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TWO-DIMENSIONAL PROBLEMS OF STATIONARY
FLOW OF A NONCOMPRESSIBLE VISCOUS FLUID IN

THE CASE OF OZEEN’S LINEARIZATION

T. BUCHUKURI AND R. CHICHINADZE

Abstract. Two-dimensional boundary value problems of flow of a
viscous micropolar fluid are investigated in the case of linearization
by Ozeen’s method.

1. Basic Equations. A system of equations of motion of a noncompress-
ible micropolar fluid was obtained in 1964 by Condiff and Dahler [1] and,
independently, in 1966 by Eringen. It is a generalization of the classical
system of Navier–Stokes for micropolar fluids. In real life we observe such
properties in fluids containing polymer particles as admixtures. When flu-
ids of this kind flow along the body, surface friction is 30 to 35% less than
in the case of flow of fluids without polymer admixtures [2]. It is impossi-
ble to predict such effects by the classical theory of Navier–Stokes, but a
fairly good explanation can be found within the framework of the theory of
micropolar fluids.

We consider a two-dimensional model of stationary flow of a micropolar
fluid. A system of the basic equations then has the form

div ṽ = 0,

(µ + α)∆ṽ1 + 2α
∂ω̃
∂x2

− ∂p
∂x1

+ ρF1 = ρ
2

∑

k=1

ṽk
∂ṽ1

∂xk
,

(µ + α)∆ṽ2 − 2α
∂ω̃
∂x1

− ∂p
∂x2

+ ρF2 = ρ
2

∑

k=1

ṽk
∂ṽ2

∂xk
,

γ∆ω̃ − 4αω̃ + 2α
( ∂ṽ2

∂x1
− ∂ṽ1

∂x2

)

+ ρF3 = I
2

∑

k=1

ṽk
∂ω̃
∂xk

,

(1)
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where ṽ = (ṽ1, ṽ2) is the velocity vector, ˜F = (F1, F2) is the mass force, p
is the pressure, ρ is the density; µ, α, γ, I are positive constants. In the
two-dimensional case the microrotation and mass moment vectors have one
component each and are denoted by ω̃ and F3, respectively.

Since the system (1) is nonlinear, we come across certain difficulties dur-
ing its investigation. On the other hand, to solve many problems of applied
nature it is sufficient to consider a linearized variant of the system (1). The
equations of Navier-Stokes can be linearized by two well-known methods:
that of Stokes and that of Ozeen. When using Stokes’ method of lineariza-
tion, nonlinear terms are totally discarded. This method yields satisfactory
results for small ṽ and ω̃ (note that in this case nonlinear terms are small
values of higher order). However, if the fluid flow velocity ṽ is not a small
value, this model leads to an essential error. In particular, the effects pre-
dicted by this method when a fluid flows along a solid body do not agree
with experimental data.

A lesser error is obtained in the case of linearization by Ozeen’s method
consisting in the following: it is assumed that fluid flow differs but little
from flow along the x1-axis with the constant velocity v0. Then we set

ṽk = v0δk1 + vk, k = 1, 2, ω̃ = ω,

where vk, k = 1, 2, ω are small values; δkj is the Kronecker symbol.
On substituting these values in (1), we obtain an Ozeen-linearized system

of equations of stationary flow of a micropolar fluid in the two-dimensional
case:

div v = 0,

(µ + α)∆v1 + 2α
∂ω
∂x2

− ∂p
∂x1

+ ρF1 = η1
∂v1

∂x1
,

(µ + α)∆v2 − 2α
∂ω
∂x1

− ∂p
∂x2

+ ρF2 = η1
∂v2

∂x1
,

γ∆ω − 4αω + 2α
( ∂v2

∂x1
+

∂v1

∂x2

)

+ ρF3 = η2
∂ω
∂x1

.

(2)

Here η1 = ρv0, η2 = Iv0.
The system (2) can be rewritten in the matrix form if we introduce the

notation

L(∂x) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(µ + α)∆ 0 2α ∂
∂x2

0 (µ + α)∆ − 2α ∂
∂x1

−2α ∂
∂x2

2α ∂
∂x1

γ∆− 4α

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

,
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G(∂x) =

∥

∥

∥

∥

∥

∥

∂
∂x1
∂

∂x2

0

∥

∥

∥

∥

∥

∥

, η =

∥

∥

∥

∥

∥

∥

η1 0 0
0 η1 0
0 0 η2

∥

∥

∥

∥

∥

∥

,

(v1, v2, ω) ≡ u = (u1, u2, u3) =

∥

∥

∥

∥

∥

∥

u1
u2

u3

∥

∥

∥

∥

∥

∥

, F = (F1, F2, F3) =

∥

∥

∥

∥

∥

∥

F1
F2

F3

∥

∥

∥

∥

∥

∥

.

