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STURM’S THEOREM FOR EQUATIONS WITH DELAYED
ARGUMENT


A.DOMOSHNITSKY


Abstract. Sturm’s type theorems on separation of zeros of solutions
are proved for the second order linear differential equations with de-
layed argument.


1. Introduction


In this article the distribution of zeros of solutions is investigated for the
following differential equation with delayed arguments


x′′(t) +
m


∑


i=1


pi(t)x(hi(t)) = 0, t ∈ [0, +∞), (1)


where pi are locally summable nonnegative functions and hi are nonnegative
measurable functions for i = 1, . . . ,m.


The classical result of Sturm is the following: if x1 and x2 are linearly
independent solutions of the ordinary differential equation


x′′(t) + p(t)x(t) = 0, t ∈ [0, +∞),


then between two adjacent zeros of x1 there is one and only one zero of x2.
This article deals with the extension of the Sturm’s theorem to equation (1)
with delayed argument.


The first result of this type was obtained by N.V.Azbelev [1]. Namely,
if for almost all t ∈ [0,+∞) there is at most one zero of each nontrivial
solution of equation (1) on the interval [h(t), t], where h(t) = min


i=1,... ,m
hi(t),


then Sturm’s theorem holds for equation (1), i.e. the interval [h(t), t] must
be ”small enough”. The generalization of this result of N.V.Azbelev to the
”neutral” equation


x′′(t)−
n


∑


j=1


qj(t)x′′(gj(t)) +
m


∑


i=1


pi(t)x(hi(t)) = 0, t ∈ [0, +∞),


267
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was obtained in [3]. Our approach assumes that [h1(t), hm(t)] is ”small
enough” for almost all t ∈ [0,+∞) (note that we consider the case h1(t) ≤
· · ·≤hm(t)≤ t in this article). Namely, if a solution has zero on [h1(t), hm(t)],
then its derivative has no zero on this interval.


Note the close result of S.M.Labovsky [10] for equation (1) in the case
m = 1 and another version of Sturm’s separation theorem proposed by
Yu.I.Domshlak [4,5].


It is known [1] that the space of solutions of equation (1) is two-dimen-
sional, the Wronskian


W (t) =
∣


∣


∣


∣


u(t) v(t)
u′(t) v′(t)


∣


∣


∣


∣


of a fundamental system u, v of the solution (1) can vanish, zeros of W (t)
do not depend on a fundamental system, W (0) is not equal to zero. Nonva-
nishing of Wronskian selects the class of homogeneous equations such that
each of them is equivalent to a corresponding ordinary differential equation.
In this case each nontrivial solution of equation (1) can have only finite
number of zeros on any finite interval, moreover, all zeros are simple. It
is also known [1] that nonvanishing of the Wronskian is equivalent to the
validity of Sturm’s theorem about separation of zeros.


The important part of this article concerns with estimates of the distance
between adjacent zeros. These results are usually connected with Sturm’s
comparison theorem. Note in this connection the following investigations
[1,4-9,11,12].


We reduce the question about lower bounds for the distance between
adjacent zeros and between zero of a solution and zero of its derivative to an
estimation of the spectral radius of the corresponding completely continuous
operator in the space of continuous functions, i.e. to the well-known problem
of functional analysis.


Our interest in the lower bounds of this distance is connected with the
problem of existence and uniqueness of a solution of boundary value prob-
lems. For example, if b− a is less than the distance between adjacent zeros
of solutions of (1), then the boundary value problem


x′′(t) +
m


∑


i=1


pi(t)x(hi(t)) = f(t), t ∈ [0,+∞),


x(a) = A, x(b) = B,


has for each A, B, f(t) the unique solution.


2. Main Results


Let λνµ be the smallest positive characteristic number of the operator
Fνµ : C[ν,µ] → C[ν,µ] (C[ν,µ] is the space of continuous functions x : [ν, µ] →
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R) which is defined by


(Fνµx)(t) = −
∫ µ


ν
Gνµ(t, s)


m
∑


i=1


pi(s)x(hi(s))γ(ν, hi(s))ds,


where


γ(ν, hi(s)) = 0 if hi(s) < ν, γ(ν, hi(s)) = 1 if hi(s) ≥ ν, (2)


Gνµ(t, s) =


{


−(µ− t)(s− ν)/(µ− ν) for ν ≤ s ≤ t ≤ µ,
−(t− ν)(µ− s)/(µ− ν) for ν ≤ t < s ≤ µ,


Gνµ(t, s) is the Green’s function of the boundary value problem


x′′(t) = f(t), t ∈ [ν, µ], x(ν) = 0, x(µ) = 0.


