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STABILIZATION OF FUNCTIONS AND ITS
APPLICATION

L. D. KUDRYAVTSEV

Abstract. The concepts of polynomial stabilization, strong poly-
nomial stabilization, and strong stabilization are introduced for a fun-
damental system of solutions of linear differential equations. Some
criteria of such kinds of stabilizations and applications to the the-
ory of existence and uniqueness of solutions of ordinary differential
equations are given. An abstract scheme of the obtained results is
presented for Banach spaces.

1. Polynomial and Strong Polynomial Stabilization

Let us introduce concepts of stabilization and strong stabilization of func-
tions. We begin by considering stabilization as t → +∞ of a function to a
polynomial

P (t) =
n−1
∑

m=0

cmtm (1)

of degree at most n− 1, where n is a fixed natural number.

Definition 1. An n− 1 times differentiable function x(t) on the infinite
half-interval [t0, +∞), t0 ∈ R (R is the real line), is said to stabilize as
t → +∞ to the polynomial (1) if

lim
t→+∞

(

x(t)− P (t)
)(j)

= 0, j = 0, 1, . . . , n− 1. (2)

Let us write in this case x(t) ∼ P (t).
If such a polynomial exists (for a given function), then it is unique.
We introduce the notation

(Imx)(t) =
∫ +∞

t
dt1

∫ +∞

t1
dt2 · · ·

∫ +∞

tm−1

x(tm) dtm, m ∈ N.
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It is possible to obtain a good enough description of functions stabilizing
to polynomials in the class of functions having n and not n− 1 derivatives
as assumed by Definition 1.

Theorem 1. A function x(t) having a locally integrable derivative of
order n on the half-interval [t0,+∞) stabilizes as t → +∞ to a polynomial
of degree at most n− 1 iff the integral

(Inx(n))(t0) =
∫ +∞

t0
dt1

∫ +∞

t1
dt2 · · ·

∫ +∞

tn−1

x(n)(tn) dtn (3)

converges.

Theorem 2. If the integral (3) converges, then the function x(t) stabi-
lizes as t → +∞ to the the given polynomial (1) iff

x(t) = P (t) + (−1)n(Inx(n))(t). (4)

The property (2) of the polynomial P (t) is analogous to that of the Taylor
polynomial of a function for the finite point t0 when t → t0. However, in
contrast to the latter polynomial, the polynomial with the property (2) for
a given function x(t) exists only for one number n.

The conditions of Theorem 1 are fulfilled if
∫ +∞

t0
tm−1|x(n)(t)|p dt < +∞, 1 ≤ p < +∞, m ∈ N, m > pn.

This case was considered by S.L. Sobolev [1]. V.N. Sedov [2] and the au-

thor [3] obtained some generalizations when the integral
+∞
∫

t0
ϕ(t)|x(n)(t)|p dt

is finite for a nonnegative function ϕ. The general case, i.e., Theorems 1
and 2, is treated in [4, 5].

The coefficients of the polynomial (1) to which the function x(t) stabilizes
as t → +∞ can be calculated (see [4]) by the formula

cn−m =
1

(n−m)!





m
∑

j=1

(−1)m−j

(m− j)!
x(n−j)(t0)t

m−j
0 +

+(−1)m−1
m−1
∑

k=0

tk0
k!

(Im−kx(n))(t0)

]

, m = 1, 2, . . . , n.

If the function x(t) is n − 1 times differentiable on [t0, +∞), then there
exists its one and only one representation

x(t) =
n−1
∑

m=0

yx,m(t)tm (5)
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such that

x(k)(t) =
n−1
∑

m=k

m!
(m− k)!

yx,m(t)tm−k, k = 0, 1, . . . , n− 1, t ≥ t0, (6)

i.e., coefficients yx,m(t) behave if they were constants by n−1 times differen-
tiation of the expression occurring on the right-hand side of the equality (5).
Such representations of functions will be called polynomial Lagrange rep-
resentations. Representations of this kind emerge when we use Lagrange’s
method of variation of constants for solving linear nonhomogeneous ordinary
differential equations.

