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LIMIT DISTRIBUTION OF THE INTEGRATED SQUARED
ERROR OF TRIGONOMETRIC SERIES REGRESSION


ESTIMATOR


E. NADARAYA


Abstract. Limit distribution is studied for the integrated squared
error of the projection regression estimator (2) constructed on the
basis of independent observations (1). By means of the obtained
limit theorems, a test is given for verifying the hypothesis on the
regression, and the power of this test is calculated in the case of
Pitman alternatives.


Let observations Y1, Y2, . . . , Yn be represented as


Yi = µ(xi) + εi, i = 1, n, (1)


where µ(x), x ∈ [−π, π], is the unknown regression function to be estimated
by observations Yi; xi, i = 1, n, are the known numbers, and −π = x0 <
x1 < · · · < xn ≤ π, εi, i = 1, n, are independent equidistributed random
variables; Eε1 = 0, Eε2


1 = σ2, and Eε4
1 < ∞.


The problem of nonparametric estimation of the regression function µ(x)
for the model (1) has a recent history and has been treated only in few
papers. In particular, a kernel estimator of the Rosenblatt–Parzen type for
µ(x) was proposed for the first time in [1].


Assume that µ(x) is representable as a converging series in L2(−π, π)
with respect to the orthonormal trigonometric system


{


(2π)−1/2, π−1/2 cos ix, π−1/2 sin ix
}∞


i=1
.


Consider the estimator of the function µ(x) constructed by the projection
method of N.N. Chentsov [2]


µnN (x) =
a0n


2
+


N
∑


i=1


ain cos ix + bin sin ix, (2)
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where N = N(n) →∞ for n →∞ and


ain =
1
π


n
∑


j=1


Yj∆j cos ixj , bin =
1
π


n
∑


j=1


Yj∆j sin ixj ,


∆j = xj − xj−1, j = 1, n, i = 0, N.


The estimator (2) can be rewritten in a more compact way as


µnN =
n


∑


j=1


Yj∆jKN (x− xj),


where KN (u) = 1
2π


∑


|r|≤N
eiru is the Dirichlet kernel.


In [3], p.347, N.V. Smirnov considered estimators of the type (2) for
a specially chosen class of functions µ(x) in the case of equidistant points
xj ∈ [−π, π] and of independent and normally distributed observation errors
εi. In [4] an estimator of the type (2) is obtained, which is asymptotically
equivalent to projection estimators which are optimal in the sense of some
accuracy criterion. The asymptotics of the mean value of the integrated
squared error of the estimator (2) is considered in [5].


It is of interest to investigate the limit distribution of the integrated
squared error


∫ π


−π
[µnN (x)− µ(x)]2dx,


which is the goal pursued in this paper. The method used to prove the
theorems below is based on the functional limit theorem for a sequence of
semimartingales [6].


Denote


UnN =
n


2π(2N + 1)


∫ π


−π


[


µnN (x)− EµnN (x)
]2


dx,


Qir = ∆i∆rKN (xi − xr), σ2
nN =


n2σ4


π2(2N + 1)2


n
∑


r=2


r−1
∑


j=1


Q2
jr,


ηik =
n


π(2N + 1)σnN
εiεkQik,


ξ1 = 0, ξk =
k−1
∑


i=1


ηik, k = 2, n, ξk = 0, k > n,


and assume that Fk is σ-algebra generated by random variables ε1, ε2,
. . . , εk, F0 = (φ, Ω).


Lemma 1 ([7], p.179). The stochastic sequence (ξk,Fk)k≥1 is a mar-
tingale-difference.
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Lemma 2. Let p(x) be the known positive continuously differentiable
distribution density on [−π, π], and points xi be chosen from the relation
∫ xi


−π p(u) du = i
n , i = 1, n.