Now the system (2) takes the form

∂u1

∂x1
+

∂u2

∂x2
= 0,

L(∂x)u−G(∂x)p + ρF = η
∂u
∂x1

.
(3)

Alongside with the system (3), we will also consider its conjugate

∂u1

∂x1
+

∂u2

∂x2
= 0,

L(∂x)u−G(∂x)p + ρF = −η
∂u
∂x1

,
(4)

which is obtained from (3) if we replace η1 and η2 by −η1 and −η2, respec-
tively.

Let us formulate the boundary value problems for (2). Denote by D+ a
finite domain in the Euclidean two-dimensional space R2 bounded with a
piecewise-smooth contour S. Let D− ≡ R2\(D+ ∪ S). Denote by n(y) =
(n1(y), n2(y)) the unit normal at a point y ∈ S, external with respect to
the domain D+.

The pair (u, p), where u = (v1, v2, ω), will be called regular in D+ if
u ∈ C2(D+) ∩ C1(D̄+), p ∈ C1(D+) ∩ C(D̄+).

The pair (u, p) will be called regular in D− if u ∈ C2(D−) ∩ C1(D̄−),
p ∈ C1(D−) ∩ C(D̄−) and the conditions

u(x) = O
(

|x|− 1
2
)

, p(x) = o(1) (5)

are fulfilled in the neighbourhood of |x| = ∞.
The boundary value problems for the system (3) are formulate as follows:

Problem (I)±. In the domain D± find a regular solution of the system
(3) by the boundary condition

lim
D±3x→y∈S

u(x) = f(y). (6)
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Problem (II)±. In the domain D± find a regular solution of the system
(3) by the boundary condition

lim
D±3x→y∈S

[

P (∂x, n(y))u(x)− 1
2
n1(y)ηu(x)−N(y)p(x)

]

=f(y), (7)

where f = (f1, f2, f3) is a given vector on S,

P (∂x, n(y)) = ‖Pij(∂x, n(y))‖3×3, (8)

Pij(∂x, n(y))=(µ+α)nj(y)
∂

∂xi
+(µ+α)δij

2
∑

k=1

nk(y)
∂

∂xk
, i, j =1, 2;

Pi3(∂x, n(y)) = 2α(i− 1)n1(y) + 2α(i− 2)n2(y), i = 1, 2;

P3j(∂x, n(y)) = 0, j = 1, 2;

P33(∂x, n(y)) = γ
2

∑

k=1

nk(y)
∂

∂xk
;

Ni(y)=(N1(y), N2(y), N3(y)), Ni(y)=ni(y), i=1, 2; N3(y)=0.

The boundary value problems (˜I)± and (˜II)± for the conjugate system (4)
are formulated similarly. In that case the boundary condition of Problem
(I)± coincides with (6), while the boundary condition of Problem (II)± is
obtained from (7) if we replace η1 and η2 by −η1 and −η2, respectively.

Remark. Our previous thorough treatment of the boundary value prob-
lems of stationary flow of a micropolar fluid under Ozeen’s linearization in
the three-dimensional case is given in [3]. Since investigations of the two-
dimensional problems are mostly the same, we will dwell on only the part
differing from the three-dimensional case.

2. On Fundamental solutions. The fundamental solutions of the system
(1) are found from the relations

∂
(m)
v 1

∂x1
+

∂
(m)
v 2

∂x2
= 0,

(µ + α)∆
(m)
v 1 −η1

∂
(m)
v 1

∂x1
+ 2α

∂
(m)
ω

∂x2
− ∂

(m)
p

∂x1
+

(m)
a 1 δ(x) = 0,

(µ + α)∆
(m)
v 2 −η1

∂
(m)
v 2

∂x1
− 2α

∂
(m)
ω

∂x1
− ∂

(m)
p

∂x2
+

(m)
a 2 δ(x) = 0,

γ∆
(m)
ω −4α

(m)
ω −η2

∂
(m)
ω

∂x1
− 2α

∂
(m)
v 1

∂x2
+ 2α

∂
(m)
v 2

∂x1
+

(m)

b δ(x) = 0,

(9)
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where δ(x) is the Dirac distribution,

(m)
a k= 2δkm,

(m)

b = 0, k,m = 1, 2;
(3)
a k= 0, k = 1, 2,

(3)
b = 2.

