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SOME OPEN PROBLEMS ABOUT THE SOLUTIONS OF
THE DELAY DIFFERENCE EQUATION xn+1 = A/x2

n + 1/xp
n−k

M.ARCIERO, G.LADAS AND S.W.SCHULTZ

Abstract. We discuss the dynamics of the positive solutions of the
delay difference equation in the title for some special values of the
parameters A, p and k and we pose a conjecture and two open prob-
lems.

1. Introduction. Consider the difference equation

xn+1 =
A
x2

n
+

1
√

xn−1
, n = 0, 1, . . . , (1)

where A ∈ (0,∞) and the initial conditions x−1 and x0 are arbitrary positive
numbers. The following conjecture is predicted by computer simulations.

2. Conjecture. Let x̄ denote the unique positive equilibrium of Eq. (1).
(a) Show that when

0 < A <
15
4

(2)

the positive equilibrium of Eq. (1) is globally asymptotically stable.
(b) Show that when

A >
15
4

(3)

there exists a periodic cycle with period two which is asymptotically stable.

With the use of a computer one can easily experiment with difference
equations and one can easily discover that such equations possess fascinat-
ing properties with a great deal of structure and regularity. Of course all
computer observations and predictions must also be proven analytically.
Therefore this is a fertile area of research, still in its infancy, with deep and
important results which require our attention.
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For some developments on the global behavior of solutions of delay dif-
ference equations the reader is referred to the forthcoming monograph by
Kocic and Ladas [2]. See also [1] and [3].

Although we are unable to establish the above conjecture, we have proven
the following result.

Theorem 1. (a) Assume that (2) holds. Then the positive equilibrium
x̄ of Eq. (1) is locally asymptotically stable.

(b) Assume that (3) holds. Then Eq. (1) has a periodic solution with
period two.

Proof. (a) Set % =
√

x̄. Then the linearized equation of Eq. (1) about x̄ is

yn+1 +
2A
%6 yn +

1
2%3 yn−1 = 0, n = 0, 1, . . . . (4)

From the well-known Schur-Cohn criterion, Eq. (4) is asymptotically stable
provided that

2A
%6 < 1 +

1
2%3 < 2. (5)

Note that % satisfies the equation

%2 =
A
%4 +

1
%
. (6)

Hence % > 1 and (5) is satisfied if and only if

2A < %6 +
1
2
%3 = A +

3
2
%3,

that is,

% >
(2A

3
)1/3

. (7)

Set f(t) = t6 − t3 − A and observe that f(t) < 0 if 0 < t < % and f(t) > 0
if t > %. Hence (7) is equivalent to f

(

( 2A
3 )1/3

)

< 0; that is

A <
15
4

.

(b) Eq. (1) has a periodic solution of the form {p, q, p, q, . . . } or {q, p, q, p, . . . }
if and only if

p =
A
q2 +

1
√

p
and q =

A
p2 +

1
√

q
. (8)
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Set x =
√

p and y =
√

q. Then the system of algebraic equations (8) is
equivalent to

x2 =
A
y4 +

1
x

y2 =
A
x4 +

1
y















with x, y > 0. (9)

Set ξ = x + y, η = xy and ζ = η3. Then x and y are the roots of the
quadratic equation λ2 − ξλ + η = 0 and these roots are real, positive, and
distinct if and only if

ξ, η ∈ (0,∞) and η <
1
4
ξ2. (10)

Cancel the denominators in (9), then multiply the first equation by x and
the second by y, equate the terms x4y4, and divide by x− y. This leads to

Aξ = η(ξ2 − η). (11)

Cancel the denominators in (9), subtract and then divide by x−y. This
yields

η3 = −A + ξ(ξ2 − 2η). (12)

Subtract from the first equation in (9), the second, and use (12) to obtain

ξ =
(A− 1)η3 + A2

η4 . (13)

By substituting (13) into (11) we find

G(ζ) = ζ3 + (A− 1)ζ2 + A2(2−A)ζ −A4 = 0. (14)

Note that

G(z) < 0 if z < ζ and G(z) > 0 if z > ζ. (15)

In view of (10) and (13) we obtain

4ζ3 < (A− 1)2ζ2 + 2A2(A− 1)ζ + A4

and so by using (14) we find

H(ζ) = (A + 3)(A− 1)ζ2 + 2A2(3−A)ζ − 3A4 > 0.

The positive root of this quadratic equation is ζ = 3A2/(A + 3) and so
H(ζ) > 0 if and only if G(3A2/(A + 3)) < 0, that is

A >
15
4

.

The proof of the theorem is complete.
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3. Open problems. A related difference equation is

xn+1 =
a
x2

n
+

1
xn−1

, n = 0, 1, . . . , (16)

where a ∈ (0,∞) and x−1, x0 ∈ (0,∞).
One can show that the following result holds.

Theorem 2. The following statements are true:
(a) The unique positive equilibrium x̄ of Eq. (16) is locally asymptotically

stable if

a < 2
√

3 (17)

and unstable if

a > 2
√

3. (18)

(b) When (18) holds, Eq. (16) has a periodic cycle with period two,
{p, q, p, q, . . . }.

Furthermore

p =
a +

√

a2 + 2− 2
√

1 + 4a2

2
and q =

a−
√

a2 + 2− 2
√

1 + 4a2

2
.

Open problem 1. (a) For what values of a is the positive equilibrium
x̄ of Eq. (16) globally asymptotically stable?

(b) For what values of a is the periodic cycle {p, q, p, q, . . . } of Eq. (16)
asymptotically stable? What is its basin of attraction?

Eqs. (1) and (16) are special cases of the delay difference equation

xn+1 =
A
x2

n
+

1
xp

n−k
n = 0, 1, . . . (19)

where A, p ∈ (0,∞) and k ∈ {0, 1, . . . } and the initial conditions x−k, . . . , x0
are arbitrary positive numbers.

Open problem 2. (a) Obtain conditions on A, p and k under which the
positive equilibrium of Eq. (19) is globally asymptotically stable.

(b) Obtain conditions on A, p and k under which Eq. (19) has periodic
cycles of period two. Under what conditions on A, p and k are these periodic
cycles stable? What is the basin of attraction?

(c) Do there exist periodic cycles of period greater than two?
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