It is clear that the operator Fνµ is positive.


Theorem 1. Let
1) the functions hi be nondecreasing and the inequalities hi(t) ≤ hi+1(t)


hold for i = 1, . . . , m− 1 and almost all t ∈ [0,+∞);
2) the functions pi+1/pi be nondecreasing for i = 1, . . . ,m− 1;
3) at least one of the following inequalities be fulfilled


ess sup
s∈[h1(t),hm(t)]


m
∑


i=1


pi(s)[hm(t)− h1(t)]2 < 2, (3)


[hm(t)− h1(t)]
∫ hm(t)


h1(t)


m
∑


i=1


pi(s)ds ≤ 1, (4)


for almost all t ∈ [0, +∞).
Then
a) W (t) doesn’t vanish for t ∈ [0, +∞);
b) if ν and µ are two zeros of some nontrivial solution x of equation (1),


then λνµ ≤ 1;
c) there is one and only one zero of the derivative of a nontrivial solution


between any two adjacent zeros of this nontrivial solution.


Examples: the condition 2) of Theorem 1 is fulfilled for the following
cases:


1) if m = 2, p1 is nonincreasing and p2 is nondecreasing;
2) if pi(t) = aif(t), where ai = const, i = 1, . . . , m;
3) if pi(t) = aiti, i = 1, . . . , m;
4) if pi(t) = ait + bi (ai > 0, bi > 0), where bi/ai are nonincreasing for


i = 1, . . . ,m.
The condition that the functions pi+1


pi
are nondecreasing for i = 1, . . . , m


is essential, as the following example shows.
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Example 1. The function


x(t) =

















1− t2, 0 ≤ t ≤ 2,
0, 01t2 − 4, 04t + 5, 04, 2 < t ≤ 210,
2(t− 5239, 5)2, 210 < t


has a multiple zero at the point t = 5239, 5. This function is the solution of
the equation


x′′(t) + p1(t)x(h1(t)) + x(h2(t)) = 0,


where


h1(t) =


{


0, 0 ≤ t ≤ 2,
0, 9, t > 2,


h2(t) =


{


0, 0 ≤ t ≤ 2,
1, 1, t > 2,


p1(t) =


{


1, 0 ≤ t ≤ 210,
(21 + 32/10059)/19, t > 210.


It is clear that W (5239, 5) = 0.


The following fact follows from Theorem 1.


Corollary. If m = 1 and h1 is nondecreasing, then the assertions a),b),c)
of Theorem 1 are fulfilled.


The condition that the functions hi are nondecreasing is essential, as the
example of N.V.Azbelev [1] shows.


Let Rνµ(t, s), Qνµ(t, s) be Green’s functions of the boundary value prob-
lems


x′′(t) = f(t), t ∈ [ν, µ], x(ν) = 0, x′(µ) = 0,


x′′(t) = f(t), t ∈ [ν, µ], x′(ν) = 0, x(µ) = 0


respectively. It is clear that


Rνµ(t, s) =


{


ν − s if ν ≤ s ≤ t ≤ µ,
ν − t if ν ≤ t < s ≤ µ,


Qνµ(t, s) =


{


t− µ if ν ≤ s ≤ t ≤ µ,
s− µ if ν ≤ t < s ≤ µ.
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Define the operators Rνµ, Qνµ : C[ν,µ] → C[ν,µ] by the formulas


(Rνµx)(t) =
∫ µ


ν
Rνµ(t, s)


m
∑


i=1


pi(s)x(hi(s))γ(ν, hi(s))ds,


(Qνµx)(t) =
∫ µ


ν
Qνµ(t, s)


m
∑


i=1


pi(s)x(gi(s))ds,


here gi (i = 1, . . . , m) are measurable functions such that ν ≤ gi(t) ≤ µ.
Let rνµ, qνµ be the smallest positive characteristic numbers of the operators
Rνµ, Qνµ respectively.