Assume that the fundamental solutions (
(m)
v 1,

(m)
v 2,

(m)
ω ,

(m)
p ), m = 1, 2, 3, sat-

isfy the conditions

lim
|x|→∞

( (m)
v 1 (x),

(m)
v 2 (x),

(m)
ω (x),

(m)
p (x)

)

= 0. (10)

Then
(m)
v 1,

(m)
v 2,

(m)
ω and

(m)
p are gradually increasing distributions in R2, and,

on subjecting the system (9) to the Fourier transformation, we obtain

ξ1
(̂m)
v 1 + ξ2

(̂m)
v 2 = 0,

iξ1
(̂m)
p − (µ + α)|ξ|2

(̂m)
v 1 + iη1ξ1

(̂m)
v 1 − 2iαξ2

(̂m)
ω+

(m)
a 1= 0,

iξ2
(̂m)
p − (µ + α)|ξ|2

(̂m)
v 2 + iη1ξ1

(̂m)
v 2 + 2iαξ1

(̂m)
ω+

(m)
a 2= 0,

− γ|ξ|2
(̂m)
ω − 4α

(̂m)
ω + iη2ξ1

(̂m)
ω + 2iαξ2

(̂m)
v 1 − 2iαξ1

(̂m)
v 2+

(m)

b = 0.

(11)

Here |ξ| ≡ (ξ2
1 + ξ2

2)1/2, ̂f denotes the Fourier transform of the gradually
increasing distribution f :

̂f(ξ) =
∫

R2
eiξ·xf(x) dx, ξ = (ξ1, ξ2) ∈ R2, |ξ| ≡ (ξ2

1 + ξ2
2)1/2.

Solving the system (11) with respect to
(̂m)
v 1,

(̂m)
v 2 ,

(̂m)
ω ,

(̂m)
p , we have

(̂m)
p =

i
|ξ|2

ξ·
(m)
a ,

(̂m)
v 1 =

γ|ξ|2 − iη2ξ1 + 4α
Φ(ξ)

(m)
a 1 −

2iαξ2

Φ(ξ)

(m)

b −

− γ|ξ|2 − iη2ξ1 + 4α
|ξ|2Φ(ξ)

(

ξ·
(m)
a

)

ξ1,

(̂m)
v 2 =

γ|ξ|2 − iη2ξ1 + 4α
Φ(ξ)

(m)
a 2 +

2iαξ1

Φ(ξ)

(m)

b −

− γ|ξ|2 − iη2ξ1 + 4α
|ξ|2Φ(ξ)

(

ξ·
(m)
a

)

ξ2,

(̂m)
ω =

(µ + α)|ξ|2 − iη1ξ1

Φ(ξ)

(m)

b +
2iα
Φ(ξ)

( (m)
a 1 ξ2−

(m)
a 2 ξ1

)

, m = 1, 2, 3,

(12)
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where

Φ(ξ) = γ(µ + α)|ξ|4− i[η1γ + η2(µ + α)]ξ1|ξ|2− η1η2ξ2
1 + 4µα|ξ|2− 4iαη1ξ1.

Denote by
(m)
v 1,

(m)
v 2,

(m)
ω ,

(m)
p , m = 1, 2, 3, the inverse Fourier transforms of

(̂m)
v 1,

(̂m)
v 2,

(̂m)
ω ,

(̂m)
p , respectively, and by Γ and Q the matrices

Γ = ‖Γik‖3×3, Γik =
(k)
v i, i = 1, 2, k = 1, 2, 3; Γ3k =

(k)
ω ; (13)

Q = ‖Qk‖3×1, Qk =
(k)
p , k = 1, 2; Q3 = 0.