Definition 2. An n − 1 times differentiable function x(t) on the half-
interval [t0,+∞) is said to strongly stabilize as t → +∞ to the polynomial
(1) if

lim
t→+∞

yx,m(t) = cm, m = 0, 1, . . . , n− 1, (7)

where yx,m(t) are the coefficients of the polynomial Lagrange representation
of x(t).

In this case let us write x(t) ≈ P (t).
If the function x(t) has n derivatives, then for derivatives of the coeffi-

cients of its polynomial Lagrange representation we have the formula

y′x,n−k(t) =
(−1)k−1

(n− k)!(k − 1)!
x(n)(t)tk−1, k = 1, 2, . . . , n.

Theorem 3. A function x(t) having a locally integrable derivative of
order n on the half-interval [t0, +∞) strongly stabilizes as t → +∞ to the
polynomial (1) iff the integral

∫ +∞

t0
tn−1x(n)(t) dt (8)

converges.

We observe that if the integral (8) converges, then so does the integral
(3), but some examples show that the converse statement is wrong [4].
Thus if some function strongly stabilizes as t → +∞ to a polynomial, then
it stabilizes to a polynomial too, but not conversely. More exactly, the
following theorem is valid.

Theorem 4. If the integral (8) converges, then a function x(t) stabilizes
as t → +∞ to the polynomial (1) iff this function strongly stabilizes as
t → +∞ to the same polynomial.



186 L. D. KUDRYAVTSEV

We note the special role of polynomials

Qr(t) =
r

∑

j=0

(−1)j

j!
xj , r = 0, 1, . . . ,

for the polynomial Lagrange representation of functions.

Theorem 5. The coefficients yx,m(t) of the polynomial Lagrange repre-
sentation of an n − 1 times differentiable function x(t) on [t0, +∞) can be
calculated by the formula

yx,m(t) =
1
m!

Qn−m−1

(

t
dm

dtm

)

x(t), m = 0, 1, . . . , n− 1.

The following criterion plays an important role for strong stabilization
to polynomials.

Theorem 6. If the integral (8) converges, then a function x(t), having
a locally integrable derivative of order n on [t0,+∞), strongly stabilizes to
the polynomial (1) iff the identity

x(t) = P (t) +
n−1
∑

m=0

(−1)n−m

m!(n−m− 1)!
tm

∫ +∞

t
sn−m−1x(n)(s) ds (9)

holds.

We introduce some Banach spaces for stabilized and strongly stabilized
functions.

Let ˜Xt be a set of all n−1 times continuously differentiable functions on
the half-interval [t,+∞), t ≥ t0 which stabilize as t → +∞ to polynomilas
of degree at most n− 1, i.e., ˜Xt =

{

Cn−1[t, +∞) : ∃P ∼ x
}

.
We shall use the notation

Px(t) =
n−1
∑

m=0

cx,mtm (10)

for the polynomial to which the given function x(t) stabilizes as t → +∞
and assume that

cx = (cx,0, cx,1, . . . , cx,n−1). (11)

Theorem 7. The set ˜Xt is a Banach space with the norm

‖x‖t = ‖x− Px‖Cn−1[t,+∞) + |cx|. (12)

The polynomial stabilization is continuous with respect to the norm (12).
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Let ˜

˜Xt be a set of all functions n − 1 times continuously differentiable
on the half-interval [t, +∞), t ≥ t0, and strongly stabilized as t → +∞
to polynomials of degree at most n − 1, i.e., ˜

˜X =
{

x ∈ Cn−1[t, +∞) :
∃P ≈ x

}

, and let yx = (yx,0, yx,1, . . . , yx,n−1), where yx,m = yx,m(t) are the
coefficients of the polynomial Lagrange representation of the given function
x(t). Thus, if x(t) ≈ P (t), then

lim
t→+∞

yx(t) = cx. (13)

Theorem 8. The set ˜

˜Xt is a Banach space with the norm |||x|||t =
‖yx‖Cn[t,+∞), where Cn[t, +∞) is a Banach space of all n-dimensional vec-
tor functions with the uniform norm, continuous and bounded on the half-
interval [t,+∞).

