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A SECOND-ORDER NONLINEAR PROBLEM
WITH TWO-POINT AND INTEGRAL


BOUNDARY CONDITIONS


S. A. BRYKALOV


Abstract. The paper gives sufficient conditions for the existence and
nonuniqueness of monotone solutions of a nonlinear ordinary differen-
tial equation of the second order subject to two nonlinear boundary
conditions one of which is two-point and the other is integral. The
proof is based on an existence result for a problem with functional
boundary conditions obtained by the author in [6].


The present paper is concerned with the theory of nonlinear boundary
value problems for equations with ordinary derivatives, see e.g. [1-4], and
is closely related to [5, 6]. We deal here with the solvability of a certain
essentially nonlinear second-order problem.


The following notation is used:
R is the set of all real numbers;
[a, b] denotes a closed interval where a differential equation is considered,


−∞ < a < b < +∞;
C0 denotes the space of all continuous functions;
C1 is the space of all continuously differentiable functions;
L1 denotes the space of all Lebesgue measurable functions with integrable


absolute value;
AC stands for the space of all absolutely continuous functions;
CL2


1 is the space of all x(·) ∈ C1 such that ẋ(·) ∈ AC.
We consider the existence of monotone solutions of the boundary value


problem


ẍ = f(t, x, ẋ), t ∈ [a, b], (1)


ω(x(a), x(b)) = 0, (2)
∫ b


a
ϕ(|ẋ(τ)|)dτ = g. (3)
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The solution x(·) ∈ CL2
1([a, b],R) should satisfy equation (1) almost ev-


erywhere. Assume that the function f : [a, b] × R × R → R satisfies the
Carathéodory conditions, i.e. f(t, x0, x1) is measurable in t for any fixed
numbers x0, x1 and is continuous in x0, x1 for almost every fixed t. Assume
also that |f(t, x0, x1)| ≤ M for almost all t and all x0, x1, the constant
M is positive, the number g ∈ R is fixed, the functions ω : R × R → R,
ϕ : [0,∞) → R are continuous, ω(s1, s2) is nondecreasing in each of the
arguments s1, s2 and is strictly increasing at least in one of the two argu-
ments, the set of pairs s1, s2 that satisfy equality ω(s1, s2) = 0 is nonempty,
the function ϕ(z) strictly increases and


lim
z→+∞


ϕ(z) = +∞.


For example, if ϕ(z) = z then the boundary condition (3) fixes L1-norm
of the derivative of the unknown function. And in the case ϕ(z) =


√
1 + z2


the equality (3) fixes the length of the curve which is the graph of the
solution x(t), t ∈ [a, b]. Let us note also that the equality x(a) = g0, where
g0 ∈ R is a number, can be considered as the simplest special case of (2).
Thus, the boundary conditions (2), (3) can describe, in particular, a curve
with a fixed length emanating from a given initial point.


Denote


Aϕ =
∫ b−a


0
ϕ(Mτ)dτ.


Theorem. If g ≥ Aϕ then every solution of boundary value problem
(1)-(3) is strictly monotone, and there exist at least one increasing and at
least one decreasing solutions.


The above theorem was previously announced by the author, cf. Propo-
sition 2 in [5]. The proof will be given below.


Remark 1. If g < Aϕ then problem (1)-(3) may have no monotone solu-
tions. This is the case, for example, if f ≡ M > 0.


Remark 2. A similar theorem is valid also for an equation with deviating
arguments and for condition (3) where g = g(x(·)) is a nonlinear functional.


The proof of Theorem employs (and illustrates) the following existence
result for a boundary value problem of the form


ẍ(t) = F (x(·))(t), t ∈ [a, b], (4)


B0(x(·)) = B1(ẋ(·)) = 0. (5)
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The solution x(·) ∈ CL2
1 = CL2


1([a, b],R) satisfies equation (4) almost ev-
erywhere. The mappings


F : C1 → L1, B0 : CL2
1 → R, B1 : AC → R


are assumed to be continuous. Let us fix a closed set of functions A ⊂ CL2
1.


Denote A(k) = {x(k)(·) : x(·) ∈ A}. Assume that the family of functions A
satisfies A(2) = L1.