Γ and Q will be called the matrices of fundamental solutions of the system
(1). Their Fourier transform is

̂Q(ξ) =
(2iξ1

|ξ|2
,
2iξ2

|ξ|2
, 0

)

, (14)

̂Γ(ξ)=

∥

∥

∥

∥

∥

∥

∥

2A(ξ)
(

1−
ξ2
1

|ξ|2

)

−2A(ξ) ξ1ξ2
|ξ|2

−2B(ξ)ξ2

−2A(ξ) ξ1ξ2
|ξ|2

2A(ξ)
(

1−
ξ2
2

|ξ|2

)

2B(ξ)ξ1

2B(ξ)ξ2 −2B(ξ)ξ1
2

Φ(ξ)

(

(µ+α)|ξ|2−iη1ξ1

)

∥

∥

∥

∥

∥

∥

∥

, (15)

where

A(ξ) =
γ|ξ|2 − iη2ξ1 + 4α

Φ(ξ)
, B(ξ) =

2iα
Φ(ξ)

.

Calculating the inverse Fourier transform of (14), we get

Q(x) =
( 1

π
x1

|x|2
,

1
π

x2

|x|2
, 0

)

. (16)

Though the inverse transform of ̂Γ is not expressed in terms of elemen-
tary functions, we can nevertheless obtain asymptotic representations of
the fundamental matrix Γ in the neighbourhood of the points |x| = 0 and
|x| = ∞, which is convenient in investigating the boundary value problems.

Represent ̂Γ in the form

̂Γ(ξ) = ̂Γ(0)(ξ) + ̂Γ(1)(ξ),

where

̂Γ(0)(ξ) =

∥

∥

∥

∥

∥

∥

∥

∥

2ξ2
1

(µ+α)|ξ|4 − 2ξ1ξ2
(µ+α)|ξ|4 0

− 2ξ1ξ2
(µ+α)|ξ|4

2ξ2
2

(µ+α)|ξ|4 0
0 0 2

γ|ξ|2

∥

∥

∥

∥

∥

∥

∥

∥

(17)
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and the elements of ̂Γ(1) are written as

̂Γ(1)
ij (ξ) =

∑

3≤2k−|α|≤4

aij
k,α

|ξ|α

|ξ|2k + ϕij(ξ), i, j = 1, 2, 3. (18)

Here aij
k,α are some constants, ϕij are functions admitting, in the neighbour-

hood of |x| = ∞, the estimate ϕij(ξ) = O(|ξ|−5).

Taking (18) into account, it can be proved [3] that, Γ(1)
ij satisfies, in the

neighbourhood of |x| = 0, the conditions

Γ(1)
ij (x) = O(1), i, j = 1, 2, 3;

∂αΓ(1)
ij (x) = O

(

|x|1−|α| ln |x|
)

, i, j = 1, 2, 3.
(19)

Performing the inverse Fourier transform of (17), we obtain

Γ(0)(x) =

∥

∥

∥

∥

∥

∥

∥

− 1
4π(µ+α)

(

ln |x|+ x2
1

|x|2
)

− x1x2
4π(µ+α)|x|2 0

− x1x2
4π(µ+α)|x|2 − 1

4π(µ+α)

(

ln |x|+ x2
2

|x|2
)

0
0 0 − 1

πγ ln |x|

∥

∥

∥

∥

∥

∥

∥

. (20)

Thus we have

Theorem 1. The fundamental matrix Γ is represented as

Γ = Γ(0) + Γ(1), (21)

where Γ(0) is defined from (20), Γ(1) ∈ C∞(R\{0}) and satisfies, in the
neighbourhood of the point |x| = 0, the conditions (19).

To obtain the necessary representation of Γ in the neighbourhood of
|x| = ∞ we represent ̂Γ as the sum

̂Γ(ξ) = ̂Γ(∞)(ξ) + ̂Γ(2)(ξ), (22)

where

̂Γ(∞)(ξ) =
2

(µ|ξ|2 − iη1ξ1)

∥

∥

∥

∥

∥

∥

∥

∥

ξ2
2

|ξ|2 − ξ1ξ2
|ξ|2 − iξ2

2

− ξ1ξ2
|ξ|2

ξ2
1

|ξ|2
iξ1
2

iξ2
2 − iξ1

2
iη1ξ1
4µ

∥

∥

∥

∥

∥

∥

∥

∥

. (23)
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Then, taking (15) into account, it can be proved that the components of
̂Γ(2) satisfy the estimates