Theorem 2. Let the conditions 1), 2) of Theorem 1 be fulfilled,
rh1(t)hm(t) > 1 for almost all t ∈ [0, +∞), qh1(t)hm(t) > 1 for almost all
t ∈ [0, +∞) and all possible functions gi such that gi(s) ∈ [h1(t), hm(t)] for
s ∈ [h1(t), hm(t)], i = 1, . . . , m. Then the assertions a),b),c) of Theorem 1
are fulfilled.


Remark. The inequalities rh1(t)hm(t) > 1 and qh1(t)hm(t) > 1 for t ∈
[0, +∞) guarantee that a solution of equation (1), having zero on the interval
[h1(t), hm(t)] has no zero of its derivative on this interval.


3. Proofs


We start with some auxiliary results.


Lemma 1. Let α be a zero of the nontrivial solution x of equation (1),
β be a zero of its derivative such that x(t) > 0 for t ∈ (α, β), α < β. Then
there exists a set e⊂(α, β) of positive measure such that


∑m
i=1 pi(t)x(hi(t)) >


0 for t ∈ e.


Proof of Lemma 1. Let we have on the contrary,
∑m


i=1 pi(t)x(hi(t)) ≤ 0 for
almost all t ∈ [α, β]. By the theorem of Lagrange there exists d ∈ (α, β) such


that x′(d) > 0. x′(β) = x′(d)+
∫ β


d x′′(s)ds = x′(d)−
∫ β


d


m
∑


i=1
pi(s)x(hi(s))ds>


0, that contrast the assumption: x′(β)=0. �


Lemma 2. Let
1) y be a nondecreasing function in the interval [a, b];
2) a ≤ h1(t) ≤ h2(t) ≤ · · · ≤ hm(t) ≤ b for almost all t ∈ [c, d] ∈ [a, b],


hi be nondecreasing for i = 1, . . . , m;
3) the functions pi+1/pi be nondecreasing for i = 1, . . . , m− 1.
Then from the existence of a set e ⊂ [c1, d1] ⊂ [c, d) such that mes(e) > 0


and
∑m


i=1 pi(t)y(hi(t)) > 0 for t ∈ e, it follows that
∑m


i=1 pi(t)y(hi(t)) > 0
for almost all t ∈ [d1, d].
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Proof of Lemma 2. Let k be a number such that y(hi(t)) ≥ 0 for t ∈ e,
i ≥ k. By the condition we have the inequality −


∑k−1
i=1 pi(t)y(hi(t)) <


∑m
i=k pi(t)y(hi(t)) for t ∈ e.
For all i = 1, . . . , m y(hi(t)) are nondecreasing since y and hi are non-


decreasing. Using the condition 3) we obtain for t ∈ e and r such that
t + r ∈ [d1, d]:


−
k−1
∑


i=1


pi(t + r)y(hi(t + r)) = −
k−1
∑


i=1


(pi(t + r)/pi(t))pi(t)y(hi(t + r)) ≤


≤ −(pk−1(t + r)/pk−1(t))
k−1
∑


i=1


pi(t)y(hi(t + r)) <


< (pk−1(t + r)/pk−1(t))
m


∑


i=k


pi(t)y(hi(t + r)) ≤


≤
m


∑


i=k


pi(t + r)y(hi(t + r)). �


Lemma 3. Let [α, β] ⊂ [ν, µ]. Then
1) if λνµ > 1, then λαβ > 1;


if λαβ ≤ 1, then λνµ ≤ 1;
2) if rνµ > 1, then rαβ > 1;


if rαβ ≤ 1, then rνµ ≤ 1;
3) if qνµ > 1 for each collection of functions such that gi(t) ∈ [ν, µ],


t ∈ [ν, µ], i = 1, . . . , m, then qαβ > 1 each collection of functions such that
ḡi(t) ∈ [α, β], t ∈ [α, β], i = 1, . . . ,m;


if there exists a collection of functions such that ḡi(t) ∈ [α, β], i =
1, . . . , m, and qαβ ≤ 1, then there exists a collection of functions gi(t) ∈
[ν, µ], t ∈ [ν, µ], i = 1, . . . , m, such that qνµ ≤ 1.


Proof of Lemma 3. Assertion 1) is proved in [1] and the proof of Assertion
2) is analogous, therefore we prove only Assertion 3).