If N ln N
n → 0 for n →∞, then


EUnN = θ1 + O
(


N lnN
n


)


, θ1 =
σ2


(2π)2


∫ π


−π
p−1(u) du, (3)


(2N + 1)σ2
nN → θ2 =


σ4


4π3


∫ π


−π
p−2(u) du. (4)


Proof. From the definition of xi we easily obtain


∆i =
1


np(xi)


[


1 + O
( 1


n


)


]


,


where O
( 1


n


)


is uniform with respect to i = 1, n.
Hence it follows that


Qir =
1


n2p(xi)p(xr)
KN (xi − xr)


[


1 + O
( 1


n


)


]


. (5)


Taking into account the relation


max
−π≤u≤π


|KN (u)| = O(N) (6)


and (5), we find


σ2
nN =


σ4


2π2(2N+1)2n2


n
∑


i=1


n
∑


j=1


K2
N (xi−xj)


1
[p(xi)p(xj)]2


+O
( 1


n


)


. (7)


Let F (x) be a distribution function with density p(x) and Fn(x) be an
empirical distribution function of the “sample” x1, x2, . . . , xn, i.e., Fn(x) =
n−1 ∑n


k=1 I(−∞,x)(xk), where IA(·) is the indicator of the set A. Then the
right side of (7) can be written as the integral


σ2
nN =


σ4


2π2(2N + 1)2


∫ π


−π


∫ π


−π
K2


N (t− s)
dFn(t) dFn(s)


[p(t)p(s)]2
+ O


( 1
n


)


.
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Further we have
∣


∣


∣


∣


∫ π


−π


∫ π


−π
K2


N (t− s)
dFn(t) dFn(s)


[p(t)p(s)]2
−


∫ π


−π


∫ π


−π
K2


N (t− s)
dF (t) dF (s)
[p(t)p(s)]2


∣


∣


∣


∣


≤


≤ I1 + I2,


I1 =
∣


∣


∣


∣


∫ π


−π


∫ π


−π
K2


N (t− s)
dFn(s)


[p(t)p(s)]2
[


dFn(t)− dF (t)
]


∣


∣


∣


∣


,


I2 =
∣


∣


∣


∣


∫ π


−π


∫ π


−π
K2


N (t− s)
dF (t)


[p(t)p(s)]2
[


dFn(s)− dF (s)
]


∣


∣


∣


∣


.


By integration by parts in the internal integral in I1 we readily obtain


I1 ≤ 2
∫ π


−π


dFn(s)
p2(s)


∫ π


−π


∣


∣dFn(t)− dF (t)
∣


∣


∣


∣


(


K ′
N (t− s)p(t)−


−KN (t− s)p′(t)
)


KN (t− s)/p3(t)
∣


∣ dt. (8)


Since sup−π≤x≤π |Fn(x)− F (x)| = O
( 1


n


)


and the relations [8]1


max
−π≤u≤π


|K ′
N (u)| = O(N2),


∫ π


−π
K2


N (u) du = 2N + 1,
∫ π


−π
|KN (u)| du = O(lnN)


(9)


are fulfilled, from (8) we have the estimate


I1 = O
(


N2 ln N
n


)


.


In the same manner we show that


I2 = O
(


N2 ln N
n


)


.


Therefore


(2N+1)σ2
nN =


σ4


4π3


∫ π


−π


∫ π


−π
ΦN (s−t)


dt ds
p(s)p(t)


+O
(


N ln N
n


)


, (10)


where ΦN (u) = 2π
2N+1K2


N (u) is the Fejér kernel.
We shall complete the definition of the function p−1 outside [−π, π] as


regards its periodicity and also note that KN (u) and ΦN (u) are periodic
functions with the period 2π. The continued function will be denoted by
g(x). Then


∫ π


−π


∫ π


−π
ΦN (s− t)


dt ds
p(s)p(t)


=
∫ π


−π
p−2(x) dx + χn,


1See p. 115 in the Russian version of [8]: “Mir”, Moscow, 1965.
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where


|χn| ≤
∫ π


−π
|σ̄N (x)− g(x)|dx,


σ̄N (x) =
∫ π


−π
ΦN (u)g(x− u)du.


Hence, on account of the theorem on convergence of the Fejér integral
σ̄N (x) to g(x) in the norm of the space L1(−π, π) (see [9], p.481), we have
χn → 0 for n →∞.


Therefore


(2N + 1)σ2
nN → σ4


4π3


∫ π


−π
p−2(x) dx.


Now we shall prove (3). We have


DµnN (x) = σ2
n


∑


j=1


1
np2(xj)


K2
N (x− xj)


[


1 + O
( 1


n


)


]


.