∣

∣∂α
̂Γ(2)

ij (ξ)
∣

∣ ≤ c
(|ξ|2 + |ξ1|)|α|

, |ξ| ≤ 1, |α| ≤ 2, i, j = 1, 2,

∣

∣∂α
̂Γ(2)

3j (ξ)
∣

∣ ≤ c|ξ|
(|ξ|2 + |ξ1|)|α|

, |ξ| ≤ 1, |α| ≤ 2, j = 1, 2, 3,

∣

∣∂α
̂Γ(2)

i3 (ξ)
∣

∣ ≤ c|ξ|
(|ξ|2 + |ξ1|)|α|

, |ξ| ≤ 1, |α| ≤ 2, i = 1, 2, 3,

(24)

from which we obtain the estimates of Γ(2) in the neighbouhood of the point
|x| = ∞ [3]:

∂α
̂Γ(2)

ij (x) ≤ o
(

|x|−1), |α| ≥ 0, i, j = 1, 2, 3,

∂α
̂Γ(2)

3j (x) ≤ o
(

|x|−2), |α| ≥ 1, j = 1, 2, 3,

∂α
̂Γ(2)

i3 (x) ≤ o
(

|x|−2), |α| ≥ 1, i = 1, 2, 3.

(25)

Let us now calculate the inverse Fourier transform of ̂Γ(∞). We obtain

Γ(∞)
11 (x) =

1
2πµ

(

K0(m|x|)−
x1

|x|
K ′

0(m|x|)
)

emx1 − 1
2πmµ

x1

|x|2
,

Γ(∞)
12 (x) = Γ(∞)

21 (x) = − 1
2πµ

x2

|x|
K ′

0(m|x|)emx1 − 1
2πmµ

x2

|x|2
,

Γ(∞)
22 (x) =

1
2πµ

(

K0(m|x|) +
x1

|x|
K ′

0(m|x|)
)

emx1 +
1

2πmµ
x1

|x|2
,

Γ(∞)
13 (x) = −Γ(∞)

31 (x) =
m

2πµ
x2

|x|
K ′

0(m|x|)emx1 ,

Γ(∞)
23 (x) = −Γ(∞)

32 (x) = − m
2πµ

(

K0(m|x|) +
x1

|x|
K ′

0(m|x|)
)

emx1 ,

Γ(∞)
33 (x) = − η1m

4πµ2

(

K0(m|x|) +
x1

|x|
K ′

0(m|x|)
)

emx1 ,

(26)

where K0 is the MacDonald function of zero order:

K0(t) =
∫ ∞

0
e−t ch η dη, m =

η1

2µ
.

The equalities (22)–(26) imply the validity of

Theorem 2. The fundamental matrix Γ is represented in the form

Γ = Γ(∞) + Γ(2), (27)

where the components Γ(∞) are written as (26) and Γ(2) admits the estimates
(25) in the neighbourhood of the point |x| = ∞.
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It is not difficult to obtain the following asymptotic representation in the
neighbourhood of the infinity of the MacDonald function and its derivative:

K0(t) =
√

π√
2t

e−t
(

1− 1
8t

)

+ O
( e−t

t2
√

t

)

,

K ′
0(t) = −

√
π√
2t

e−t
(

1 +
3
8t

)

+ O
( e−t

t2
√

t

)

,

K ′′
0 (t) =

√
π√
2t

e−t
(

1 +
7
8t

)

+ O
( e−t

t2
√

t

)

.

Hence we obtain the asymptotic representations of the components of the
matrix Γ(∞) in the neighbourhood of the point |x| = ∞:

Γ(∞)
11 (x) =

(|x|+ x1)e−m(|x|−x1)

2
√

2πm|x|3/2
− 1

2πmµ
x1

|x|2
+ O

(

|x|−3/2),

Γ(∞)
12 (x) = Γ(∞)

21 (x) =
x2e−m(|x|−x1)

2
√

2πmµ|x|3/2
− 1

2πmµ
x2

|x|2
+ O

(

|x|−3/2),

Γ(∞)
13 (x) = −Γ(∞)

31 (x) = −
√

m
2
√

2π
x2e−m(|x|−x1)

|x|3/2 + O
(

|x|−3/2),

Γ(∞)
22 (x) =

(|x| − x1)e−m(|x|−x1)

2
√

2πm|x|3/2
+

1
2πmµ

x1

|x|2
+ O

(

|x|−3/2),

Γ(∞)
23 (x) = −Γ(∞)

32 (x) = −
√

m(|x| − x1)e−m(|x|−x1)

2
√

2πµ|x|3/2
+ O

(

|x|−3/2),

Γ(∞)
33 (x) = −η1

√
m(|x| − x1)e−m(|x|−x1)

4
√

2πµ2|x|3/2
+ O

(

|x|−3/2).