Let us take an arbitrary collection of functions ḡi(t) ∈ [α, β], t ∈ [α, β],
i = 1, . . . , m, and denote


gi(t) =


{


ḡi(t) for t ∈ [α, β],
α for t ∈ [α, β].


By condition qνµ > 1 for this collection gi, i = 1, . . . , m, the equation
x = Qνµx + 1 has a positive solution v = lim


n→∞
xn, where x0 = 1, xn+1 =


Qνµxn + 1. Since Qνµ(t, s) ≥ Qαβ(t, s) for t, s ∈ [α, β], then v ≥ Qαβv + 1.
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Now, by the theorem about integral inequalities [1], we have qαβ > 1 for
this collection ḡi, i = 1, . . . , m. The first part of the assertion 3) is proved.


The second part of the assertion 2) can be deduced from the first part. �


Proof of Theorem 2. Let x be a nontrivial solution of the equation (1). Let
us consider the case x(0) > 0, x′(0) ≥ 0 (the case x(0) ≥ 0, x′(0) < 0 can
be considered analogously).


Denote by β1 the first zero of the solution’s derivative, by α1 the first
zero of the solution x (β1 < α1 by our assumption). If β1 or α1 doesn’t
exist, then the theorem is trivial.


Let us show that there exists a collection gi(t), i = 1, . . . , m, such that
qβ1α1 ≤ 1. Really, x satisfies the following equation


x(t) = −
∫ αk


βj


Qβjαk(t, s)
m


∑


i=1


pi(s)x(hi(s))γ(βj , hi(s))ds−


−
∫ αk


βj


Qβjαk(t, s)
m


∑


i=1


pi(s)x(hi(s))[1− γ(βj , hi(s))]ds


for t ∈ [β1, α1], where k = j = 1 and γ is defined by (2).
Rewrite the equality (4) in the following form


x(t) = −
∫ α1


β1


Qβ1α1(t, s)
m


∑


i=1


pi(s)x(gi(s))ds,


where the functions gi such that gi(t) ∈ [β1, α1].
Existence of these functions gi, i = 1, . . . ,m, follows from the next ar-


guments. Since x′′(t) = −
∑m


i=1 pi(t)x(hi(t)) < 0, then x′ is not increasing.
Therefore x(β1) = max


t∈[0,α1]
x(t) and the set of values of function x on the in-


terval [0, β1] is included in the set of values of the function x on the interval
[β1, α1], hence the solution gi of the functional equation x(hi(t)) = x(gi(t)),
t ∈ [β1, α1] exists.


It is obvious that for this collection of functions gi, i = 1, . . . , m, we have
qα1β1 ≤ 1.


We show that x′(α1) < 0. Indeed, by the theorem of Lagrange there
exists d ∈ (β1, α1) such that x(α1) − x(β1) = x′(d)(α1 − β1). From here
x′(d) < 0 and x′(α1) = x′(d) +


∫ α1


d x′′(t)dt < 0.
Let β2 be the first zero of the solution x after α1. By Lemma 1 there exists


a set e ∈ [α1, β1] with mes(e) > 0 such that x′′(t) = −
∑m


i=1 pi(t)x(hi(t)) >
0 for t ∈ e. From here it follows that hm(t) > α1 for almost all t ≥ β2. Since
qh1(t)hm(t) > 1, independently of collection of functions gi, i = 1, . . . , m we
obtain by Lemma 3 that h1(t) ≥ β1 for almost all t ≥ β2.
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Next, show that rα1β2 ≤ 1. Indeed, on the interval [α1, β2] the solution
x of equation (1) satisfies the following integral equation


x(t) = −
∫ βj


αk


Rαkβj (t, s)
m


∑


i=1


pi(s)x(hi(s))γ(αk, hi(s))ds−


−
∫ βj


αk


Rαkβj (t, s)
m


∑


i=1


pi(s)x(hi(s))[1− γ(αk, hi(s))]ds,


where k = 1, j = 2.
Taking v(t) = −x(t), we obtain the inequality v(t) ≤ (Rαkβj v)(t) for


k = 1, j = 2. By the theorem about the integral inequalities (see, for
example, [1]) we obtain rα1β2 ≤ 1.