Applying the same reasoning as in deriving (10), we find


DµnN (x) =
σ2


n


∫ π


−π
K2


N (x− s)
ds


p(s)
+ O


(N2 ln N
n2


)


. (11)


Therefore


EUnN =
σ2


(2π)2


∫ π


−π


∫ π


−π
ΦN (t− s)


ds dt
p(s)


+ O
(N ln N


n


)


=


=
σ2


(2π)2


∫ π


−π
p−1(s) ds + O


(N ln N
n


)


.


Denote by the symbol d→ the convergence in distribution, and let ξ be a
random variable having normal distribution with zero mean and variance 1.


Theorem 1. Let xi i = 1, n be the same as in Lemma 2 and N2 ln N
n → 0


for n →∞. Then, as n increases,
√


2N + 1(UnN − θ1)θ
−1/2
2


d→ ξ.


Proof. We have
UnN − EUnN


σnN
= H(1)


n + H(2)
n ,


where


H(1)
n =


n
∑


j=1


ξj , H(2)
n =


n
2π(2N + 1)σnN


n
∑


i=1


(ε2
i − Eε2


i )Qii.
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H(2)
n converges to zero in probability. Indeed,


DH(2)
n ≤ n2Eε4


1


(2π)2(2N + 1)2σ2
nN


n
∑


i=1


Q2
ii =


=
Eε4


1


(2π)2(2N + 1)2σ2
nN · n2


n
∑


i=1


1
(p(xi))4


K2
N (0)


(


1 + O
( 1


n


)


)


≤


≤ C
1


nσ2
nN


= O
(N


n


)


,


whence H(2)
n


P→ 0. Here and in what follows C is the positive constant
varying from one formula to another and the letter P above the arrow
denotes convergence in probability.


We will now prove that H(1)
n


d→ ξ. To this end we will verify the validity
of Corollaries 2 and 6 of Theorem 2 from [6]. We have to show whether
the conditions contained in these statements are fulfilled for asymptotic
normality of the square-integrable martingale-difference, which, by Lemma
1, is our sequence {ξk,Fk}k≥1.


A direct calculation shows that
∑n


k=1 Eξ2
k = 1. Asymptotic normality


will take place if for n →∞
n


∑


k=1


E
[


ξ2
k · I(|ξk| ≥ ε) | Fk−1


]


→ 0 (12)


and
n


∑


k=1


ξ2
k


P→ 1. (13)


It is shown in [6] that the fulfillment of (13) and the condition sup
1≤k≤n


|ξk|
P→ 0


implies the validy of (12) as well.
Since for ε > 0


P
{


sup
1≤k≤n


|ξk| ≥ ε
}


≤ ε−4
n


∑


k=1


Eξ4
k,


to prove H(1)
n


d→ ξ we have to verify only (13) by the relation (15) to be
given below.


We will establish
∑n


k=1 ξ2
k


P→ 1. For this it suffices to make sure that
E(


∑n
k=1 ξ2


k − 1))2 → 0 for n →∞, i.e., due to
∑n


i=1 Eξ2
i = 1


E
(


n
∑


k=1


ξ2
k


)2
=


n
∑


k=1


Eξ4
k + 2


∑


1≤k1<k2≤n


Eξ2
k1


ξ2
k2
→ 1. (14)
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In the first place we find that
∑n


k=1 Eξ4
k → 0 for n → ∞. By virtue of


the definitions of ξk and ηij we write


n
∑


k=1


Eξ4
k = L(1)


n + L(2)
n ,


where


L(1)
n =


n4


π4(2N + 1)4σ4
nN


Eε4
1(Eε4


1 − 3σ4)
n


∑


k=2


k−1
∑


j=1


Q4
jk,


L(2)
n =


3n4σ4Eε4
1


(2N + 1)4σ4
nNπ4


n
∑


k=2


(
k−1
∑


j=1


Q2
jk


)2
.