2. Some Applications of Polynomial and Strong Polynomial
Stabilizations to the Existence and Uniqueness of Solutions

of Ordinary Differential Equations

Let us consider a differential equation

x(n)(t) = f(t, x, x′, . . . , x(n−1)), (14)

where f : [t0, +∞)× Rn → R is a continuous function.
First we shall study the problem of stabilization of solutions of equation

(14) to the given polynomial (1):

x(t) ∼ P (t). (15)

Note that we do not obtain simpler problems by the change of the vari-
ables t = 1/s or x = x1, x′ = x2, . . . , x(n−1) = xn.

Theorem 9. A solution x(t) of equation (14) stabilizes as t → +∞ to
the polynomial (1) iff it is a solution of the integral equation

x(t) = P (t) + (−1)n(

Inf(·, x, x′, . . . , x(n−1))(t). (16)

It is useful to note that in the case of strong stabilization of solutions
of equation (14) we naturally obtain another integral equation which is
equivalent to the differential equation (14) (see Theorem 11 below).

Definition 3. Let g be a function such that g : [t0, +∞)×Rn → R and
let Y be a set of some functions n−1 times differentiable on the half-interval
[t0, +∞).
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The integral (Ing(·, x, x′, . . . , x(n−1)))(t0) is called strongly uniformly con-
vergent (on the n-dimensional half-interval [t0, +∞)n) with respect to the
set Y if for every ε > 0 there exists tε ≥ t0 such that for all functions x(t) ∈
Y and for all t > tε we have the inequalities

∣

∣

(

Img(·, x, x′, . . . , x(n−1))
)

(t)
∣

∣ <
ε, m = 1, 2, . . . , n.

We introduce the notation

˜XT (0) = {x ∈ ˜XT : x ∼ 0}, ˜XT (P ) = ˜XT (0) + P,

˜QT (P, r) = {x : ˜XT (P ) : ‖x− P‖T ≤ r}, T ≥ t0,

x=(x, x′, . . . , x(n−1)), in particular, P=(P, P ′, . . . , P (n−1)), (17)

f(t,x) = f(t, x, x′, . . . , x(n−1)).

Theorem 10. If the polynomial (1) is given, if for every r > 0 the inte-
gral

(

Inf(·, x)
)

(t0) is strongly uniformly convergent with respect to the ball
˜Qt0(P, r), if for every r > 0 there exists a function ϕr : [t0, +∞) → [0, +∞)
such that (Inϕr)(t0) < +∞ and for all t ≥ t0, ξ ∈ Rn, η ∈ Rn, |ξ| ≤
r, |η| ≤ r the inequality

|f(t,P + η)− f(t,P + ξ)| ≤ ϕr(t)|η − ξ| (18)

holds, then there exists a T ≥ t0 such that on the half-interval [T, +∞)
there exists one and only one solution of equation (14) which stabilizes as
t → +∞ to the given polynomial (1).

An equation of the type x′ = f(x)/(1 + t2), where for every r > 0 the
function f(x) is bounded on the set of all functions x(t) ∈ ˜Xt0 belonging to
the ball ‖x‖C[t0,+∞) ≤ r, is an example of equations satisfying the conditions
of Theorem 10.

Note that solutions of equation (14), for which the conditions of Theorem
10 are fulfilled, can have no absolutely integrable derivatives. The simplest
example of such an equation is x′ = sin t/t.

Let us now consider the case of strong stabilization of solutions as t →
+∞ to a polynomial.

Theorem 11. A solution x(t) of the equation (14) strongly stabilizes as
t → +∞ to the polynomial (1) iff it is a solution of the integral equation

x(t) = P (t) +
n−1
∑

m=0

(−1)n−m

m!(n−m− 1)!
tm

∫ +∞

t
sn−m−1f(s, x, x′, . . . , x(n−1)) ds.