Denote α2 the first zero of the solution x after β2 (if the solution x hasn’t
a second zero α2, then Theorem 2 is trivial).


If there exist d ∈ (β2, α2) such that h1(t) ≥ α1 for almost all t ≥ d,
then x(hi(t)) ≤ 0 for almost all t ∈ [d, α2], hence x′′(t) > 0 for almost all
t ∈ [d, α2].


If β1 ≤ h1(t) < α1, then by Lemma 2, with the use of the condition
rh1(t)hm(t) > 1 and Lemma 3, we can conclude that x′′(t) > 0 for t ∈ [β2, d].


By the theorem of Lagrange, there exists c ∈ (β2, α2) such that x(α2)−
x(β2) = x′(c)(α2 − β2), this implies x′(c) > 0 and x′(α2) = x′(c) +
∫ α2


c x′′(t)dt > 0. It means that α2 < β3 (we denote β3 the first zero of
derivative of the solution x after α2). Now we show that qβ2α2 ≤ 1 for
some collection gi, i = 1, . . . ,m. On the interval [β2, α2] the solution x of
equation (1) satisfies equation (4) for j = k = 2. Rewrite this equation in
the following form:


x(t) = −
∫ αk


βj


Qβjαk(t, s)
m


∑


i=1


pi(s)x(gi(s))γ(αk−1, hi(s))ds−


−
∫ αk


βj


Qβjαk(t, s)
m


∑


i=1


pi(s)x(hi(s))[1− γ(αk−1, hi(s))]ds


where k = j = 2, gi(t) ∈ [β2, α2] such that γ(α1, hi(t)) = x(gi(t)) for
t ∈ [β2, α2]. The collection gi, i = 1, . . . , m exists since x′′(t) ≥ 0 for
t ∈ [β2, α2]. For, since x′ isn’t decreasing on the interval [β2, α2], therefore
|x(β2)| = max


α1≤t≤α2
|x(t)| and the set of values of the function x on the interval


[α1, β2] is included in the set of values of x on the interval [β2, α2].
It follows from [1] that qβ2α2 ≤ 1.
The inequality λα1α2 ≤ 1 is proved analogously to rα1β2 ≤ 1.
If αm is the last zero of the nontrivial solution, then repeating the argu-


ments for j, k = 3, 4, 5, . . . , m, we obtain the proof of the theorem. If the
solution x has an infinite number of zeros, then the sequence αk of zeros
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is unbounded. Indeed, we have proved that λαkαk+1 ≤ 1, this implies that
[1] (αk+1 − αk)


∫ αk+1


αk


∑m
i=1 pi(t)dt > 4 and, consequently, the increasing


sequence αk cannot be bounded from above.
It is clear that all zeros of the solution x belong to this sequence αk.


In this case the repetition of our arguments completes the proof of the
assertions a) and b) of Theorem 2.


The assertion c) follows from the following argument. For each j we have
proved that sign x(t) = sign


∑m
i=1 pi(t)x(hi(t)) for t ∈ (βj , αj), this implies


x′(t) = x′(βj)−
∫ t


βj


∑m
i=1 pi(s)x(hi(s))ds 6= 0 for t ∈ (βj , αj). �


Proof of Theorem 1. Theorem 1 can be obtained as a corollary of Theorem 2.
Indeed, from the theorem about the integral inequalities [1] we have


the following. If there exists a continuous positive function v such that
v(t) > Qνµv)(t) (v(t) > (Rνµv)(t)) for t ∈ (ν, µ), then qνµ > 1 (rνµ >
1). Substituting v = 1, we obtain that the condition (4) guarantees the
inequalities rh1(t)hm(t) > 1, qh1(t)hm(t) > 1.


If there exists a positive function v such that


ϕ(t) = v′′(t) +
m


∑


i=1


pi(t)v(hi(t))γ(v, hi(t)) ≤ 0,
∫ µ


ν
ϕ(t)dt < 0,


v′(ν) = 0, v(µ) = 0 (v(ν) = 0, v′(µ) = 0),


then qνµ > 1 (rνµ > 1) [2]. Substituting v(t) = (t− 2ν + µ)(µ− t) (v(t) =
(t− ν)(2µ− ν − t)), we conclude that inequality (3) implies the inequality
qh1(t)hm(t) > 1 (rh1(t)hm(t) > 1). �
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