From (5) and (6) we obtain


|L(1)
n | = C


1
n4N4σ4


nN


n
∑


k=2


k−1
∑


j=1


K4
N (xj − xk)


[p(xj)p(xk)]4


[


1 + O
( 1


n


)]


≤


≤ Cn−2σ−4
nN = O


((N
n


)2)


and also


|L(2)
n | = C


1
n2N4σ4


nN


n
∑


k=2








1
n


k−1
∑


j=1


K2
N (xj − xk)
p(xj)p(xk)


[


1 + O
( 1


n


)]








2


≤


≤ C
1


n2N4σ4
nN


n
∑


k=1








1
n


k−1
∑


j=1


K2
N (xj − xk)








2


=


= C
1


n2N4σ4
nN


n
∑


k=2


(∫ π


−π


K2
N (xk − u)
p2(u)


dFn(u)
)2


≤


≤ C
1


n2N4σ4
nN


n
∑


k=2


{


[


K2
N (xk − u)p−1(u) du


]2
+


+
[


∫ π


−π
K2


N (xk − u)p−2(u) d
(


Fn(u)− F (u)
)


]2
}2


.


Hence, taking into account the relation (9) and the formula of integration


by parts, we have |L(2)
n | = O


(


1
n


)


. Therefore


n
∑


k=1


Eξ4
k → 0 for n →∞. (15)
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Let us now establish that 2
∑


1≤k1<k2≤n Eξ2
k1


ξ2
k2
→ 1 for n → ∞. The


definition of ξi implies


ξ2
k1


ξ2
k2


=
(


k1−1
∑


i=1


η2
ik1


)(
k2−1
∑


i=1


η2
ik2


)


+
(


k1−1
∑


i=1


η2
ik1


)(
k2−1
∑


i6=s=1


ηik2ηsk2


)


+


+
(


k2−1
∑


i=1


η2
ik2


)(
k1−1
∑


s 6=t=1


ηsk1ηtk1


)


+
(


k1−1
∑


s 6=t=1


ηsk1ηtk1


)(
k2−1
∑


k 6=r=1


ηkk1ηrk2


)


=


= B(1)
k1k2


+ B(2)
k1k2


+ B(3)
k1k2


+ B(4)
k1k2


.


Therefore


2
∑


1≤k1<k2≤n


Eξ2
k1


ξ2
k2


=
4


∑


i=1


A(i)
n ,


where


A(i)
n = 2


∑


1≤k1<k2≤n


EB(i)
k1k2


, i = 1, 4.


In the first place we consider A(3)
n . By the definition of ηij we obtain


Eη2
ik2


ηsk1ηtk1 = 0, s 6= t, k1 < k2. Thus


A(3)
n = 0. (16)


Let us derive an estimate of A(2)
n . Divide the sum EB(2)


k1k2
into two parts:


EB(2)
k1k2


=
k1−1
∑


i=1


k1
∑


r 6=s=1


Eη2
ik1


ηrk2ηsk2 +
k1−1
∑


i=1


k2−1
∑


r 6=s=k1+1


Eη2
ik1


ηrk2ηsk2 .


The second term is equal to zero, since i cannot coincide with r or with s
and r 6= s; in this case Eη2


ik1
ηrk2ηsk2 = 0, and Eη2


ik1
ηrk2ηsk2 = 0 also in the


first term each time except for the case s = k1 or r = k1.
Thus


EB(2)
k1k2


= 2
k1−1
∑


i=1


E
(


η2
ik1


ηik2ηk1k2


)


.


Hence, using the definition of ηij and the inequality |Qij | ≤ C N
n2 obtained


from (5) and (6), we find


∣


∣EB(2)
k1k2


∣


∣ ≤ C
1


(2N + 1)2σ4
nN


k1−1
∑


i=1


Q2
ik1


. (17)
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Next, taking into account statement (4) of Lemma 2 and the definition
of σ2


nN , from (17) we have


|A(2)
n | ≤ C


n
N2σ4


nN


n
∑


k1=2


k1−1
∑


i=1


Q2
ik1


≤ C
1


nσ2
nN


= O
(N


n


)


. (18)


Consider now A(4)
n . By the definition of ηij we obtain


A(4)
n =


8n4


π4(2N + 1)4σ4
nN


∑


s<t<k1<k2


Qsk1Qsk2Qtk1Qtk2 ≤


≤ C
n4


N4σ4
nN


[∣


∣


∣


∑


s,t,k1,k2


Qsk1Qsk2Qtk1Qtk2


∣


∣


∣ +


+
∣


∣


∣


∑


k1,s,t


Q2
k1sQ


2
k1t


∣


∣


∣ +
∣


∣


∣


∑


k1,s,t


Qk1tQstQk1sQss


∣


∣


∣


]


=


= C
n4


N4σ4
nN


[


|E1|+ |E2|+ |E3|
]


. (19)


According to (5) and (6) we write


E1 = n−7
∑


s,t,k1


KN (xs − xk1)KN (xt − xk1)×


×
∫ π


−π
KN (xs − u)KN (xt − u) dFn(u) + O


(N2


n


)


.