Setting now ξ = (ξ0, ξ1, . . . , ξn−1) ∈ Rn, P (t, ξ) =
n−1
∑

m=0
ξmtm, ˜

˜QT (r) =

{x ∈ ˜

˜X : |||x|||T ≤ r} and using the notation (17), we obtain P(t, ξ) =
(P (t, ξ), P ′(t, ξ), . . . , P (n−1)(t, ξ)).
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Theorem 12. If the polynomial (1) is given, if for every r > 0 the inte-
gral

∫ +∞

t0
tn−1f(t,x) dt

uniformly converges with respect to the ball ˜

˜Qt0(r), if for every r > 0 there
exists a function ψr : [t0,+∞) → [0, +∞) such that

∫ +∞

t0
tn−1ψr(t) dt < +∞ (19)

and for all t ≥ t0, ξ ∈ Rn, η ∈ Rn, |ξ| ≤ r, |η| ≤ r, we have the inequality

|f(t,P(t, η))− f(t,P(t, ξ))| ≤ ψr(t)|η − ξ|, (20)

then there exists a T ≥ t0 such that on the half-interval [T, +∞) there exists
one and only one solution of (14) which strongly stabilizes as t → +∞ to
the given polynomial (1).

It is obvious that, in contrast to simple stabilization, in the case of strong
stabilization we need some other generalization of the Lipschitz condition
(compare the relations (18) and (20)).

The theorem about continuous dependence of solutions of the equation

(14) on the stabilization data holds in the space ˜

˜Xt0 .

Theorem 13. Let the polynomials P (t,aj), aj ∈ Rn, j = 1, 2, of degree
at most n−1 be given. If the solution xj(t) of equation (14) is defined on the
half-interval [t0, +∞), if it strongly stabilizes as t → +∞ to the polynomial
P (t,aj), j = 1, 2, and if for some r > maxj=1,2 |||xj |||t0 there exists a
function ψr(t) satisfying the conditions (19), (20), then the inequality

|||x2 − x1|||t0 ≤ |a2 − a1|n exp n
∫ +∞

t0
tn−1ψr(t) dt

is valid.

3. General Case of the Strong Stabilization Problem

Let the equation

Lx = f(t, x, x′, . . . , x(n−1)), (21)

be given, where

L =
dn

dtn
+

n−1
∑

k=0

pm(t)
dm

dtm
(22)
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pm(t) are continuous functions on the interval (a, b), m = 0, 1, . . . , n − 1,
−∞ ≤ a < b ≤ +∞.

In the case of polynomial stabilization we have L = dn

dtn , a = t0 ∈ R, and
b = +∞. For an arbitrarily chosen linear operator L it is possible to write
equation (14) in the form (21), and conversely. Of course the right-hand
sides of the equations will be different. So equation (21) is not an equation
of a new type but only a new notation.

Assume that

v1, v2, . . . , vn (23)

in some fundamental system of solutions of the equation

Lx = 0. (24)

Let x(t) be an n − 1 times differentiable function on the interval (a, b)
and

x(t) =
n

∑

j=1

yx,j(t)vj(t), a < t < b, (25)

be its Lagrange representation with respect to the system (23), i.e. a rep-
resentation such that

x(m)(t) =
n

∑

j=1

yx,j(t)v
(m)
j (t), m = 0, 1, . . . , n− 1, a < t < b. (26)

For every function n − 1 times differentiable on the interval (a, b) there
exists one and only one Lagrange representation (25), since the determinant
of the system of linear equations (26) with respect to the variables yx,j ,
j = 1, 2, . . . , n, is the Wronskian of the system (23).

Let now v(t) ∈ ker L; therefore

v(t) =
n

∑

j=1

cjvj(t), (27)

where cj are some constants, j = 1, 2, . . . , n; also let k, l be some nonnega-
tive integers, 1 ≤ k + l ≤ n.

Definition 4. An n−1 times differentiable function on the interval (a, b)
is said to strongly (k, l)-stabilize to the function (27) if

lim
t→a

yx,j(t) = cj , j = 1, 2, . . . , k,

lim
t→b

yx,j(t) = cj , j = k + 1, k + 2, . . . , k + l.
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In this case let us write x(t) ≈
(k,l)

v(t).