(28)

In particular, (28) implies

∣

∣Γ(∞)
kj (x)

∣

∣ ≤ c1
e−m(|x|−x1)

|x|1/2 + c2|x|−3/2, k, j = 1, 2, 3. (29)

In a similar manner we can obtain the estimates for the derivatives of
Γ(∞)

kj as well:

∣

∣∂αΓ(∞)
kj (x)

∣

∣ ≤ c1
e−m(|x|−x1)

|x|1/2 + c2|x|−2, |α| ≥ 1, k, j = 1, 2, 3. (30)

Remark. As follows from (25), (29), in the case of Ozeen’s linearization
the fundamental matrix has order O(|x|−1/2) at infinity, but, as shown in
[4], the fundamental matrix of the system obtained in the case of Stokes’
linearization has order O(ln |x|) at infinity, i.e. it is unbounded. Therefore
the properties of solutions of the external boundary value problems are
different in the two cases.
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We also note that no such difference between the fundamental solutions
is observed for Stokes’ and Ozeen’s linearizations. In that case both funda-
mental solutions have order O(|x|−1) at infinity [3], [5].

3. Regular Solution Representation Formulas. The Uniqueness
Theorems. Let D+ be a finite domain in R2 bounded by the piecewise-
smooth contour S; (u, p) and (u′, p′) be regular pairs satisfying the condi-
tions

∂u1

∂x1
+

∂u2

∂x2
=

∂u′1
∂x1

+
∂u′2
∂x2

= 0.

If, besides, L(∂x)u− η ∂u
∂x1

−G(∂x)p ∈ L1(D+), L(∂x)u′− η ∂u′
∂x1

−G(∂x)p′ ∈
L1(D+), then the following identities of the Green formula type are fulfilled:

∫

D+

[

u
(

L(∂x)u− η
∂u
∂x1

−G(∂x)p
)

+ E(u, u)
]

dx =

=
∫

S

[

u
(

P (∂y, n)u− 1
2
n1ηu−Np

)]+
dyS, (31)

∫

D+

[

u′
(

L(∂x)u− η
∂u
∂x1

−G(∂x)p
)

−

−u
(

L(∂x)u′ + η
∂u′

∂x1
−G(∂x)p

)]

dx =

=
∫

S

[

u′
(

P ′(∂y, n)u− 1
2
n1ηu−Np

)

−

−u
(

P (∂y, n)u′ +
1
2
n1ηu′ −Np′

)]+
dyS, (32)

where

E(u, u′) = (µ + α)
2

∑

i,j=1

vijv′ji + (µ− α)
2

∑

i,j=1

vjiv′ij + γ
2

∑

i=1

ωiω′i,

vij =
∂vj

∂xi
+ (j − i)ω, i, j = 1, 2; ωi =

∂ω
∂xi

, i = 1, 2.

E(u, u′) is an analogue of the energetic form. In particular,

E(u, u′) = (µ + α)(v2
12 + v2

21) + 2(µ− α)v12v21 +

+ 2µ(v2
11 + v2

22) + γ(ω2
1 + ω2

2). (33)

One can easily verify that for the form (33) to be positive definite with
respect to vij , ωi, it is necessary and sufficient that the conditions

µ > 0, α > 0, γ > 0 (34)

be fulfilled.
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If we use the area potentials

U(F, x) =
1
2

∫

D±
ρΓ(x− y)F (y) dy,

q(F, x) =
1
2

∫

D±
ρQ(x− y)F (y) dy,

where F = (F1, F2, F3) ∈ C0,h(D±), 0 < h ≤ 1, and is the finite vector
in the case of D−, then the boundary value problems for the systems (3)
and (4) can be reduced to the corresponding problems for the homogeneous
systems [3]

∂u1

∂x1
+

∂u2

∂x2
= 0, L(∂x)u−G(∂x)p− η

∂u
∂x1

= 0 (35)

and

∂u1

∂x1
+

∂u2

∂x2
= 0, L(∂x)u−G(∂x)p + η

∂u
∂x1

= 0. (36)

Therefore in the sequel we will consider the boundary value problems only
for the homogeneous systems (35) and (36).