Proposition 1. Let M , N be fixed numbers. Consider the following
conditions:


a) if ‖x(·)‖C1 ≤ N then |F (x(·))(t)| ≤ M for almost all t,
b) if x(·) ∈ A satisfies (5) and |ẍ(t)| ≤ M almost everywhere then


‖x(·)‖C1 ≤ N ,
c) if x(·) ∈ A and almost everywhere |ẍ(t)| ≤ M then there exist a unique


number c0 ∈ R such that


B0(x(·) + c0) = 0, x(·) + c0 ∈ A,


and a unique number c1 ∈ R that satisfies


B1(ẋ(·) + c1) = 0, ẋ(·) + c1 ∈ A(1).


Conditions a), b), c) imply that problem (4), (5) has at least one solution
in A.


A more general version of Proposition 1 was proven by the author in [6].
We need also the following simple auxiliary result.


Proposition 2. Let the above given assumptions on ϕ hold. If a function
u : [a, b] → R satisfies the Lipschitz condition with the coefficient M and
vanishes at least at one point then


∫ b


a
ϕ(|u(τ)|)dτ ≤


∫ b−a


0
ϕ(Mτ)dτ.


Here the equality holds only for the following four functions


u = ±M(t− a), u = ±M(b− t).


Proof of Proposition 2. Let u(s) = 0 for some s ∈ [a, b]. Then |u(t)| ≤
M |t− s|. Thus


∫ b


a
ϕ(|u(τ)|)dτ ≤


∫ b


a
ϕ(M |τ − s|)dτ. (6)
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Denote the right-hand side of (6) by Ψ(s). We have


Ψ(s) =
∫ s


a
ϕ(M(s− τ))dτ +


∫ b


s
ϕ(M(τ − s))dτ =


=
∫ s−a


0
ϕ(Mτ)dτ +


∫ b−s


0
ϕ(Mτ)dτ.


And so, the derivative


dΨ
ds


= ϕ(M(s− a))− ϕ(M(b− s))


is negative for a ≤ s < 1
2 (a + b) and positive for 1


2 (a + b) < s ≤ b. Conse-
quently, the value Ψ(a) = Ψ(b) =


∫ b−a
0 ϕ(Mτ)dτ is the maximum of Ψ(s)


for s ∈ [a, b], which is attained only at the ends of the interval. The desired
inequality is proven. If the right- and left-hand sides of this inequality are
equal then s equals either a or b, and besides that (6) turns to equality.
Taking into account strict monotonicity of ϕ we come to the conclusion
that |u(t)| ≤ M |t − s| also turns to equality. Thus, either u = ±M(t − a),
or u = ±M(b− t). �


Proof of Theorem. The boundary value problem (1)-(3) is a special case of
problem (4), (5). Really, it suffices to assume


F (x(·))(t) = f(t, x(t), ẋ(t)),


B0(x(·)) = ω(x(a), x(b)),


B1(u(·)) =
∫ b


a
ϕ(|u(τ)|)dτ − g.


The mappings F : C1 → L1, B0 : C0 → R, B1 : C0 → R are continuous.
Denote by A+ the set of all monotone nondecreasing functions in CL2


1 and
by A− the set of all nonincreasing ones. The sets A+, A− are closed in
CL2


1, and A(2)
+ = A(2)


− = L1. Condition a) of Proposition 1 holds obviously.
Let us verify condition b). Let x(·) ∈ CL2


1 satisfy (2), (3), and |ẍ(t)| ≤ M
be true almost everywhere. Since ϕ(z) → +∞ as z → +∞ there exists a
number r that satisfies ϕ(r) > (b− a)−1g. If we suppose that |ẋ(t)| ≥ r for
all t then


∫ b


a
ϕ(|ẋ(τ)|)dτ ≥ (b− a)ϕ(r) > g,


which contradicts (3). Consequently, |ẋ(s)| < r for at least one s. Consider
some l1, l2 such that ω(l1, l2) = 0. Let us show that


min{l1, l2} ≤ x(σ) ≤ max{l1, l2} (7)
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for some σ. Really, if (7) does not hold for any σ ∈ [a, b] then due to
continuity of x(t) two cases are possible. Either x(t) > max{l1, l2} for all t,
or x(t) < min{l1, l2} for all t. Monotonicity of ω implies that ω(x(a), x(b)) >
ω(l1, l2) = 0 in the first case, and ω(x(a), x(b)) < 0 in the second case. It
follows from (2) that neither of the two cases can take place. The existence
of the numbers r, s, σ named above and the inequality |ẍ(t)| ≤ M imply
boundedness of ‖x(·)‖C1 . Let us verify now condition c) for A = A+ and for
A = A−. The function x(·) being fixed, the number c0 is defined uniquely
by the equality B0(x(·) + c0) = 0 due to the properties of the real function