Hence, integrating by parts and taking into account (9), we obtain


E1 = n−7
∫ π


−π


∑


s,t,k1


KN (xs − xk1)KN (xt − xk1)×


KN (xs − u)KN (xt − u)p(u) du + O
(N4 lnN


n5


)


. (20)


Applying the same operations three times, we represent (20) in the form


E1 = n−4
∫ π


−π


∫ π


−π


∫ π


−π


∫ π


−π
KN (z − u)KN (z − t)KN (y − u)KN (y − t)×


×p(y)p(u)p(z)p(t) du dt dz dy + O
(N4 ln N


n5


)


=


= O
(N ln3 N


n4


)


+ O
(N4 ln N


n5


)


.
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Thus


n4


N4σ4
nN
|E1| = O


( ln3 N
N


)


+ O
(N2 ln N


n


)


. (21)


Further, it is not difficult to show


n4


N4σ4
nN
|E2| = O


(N2


n


)


,


n4


N4σ4
nN
|E3| = O


(N2


n


)


.
(22)


Therefore (19), (21), and (22) imply


A(4)
n = O


(N2 ln N
n


)


+ O
( ln3 N


N


)


. (23)


Finally, we will show that A(1)
n → 1 for n → ∞. For this represent A(1)


n


in the form A(1)
n = Q(1)


n + Q(2)
n , where


Q(1)
n = 2


∑


k1<k2


(
k1−1
∑


i=1


Eη2
ik1


)(
k2−1
∑


j=1


Eη2
ik2


)


,


Q(2)
n = 2


(
∑


k1<k2


EB(1)
k1k2


−
∑


k1<k2


(
k1−1
∑


i=1


Eη2
ik1


)(
k2−1
∑


j=1


Eη2
ik2


))


.


From the definition of σ2
nN it follows that


Q(1)
n = 1−


n
∑


k=2


(
k−1
∑


i=1


Eη2
ik


)2
,


where
n


∑


k=2


(
k−1
∑


i=1


Eη2
ik


)2
≤ C


n4


N4σ4
nN


n
∑


k=2


(
k−1
∑


i=1


Q2
ik


)2
≤


≤ C
1


nσ4
nN


= O
(N2


n


)


.


Therefore


Q(1)
n = 1 + O


(


N2/n
)


. (24)


Let us now show that Q(2)
n → 0. Q(2)


n can be written as


Q(2)
n = 2


∑


k1<k2


[
k1−1
∑


i=1


(


cov(η2
ik1


, η2
ik2


) + cov(η2
ik1


, η2
k1k2


)
)


]


.
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But


Eη2
ik1


η2
ik2


≤ C
n4


N4σ4
nN


Q2
ik1
·Q2


ik2
≤


≤ C
1


n4N4σ4
nN


(


max
−π≤u≤π


|KN (u)|
)4


= O
( 1


n4σ4
nN


)


.


Similarly, Eη2
ij = O


(


n−2σ−2
nN


)


. Therefore


cov(η2
ik1


, η2
ik2


) = O
( 1


n4σ4
nN


)


. (25)


Further, since
∑


1≤k1<k2≤n(k1 − 1) = O(n3), (25) implies


Q(2)
n = O


(N2


n


)


. (26)


Thus, according to (24) and (26)


A(1)
n = 1 + O


(


N2/n
)


. (27)


Combining the relations (16), (18), (23) and (27), we finally obtain


E
(


n
∑


k=1


ξ2
k − 1


)2
→ 0 for n →∞.


Therefore
UnN − EUnN


σnN


d→ ξ.


Further, due to Lemma 2, EUnN = θ1 + O(N ln N
n ) and (2N + 1)σ2


nN → θ2,
and hence we obtain


(2N + 1)1/2(UnN − θ1)θ
−1/2
2


d→ ξ.