Like in the three-dimensional case [3], from (32) we can obtain the follow-
ing formula for representation of solutions of the system (3) in the domain
D+:

u(x) =
1
2

∫

S
Γ(x− y)

[

P (∂y, n)u(y)− 1
2
n1ηu(y)−N(y)p(y)

]+
dyS −

−1
2

∫

S

[

P (∂y, n)Γ′(x− y) +
1
2
n1ηΓ′(x− y)−

−N(y) ∗Q(x− y)
]′

u+(y)dyS, (37)

p(x) =
1
2

∫

S
Q(x− y)

[

P (∂y, n)u(y)− 1
2
n1ηu(y)−N(y)p(y)

]+
dyS −

−1
2

∫

S

[

P (∂y, n)Q(x− y) +
1
2
n1ηQ(x− y)−

−η1Q(x− y)N(y)
]

u+(y)dyS. (38)

Here the prime above the matrix denotes the operation of transposition
and

N(y) ∗Q(z) =
∥

∥

∥

∥

n1(y)Q1(z) n1(y)Q2(z)
n2(y)Q1(z) n2(y)Q2(z)

∥

∥

∥

∥

.

Taking the properties (29) and (30) of the matrix of fundamental solu-
tions into account and repeating the reasoning from [3], one can prove that
the formulas (37), (38) are also valid for regular solutions in the domain
D−.
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Now let us prove that the equality
∫

D−
E(u, u) dx = −

∫

S
u−

[

P (∂y, n)u− 1
2
n1ηu−Np

]−
dyS (39)

is fulfilled for the regular solution (u, p) of the homogeneous system (35) in
D−.

To this effect we have to use the formula (31) in the domain D−∩B(0, R),
where B(0, R) is the circle of radius R centred at x = 0 and containing the
domain D+. Recalling that the pair (u, p) is the solution of the system (35),
we obtain
∫

D−∩B(0,R)
E(u, u) dx = −

∫

S
u−

[

P (∂y, n)u− 1
2
n1ηu−Np

]−
dyS + I(R),

where

I(R) =
∫

∂B(0,R)
u
[

P (∂y, n)u− 1
2
n1ηu−Np

]

dyS. (40)

Obviously, to prove (39) it is enough to prove

lim
R→∞

I(R) = 0. (41)

From (16), (25), (29) and the formula of representation of regular solu-
tions in the domain D− it follows that in the neighbourhood of infinity

∣

∣∂αu(x)
∣

∣ = c1
e−m(|x|−x1)

|x|1/2 + O(|x|−1), |α| ≥ 0,

|p(x)| = O(|x|−1).

Taking these estimates into account in (40) and passing to the limit, we
obtain (41). The equality (39) is proved.

Let us turn to proving the uniqueness theorems. In particular, we will
prove

Theorem 3. Each solution of the homogeneous problem (I)+0 has the
form

u = 0, p = p0, (42)

where p0 is an arbitrary constant. The homogeneous Problems (II)+0 , (I)−0
and (II)−0 can have only the trivial solutions u = 0, p = 0.
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Proof. Let (u, p) be a solution of anyone of the considered problems. Then
by virtue of (31) and (39)

∫

D±
E(u, u) dx = 0.

Therefore E(u, u) = 0, x ∈ D+ (x ∈ D−). Hence on account of (34)

∂vj

∂xi
+ (j − i)ω = 0,

∂ω
∂xi

= 0, i, j = 1, 2.

The general solution of the resulting system has the form

v1 = ax2 + b1, v2 = −ax1 + b2, ω = a. (43)

Since for the external domain the regular solution must vanish at infinity,
the external homogeneous boundary value problems have trivial solutions.
In the case of Problem (I)+0 , (43) also implies that v1 = v2 = ω = 0;
substituting these value in the equation (35) we obtain

∂p
∂x1

=
∂p
∂x2

= 0,

whence it follows that p = const.
Next, let us consider Problem (II)+0 . By virtue of (43) and the homo-

geneous boundary condition we have a = 0, i.e. vi = bi. Then (35) yields
p = p0. Considering again the boundary condition, we obtain

η1n1bk + 2p0nk = 0, k = 1, 2.