B0(x(·) + c) = ω(x(a) + c, x(b) + c)


of the argument c. Really, the function is continuous and strictly increasing.
It suffices to show that this function takes both positive and negative values.
As above, we fix l1, l2 for which ω(l1, l2) = 0. Then for c > max{l1 −
x(a), l2 − x(b)} we have ω(x(a) + c, x(b) + c) > ω(l1, l2) = 0, and for c <
min{l1 − x(a), l2 − x(b)} we obtain ω(x(a) + c, x(b) + c) < ω(l1, l2) = 0.
So, the desired properties of the function B0(x(·) + c) are established. We
have only to note that x(·) + c for a fixed c is monotone in the same sense
as x(·). Consider now c1. Assume that x(·) ∈ CL2


1 and almost everywhere
|ẍ(t)| ≤ M . Continuity of ϕ implies that the function


Φ(c) =
∫ b


a
ϕ(|ẋ(τ) + c|)dτ


is also continuous. With the help of Proposition 2 we obtain the following.
For c ∈ (−∞,−maxt ẋ(t)] we have ẋ(t) + c ≤ 0, and the function Φ(c)
strictly decreases taking values from +∞ to a number not larger than Aϕ;
and if c ∈ [−mint ẋ(t), +∞) then ẋ(t) + c ≥ 0, and the function Φ(c)
strictly increases taking values from a number not larger than Aϕ to +∞.
A conclusion follows that if x(·) ∈ CL2


1 and almost everywhere |ẍ(t)| ≤ M
then there exists a unique c1 that satisfies


B1(ẋ(·) + c1) = 0, ẋ(t) + c1 ≥ 0.


Similarly, conditions


B1(ẋ(·) + c1) = 0, ẋ(t) + c1 ≤ 0


also define a unique c1. Thus, condition c) is valid. It follows from Propo-
sition 1 that boundary value problem (1)-(3) is solvable in A+ and in A−.
Now we have to show that every solution x(t) of this problem is strictly
monotone. If the derivative ẋ(t) does not vanish then all its values have the
same sign, and so x(t) is obviously monotone. Let now the derivative ẋ(t)
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vanish at least at one point. Using Proposition 2 we obtain


∫ b


a
ϕ(|ẋ(τ)|)dτ ≤ Aϕ. (8)


Taking into account the inequality Aϕ ≤ g and boundary condition (3) we
see that the two values in (8) are equal. Employing again Proposition 2 we
conclude that either ẋ(t) = ±M(t − a), or ẋ(t) = ±M(b − t). And since
M 6= 0 the function x(t) is strictly monotone. Theorem is proven. Let us
note that Theorem can be proven also basing on results of [7]. �


In conclusion we verify Remark 1. Assume f ≡ M > 0, g < Aϕ. We need
to show that problem (1)-(3) has no monotone solutions. The equation (1)
takes the form ẍ = M . And since M 6= 0 we obtain ẋ(t) = M(t − γ).
Thus, x(t) can be monotone only if γ ≤ a or γ ≥ b. Let us consider
these two cases separately. If γ ≤ a then |ẋ(τ)| = M(τ − γ) ≥ M(τ − a)
for τ ∈ [a, b], and (3) implies g ≥


∫ b
a ϕ(M(τ − a))dτ = Aϕ > g. This


contradiction shows that the inequality γ ≤ a does not hold. Similarly,
if γ ≥ b then |ẋ(τ)| = M(γ − τ) ≥ M(b − τ) for τ ∈ [a, b] and thus
g ≥


∫ b
a ϕ(M(b − τ))dτ = Aϕ > g. And so, the case γ ≥ b is not possible


either. Remark 1 is verified.
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