Denote


TnN =
n


2π(2N + 1)


∫ π


−π


[


µnN (x)− µ(x)
]2


dx.


Theorem 2. Let xi, i = 1, n, be the same as in Lemma 2 and the func-
tion µ(x) with period 2π have bounded derivatives up to the second order.
Moreover, if N2 ln N/n → 0 and n ln2 N/N9/2 → 0 for n → ∞, then
√


2N + 1(TnN − θ1)θ
−1/2
2


d→ ξ.
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Before we proceed to proving the theorem, we have to show
∫ π


−π
|K ′


N (u)|du = O(N ln N). (28)


Denote ˜Dν(u) =
∑ν


k=1 sin ku. Then by virtue of the Abel transformation
we have


K ′
N (u) = −


N
∑


k=1


k sin ku =
N−1
∑


ν=1


˜Dν(u) + N ˜DN .


It is well known [8] that ην = (ln ν)−1
∫ π
−π | ˜Dν(u)|du → 1 for ν → ∞.


Denote bN =
∑N−1


ν=1 ln ν. Then by the Toeplitz lemma


RN =
1


bN


N−1
∑


ν=1


ln ν · ην → 1.


Therefore


∫ π


−π
|K ′


N (u)|du ≤
N−1
∑


ν=1


∫ π


−π
| ˜Dν(u)|du + N


∫ π


−π
| ˜DN (u)|du =


= bN ·RN + N
∫ π


−π
| ˜DN (u)|du = O(N ln N).


Let us return to the proof of the theorem. We have


TnN = UnN + A1n + A2n,


A1n =
n


π(2N + 1)


∫ π


−π


[


µnN (x)− EµnN (x)
][


EµnN (x)− µ(x)
]


dx,


A2n =
n


2π(2N + 1)


∫ π


−π


[


EµnN (x)− µ(x)
]2


dx.


It is not difficult to find


√
2N + 1E|A1n| ≤


nσ2


2π
√


2N + 1


(
n


∑


j=1


∆2
j


[
∫ π


−π
Kn(y − xj)×


×
(


EµnN (y)− µ(x)
)


dy
]2)1/2


.


But


EµnN (y) =
∫ π


−π
µ(x)


1
p(x)


KN (y − x) dFn(x)
(


1 + O
( 1
n


)


)
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and
∫ π


−π
µ(x)p−1(x)KN (y − x) dFn(x) =


=
∫ π


−π
µ(x)KN (y − x) + O


( 1
n


∫ π


−π
|K ′


N (u)|du
)


.


It is well known ([10], p.22) that
∫ π


−π
µ(x)KN (y − x) dx = µ(y) + O


( lnN
N2


)


uniformly in y ∈ [−π, π]. By virtue of (28) this gives us


EµnN (x) = µ(x) + O
( ln N


N2


)


+ O
(N ln N


n


)


. (29)


Therefore


√
2N + 1E|A1n| ≤ C


[(n ln2 N
N9/2


)1/2 ln N
N1/4 +


+
(N2 ln N


n


)1/2 ln3/2 N√
N


]


→ 0. (30)


Further, from (29) we have


√
2N + 1A2n ≤ C


(n ln2 N
N9/2 +


N2


n
ln2 N√


N


)


→ 0. (31)


Finally, the statement of Theorem 2 directly follows from Theorem 1, (30),
and (31).


Using Theorems 1 and 2, it is easy to solve the problem concerning testing
of the hypothesis on µ(x). Given σ2, it is required to verify the hypothesis
H0 : µ(x) = µ0(x). The critical region is defined approximately by the
inequality UnN ≥ dn(α) or TnN ≥ dn(α), where


dn(α) = σ2(L1 + (2N + 1)−1/2L2
)


λα,


L1 = ((2π)−2
∫ π


−π
p−1(x) dx, L2 =


( 1
4π3


∫ π


−π
p−2(x) dx


)1/2
,


and λα is the quantile of level α of standard normal distribution.
Let now σ2 be unknown. We call an


√
N -consistent estimate of variance


σ2, for instance,


S2
n =


1
n


n
∑


i=1


(


Yi − µnλ(xi)
)2


,


where λ = λ(n) → ∞ is a sequence such that λ
N → 0, N ln2 λ


λ4 → 0 and
Nλ4


n → 0 for n →∞.