Since the boundary of D+ is not the straight line, we conclude that b1 =
b2 = p0 = 0.

4. Reduction of the Boundary Value Problems to Integral Equa-
tions. Like in the three-dimensional case, we introduce the simple-layer
potentials

V (ϕ)(x) =
∫

S
Γ(x− y)ϕ(y) dyS, a(ϕ)(x) =

∫

S
Q(x− y)ϕ(y) dyS

and the double-layer potentials

W (ϕ)(x) =
∫

S

[

P (∂y, n)Γ′(x− y) +
1
2
n1ηΓ′(x− y)−

−N(y) ∗Q(x− y)
]′

ϕ(y)dyS,

b(ϕ)(x) =
∫

S

[

P (∂y, n)Q(x− y) +
1
2
n1ηQ(x− y)−

− η1Q1(x− y)N(y)
]

ϕ(y)dyS.
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Denote by ˜V (ϕ), ã(ϕ), ˜W (ϕ), ˜b(ϕ) the potential obtained from V (ϕ),
a(ϕ), W (ϕ), b(ϕ) after replacing η1 and η2 by −η1 and −η2, respectively
(note that ã(ϕ) coincides with a(ϕ)).

We will seek for the solution of Problem (I)± [(˜I)±] in the form of double-
layer potentials

u(x) = W (ϕ)(x), p(x) = b(ϕ)(x)
[

u(x) = ˜W (ϕ)(x), p(x) = ˜b(ϕ)(x)
]

and the solution of Problem (II)± [(˜II)±] in the form of single-layer poten-
tials

u(x) = V (ψ)(x), p(x) = a(ψ)(x)
[

u(x) = ˜V (ϕ)(x), p(x) = a(ϕ)(x)
]

.

Then, as was done in [3], we obtain, for the densities ϕ, ψ, the singular
integral equations

∓ϕ(z) +
∫

S

[

P (∂y, n)Γ′(z − y) +
1
2
n1ηΓ′(z − y)−

−N(y) ∗Q(y − z)
]′

ϕ(y)dyS = f(z), (I)±

∓ϕ(z) +
∫

S

[

P (∂y, n)Γ(z − y)− 1
2
n1ηΓ(z − y)−

−N(y) ∗Q(y − z)
]′

ϕ(y)dyS = f(z), (˜I)±

±ψ(z) +
∫

S

[

P (∂y, n)Γ(z − y)− 1
2
n1ηΓ(z − y)−

−N(z) ∗Q(y − z)
]

ψ(y)dyS = f(z), (II)±

±ψ(z) +
∫

S

[

P (∂y, n)Γ′(z − y) +
1
2
n1ηΓ′(z − y)−

−N(z) ∗Q(y − z)
]

ψ(y)dyS = f(z). (˜II)±

The investigation of these equations leads to the following result [3, 6]:

Theorem 4. If S ∈ Lk+1(h′), f ∈ Ck,h(S), 0 < h < h′ ≤ 1, k =
1, 2, . . . , then the Fredholm theorems hold for the pairs of equations (I)+ and
(˜II)−, (I)− and (˜II)+, (II)+ and (˜I)−, (II)− and (˜I)+ in the space Ch,k(S).
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5. Existence Theorems for the Boundary Value Problems. In this
paragraph we present the existence theorems for the boundary value prob-
lems. Their proofs are left out because they repeat the ones given in [3].

Theorem 5. If S ∈ L2(h′), f ∈ C1,h(S), 0 < h < h′ ≤ 1, and f satisfies
the condition

∫

S
Nf dS = 0, (44)

then Problem (I)+ has a regular solution. Moreover, if the condition
∫

S
p dS = 0

is fulfilled, then this solution is unique.

We observe that the condition (44) is not only sufficient, but also neces-
sary for the existence of a regular solution of Problem (I)+.

Theorem 6. If S ∈ L2(h′), f ∈ C1,h(S), 0 < h < h′ ≤ 1, then Problem
(I)− has a unique regular solution.

Theorem 7. If S ∈ L2(h′), f ∈ C0,h(S), 0 < h < h′ ≤ 1, then Problem
(II)+ has a unique regular solution.
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