The general problem is to find solutions of equation (21) which strongly
(k, l)-stabilize to a given function v(t) ∈ ker L. Let us briefly discuss this
problem. It includes the classical boundary problems on finite segments,
the Cauchy problem, and some new problems.

Indeed, if all coefficients pm(t), m = 0, 1, . . . , n− 1, of the operator (22)
are continuous on the half-interval (a, b], b ∈ R, then all functions (23) with
all their derivatives up to order n inclusive are continuous at the point t = b.
Therefore the system of identities (26) implies as t → b that

x(m)(b) =
n

∑

j=1

cjv
(m)
j (b), m = 0, 1, . . . , n− 1.

From this we conclude that giving the function v(t) ∈ kerL, i.e., giv-
ing the coefficients c1, c2, . . . , cn, is equivalent to giving the Cauchy data
x(b), x′(b), . . . , x(n−1)(b). Therefore in this case the problem of strong (0, n)-
stabilization of solutions of equation (21) is equivalent to the Cauchy prob-
lem.

In the case where k ≥ 1, l ≥ 1 and −∞ < a < b < +∞, it is possible
to see (when the coefficients pm(t), m = 0, 1, . . . , n − 1, are continuous at
t = a and t = b) that the problem of strong (k, l)-stabilization of solutions
to a given v ∈ ker L is equivalent to a classical boundary value problem of
the type in which x(a), x′(a), . . . x(k−1)(a), x(b), x′(b), . . . , x(l−1)(b) are
given.

An example of the new problem is given in [6]. There the Euler equation

Lx + f = 0 (28)

with L as a quadratic integral functional depending on a function and its
derivatives up to order n inclusive is considered. Under some restrictions
imposed on the coefficients of the integrand of the given functional the exis-
tence and uniqueness of a generalized solution on the half-interval [t0, +∞)
are proved when the following stabilization data are given:

1) the solution stabilizes as t → +∞ to some polynomial (1);
2) the values x(i1)(t0), . . . , x(ik)(t0) and the coefficients cj1 , cj2 , . . . , cjl of

the polynomial (1) are given.
Some conditions are established for the indices

{iµ}µ=k
µ=1 , {jν}ν=l

ν=1 (29)

when one and only one generalized solution exists.
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Let the indices (29) be increasing sequences of integers belonging to the
set {0, 1, . . . , n− 1}:

0 ≤ i1 < i2 < · · · < ik ≤ n− 1, 1 ≤ k ≤ n,

0 ≤ j1 < j2 < · · · < jl ≤ n− 1, 1 ≤ l ≤ n.

If k+l = n, we introduce the notation {̄iν}ν=l
ν=1 for the complement of the set

of indices {iµ} to the set {0, 1, . . . , n− 1}. Assume that ī1 < ī2 < · · · < īl.
If k + l = n, then the conditions j1 ≤ ī1, j2 ≤ ī2, . . . , jl ≤ īl are called

the Pólya ones. When one of the sets {iµ}µ=k
µ=1 or {jν}ν=l

ν=1 is empty, the
system (29) is also said to satisfy the Pólya conditions.

These conditions were introduced by Pólya. He proved (see [7]) that
there exists one and only one polynomial (1) with the given values P (iµ)(0),
P (jν), µ = 1, 2 . . . , k, ν = 1, 2, . . . , l, k + l = n, iff the system of indices (29)
satisfies the Pólya conditions. It is evidently a purely algebraic problem.

In the general case, i.e., when k + l ≤ 2n, the system (29) is called
complete if it contains some subsystem satisfying the Pólya conditions.

For the complete system (29) we evidently have n ≤ k + l ≤ 2n.
If the system (29) is complete, then there exists one and only one general-

ized solution x(t) of the Euler equation (28) with the given values x(iµ)(t0),
cjν , µ = 1, 2, . . . , k, ν = 1, 2, . . . , l where cjν are some coefficients of the
polynomial (1) to which the solution x(t) stabilizes as t → +∞. It is in-
teresting to note that in contrast to the Pólya case it is a purely analytic
problem. If the system of indices (29) is not complete, then there exist
examples for which the problem under consideration has more than one
solution.