210 E. NADARAYA


Indeed, using the expressions (11) and (29), we easily find


√
N(ES2


n − σ2) = O
((Nλ


n


)1/2)


+ O
(N1/2 lnλ


λ2


)


. (32)


Denote


Zj = Yj −Rj ,


Rj =
n


∑


k=1


Yk∆kKλ(xj − xk).


Then


n2DS2
n =


n
∑


j=1


DZ2
j +


∑


i 6=i1


cov(Z2
i , Z2


i1).


Simple calculations show that cov(Z2
j , Z2


j1) = O
(


λ4


n


)


. Therefore DS2
n =


O
(


λ4


n


)


. This and (32) imply
√


N(S2
n − σ2) P→ 0.


Corollary. Let the conditions of Theorem 2 be fulfilled. Moreover, let
λ
n → 0, Nλ4


n → 0 and N ln2 λ
λ4 → 0. Then


S−2
n L−1


2


√
2N + 1(UnN − S2


nL1)
d→ ξ,


S−2
n L−1


2


√
2N + 1(TnN − S2


nL1)
d→ ξ.


This corollary enables one to construct a test for verifying H0 : µ(x) =
µ0(x). The critical region is defined approximately by the inequality UnN ≥
˜dn(α) or TnN ≥ ˜dn(α), where ˜dn(α) is obtained from dn(α) by using S2


n
instead of σ2.


Consider now the local behavior of the test power in the case where the
critical region is of the form {x ∈ R1, x ≥ dn(α)}. More exactly, find a
distribution of the quadratic functional UnN under a sequence of alternatives
close to the hypothesis H0 : µ(x) = µ0(x). The sequence is written as


H1 : µ̄(x) = µ0(x) + γnϕ(x) + o(γn), (33)


where γn → 0 appropriately and o(γn) is uniform in x ∈ [−π, π].


Theorem 3. Let µ̄n(x) satisfy the conditions of Theorem 2. If 2N +
1 = nδ, γn = n−1/2+δ/4, 2


9 < δ < 1
2 , then under the alternative H1


the statistic (2N + 1)1/2(UnN − θ1) is distributed in the limit normally
( 1


2π


∫ π
−π ϕ2(u)du,


√
θ2


)


.
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Proof. Let us represent UnN as the sum


UnN =
n


2π(2N + 1)


∫ π


−π


(


µnN (x)− E1µnN (x)
)2


dx +


+
n


π(2N + 1)
γn


∫ π


−π


[


µnN (x)− E1µnN (x)
]


ϕ̃n(x) dx +


+
n


2π(2N + 1)
γ2


n


∫ π


−π
ϕ̃2


n(x) dx = A1(n) + A2(n) + A3(n),


where E1(·) denotes the mathematical expectation under the hypothesis H1,


ϕ̃n(x) =
n


∑


j=1


ϕ(xj)∆jKn(x− xj).


Due to Theorem 1 one can readily assertain that
√


2N + 1(A1(n) − θ1) is
distributed asymptotically normal (0,


√
θ2).


By analogy with the proof of Lemma 2 we find


√
2N + 1A3(n) =


1
2π


∫ π


−π


(


∫ π


−π
ϕ(y)KN (x− y)dy


)2
dx + O


(N2 ln N
n


)


.


Hence, by virtue of theorem 2 from [9], p.474, we have


√
2N + 1A3(n) → 1


2π


∫ π


−π
ϕ2(u)du.


Further, for our choice of N and γn we can show by simple calculations that


√
2N + 1E|A2(n)| ≤ C


( ln2 n
nδ/4 +


ln n
n1−7δ/4


)


.


Thus the local behaviour of the power PH1(UnN ≥ dn(α)) is


PH1


(


UnN ≥ dn(α)
)


→ 1− Φ
(


λα − θ−1/2
2


1
2π


∫ π


−π
ϕ2(u) du


)


. (34)


Since
∫ π
−π ϕ2(u)du > 0 and is equal to zero iff ϕ(x) = 0, from (34)


we conclude that the test for the hypothesis H0 : µ(x) = µ0(x) against
alternatives of the form (33) is asymptotically strictly unbiased.


Remark. Similar results can be obtained by the same method for the
kernel estimator of Priestley and Chao [1].
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