫

R
(vAu− uAv)ds dt = 0.

It is here that the geometry of the problem enters in an essential way.
We consider a trapezoidal region

R(k, θ) = {(s, t) : 0 ≤ t ≤ s ≤ 2kT + θ − t; 0 ≤ t ≤ T},

where k is a positive integer and 0 ≤ θ < 2T . In this case it will be possible
to determine boundary conditions on the characteristics

t− s = 0 and t + s = 2kT + θ

which, together with u(s, 0) = u(s, T ) = 0, characterize self-adjoint realiza-
tions of A.

In the case θ = 0, the broken characteristic connecting (T, T ) with ((2k−
1)T, T ) divides R into 2k − 1 congruent triangles (see Figure 4 for k = 2).
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Corresponding to a = (s, s) on the characteristic t−s = 0 there is a point
b(a) = ((2k − 1)T + s, T − s) on the characteristic t + s = 2kT . The pairs
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of parallel lines

t− s = νT and t− s = νT + 2s,

t + s = νT + 2s and t + s = 2(ν + 1)T

define a sequence of 2k − 1 rectangles in R in which the fundamental sin-
gularity H(s, t; σ, τ) of §3 assumes the values (−1)ν

4 for ν = 1, . . . , 2k − 1.
However, this is the same function H(s, t; σ, τ) obtained by locating the
fundamental singularity at b(a). These observations establish the following.

Theorem 4.1. Given a trapezoidal domain

R(k, 0) = {(s, t) : 0 ≤ t ≤ s ≤ 2kT − t; 0 ≤ t ≤ T},

the boundary conditions

u(s, 0) = 0 for 0 ≤ s ≤ 2kT,

u(s, T ) = 0 for T ≤ s ≤ (2k − 1)T,

u(s, s) = u((2k − 1)T + s, T − s) for 0 ≤ s ≤ T,

correspond to a self-adjoint realization of A = ∂2

∂t2 −
∂2

∂s2 in L2(R).

Remark. For k = 1, the trapezoid becomes a characteristic triangle and
we obtain the self-adjoint operator studied by Kalmenov [2].

There remains the problem of a general trapezoid with 0 < θ < 2T for
which self-adjoint boundary conditions will involve four points:

a = (s, s) for 0 < s < T,

b(a) =

{

((2k − 1)T + θ
2 + s, T + θ

2 − s) for s > θ
2

((2kT + θ
2 + s, θ

2 − s) for s < θ
2

c =
(θ
2
,
θ
2
)

, d =
(

2kT +
θ
2
,
θ
2
)

.

Here a and b(a) can be connected by broken characteristics reflected by
the lines t = 0 and t = T . There is a similar relationship between c and
((2k − 1)T + θ, T ) and between d and (T, T ).

Our principal result is the following

Theorem 4.2. Given a trapezoidal domain

R(k, θ) = {(s, t) : 0 ≤ t ≤ s ≤ 2kT − t + θ; 0 ≤ t ≤ T},
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the boundary conditions

u(s, 0) = 0 for 0 ≤ s ≤ 2kT + θ,

u(s, T ) = 0 for T ≤ s ≤ (2k − 1)T + θ,

u(a) +
1
2
u(c) = u(b) +

1
2
u(d),

correspond to a self-adjoint realization of A = ∂2

∂t2 −
∂2

∂s2 in L2(R).

Proof. The proof consists of applying the construction of §3 to (s, t) =
a, b, c, and d and noting the rectangles in which this construction assigns
the values ± 1

4 . In the figures below (for k = 2) we denote the value ± 1
4

resulting from point a by ±a, etc.
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A rather tedious calculation shows that this construction always decom-
poses R into rectangles in which H assumes one of the following values:

± (a + b),

± (a + c− d),

± (b− c + d).

Since all of these expressions are made to vanish by choosing

a =
1
4
, b = −1

4
, c = −1

8
, d =

1
8

it follows that the composite singularity corresponding to

u(a)− u(b)− 1
2
u(c) +

1
2
u(d)

vanishes identically in R×R. Therefore all functions in the range of

A−1f =
∫∫

R
H(s, t;σ, τ)f(σ, τ) dσ dτ

will satisfy

u(a)− u(b) +
u(d)− u(c)

2
= 0.



A SELF-ADJOINT “SIMULTANEOUS CROSSING OF THE AXIS” 181

Remarks.
1. Other self-adjoint boundary conditions can be obtained by choosing

a = 1
4 , b = − 1

4 , c arbitrary, and d = c + 1
4 .

2. By way of physical interpretation of these results, it seems that a
simultaneous crossing of the axis is an unreasonable requirement for a driven
string tied down at both end points. If, however, one is willing to shorten
the string by moving in from both ends at the speed of propagation, then it
is possible to manipulate these ends so as to achieve a simultaneous crossing
of the axis for arbitrary T > 0.
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