One can prove that the function n times continuously differentiable on
the interval (a, b) strongly (k, n − k)-stabilizes (k = 0, 1, . . . , n − 1) to the
function v(t) ∈ ker L iff the identity

x(t) = v(t) +
∫ b

a
Gk(t, s)Lx(s)ds (30)

holds.
Here Gk(t, s) is the generalized Green’s function. This function strongly

(k, n− k)-stabilizes to zero (at the ends of the interval (a, b)), but it and its
appropriate derivatives do not in general tend to zero as t → a and t → b,
as it should be if Gk(t, s) were the ordinary Green’s function.

Let us assume now that the solution of equation (21) strongly (0, n)-
stabilizes to a function v(t) ∈ ker L. Then the standard change of variables
x = x1, x′ = x2, . . . , x(n−1) = xnz is recommended. We obtain a system
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of the type

Lx = f(t,x), x = (x1, x2, . . . , xn),

L =
d
dt

+ A,
(31)

where A is a continuous matrix of order n × n on the interval (a, b), and
f : (a, b)× Rn → Rn.

Let

vi = (vi1, vi2, . . . , vin), i = 1, 2, . . . , n, (32)

be a fundamental system of the homogeneous equation Lx = 0,

V = (vij), i, j = 1, 2, . . . , n, (33)

be a fundamental matrix of the system (32), x(t) be a differentiable function
on the interval (a, b),

x(t) =
n

∑

i=1

yx,i(t)vi(t) (34)

(by analogy with scalar functions this representation of the vector function
x(t) will be called the Lagrange representation); also let

yx(t) = (yx,1(t), yx,2(t), . . . , yx,n(t)). (35)

The vector function x(t) is called strongly stabilized as t → b to the
function

v(t) =
n

∑

i=1

civi(t) ∈ ker L (36)

if

lim
t→b

yx(t) = c, c = (c1, c2, . . . , cn). (37)

The function x(t) strongly stabilizes to the function (35) iff the identity

x(t) = V c− V
∫ b

t
V −1(s)Lx(s)ds

holds.
The problem of strongly (0, n)-stabilized solutions of equation (21) is

reduced to the problem of strongly stabilized solutions of equation (31).
The formula (34) implies x = V y and for the vector function y we obtain
the equation (see [8]) y′ = V −1f(t, V y); thus the condition (37) has to be
fulfilled.
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As in the case of strong stabilization to polynomials, one can obtain
the existence and uniqueness theorem for solutions of the system (31) in a
neighborhood of the point t = b only if these solutions strongly stabilize as
t → b to some function v ∈ ker L (see [9]).

4. Abstract Scheme

The main idea of this paper is to establish (under some restrictions) that
for every given solution v(t) of the linear homogeneous equation Lx = 0
there exists one and only one solution x(t) of the nonhomogeneous equation
Lx = f(t, x) if only this solution x(t) stabilizes to the solution v(t).

The first question in the case of abstract spaces is connected with defining
the concept of stabilization, since in the function case this concept is based
on the concept of the limit of functions. It is recommended to use for this
purpose the generalization of the representations of functions (4), (9), and
(30).

Let X and Y be linear spaces, L : X → Y , F : X → Y , S : Y → X,
Y = L(X), where L and S are linear operators, and F is in general a
nonlinear operator; also let LS = Id, where Id is the identity operator of
the space Y onto itself. Then the following decomposition in the direct sum
holds: X = ker L⊕ S(Y ).

Definition 5. An element x ∈ X is called S-stabilized to an element
v ∈ ker L if x = v + SLx.

In this case we can write x ∼
S

v.

Under the above assumptions, for every element v ∈ ker L the equations
Lx = Fx and x = v + SFx are equivalent on the set of all elements of the
space X which are S-stabilized to the given element v ∈ ker L.

If X, Y are Banach spaces and SF is a contracting operator, then for
any v ∈ ker L there exists one and only one solution x ∼

S
v in the space X.
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