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ON THE CARDINALITY OF A SEMI-ALGEBRAIC SET

G. KHIMSHIASHVILI

Abstract. It is shown that the cardinality of a finite semi-algebraic
subset over a real closed field can be computed in terms of signatures
of effectively constructed quadratic forms.

1. The problem under consideration may be described as follows. Let X
be a semi-algebraic set over an ordered field K [1]

X = {fi = 0, gj > 0; i ∈ I, j ∈ J} ⊂ Kn, (1)

where I and J are some finite sets of indices, and suppose we are a pri-
ori guaranteed that X is finite (e.g. it is a part of the zero-set of a non-
degenerate polynomial endomorphism). Now the problem is how to estimate
its cardinality in some reasonable way without solving any equations.

More formally, there are given fi, gj belonging to the ring Kn of polyno-
mials in n variables with coefficients from K and we want to find effectively
(by means of some algebraic operations over coefficients of these polynomi-
als) the cardinality #X, i.e. the number of elements in X (geometrically
distinct or counted with the multiplicities).

Similar problems for the case when K = R is the usual field of reals often
arise in applications [2] and they are well-studied [3]. We will show below
that a number of general results may be formulated in terms which are valid
in the context of real closed fields. We will not treat the problem in full
even for reals preferring to exclude variuos possible degenerations. In fact,
cases considered below are principal in the sense that most of reasonable
situations may be reduced to them.

From now on we always suppose K to be a real closed field and all points
of X to be simple in the sense of the algebraic geometry (i.e. having the
multiplicity 1). Thus we are going to deal, in fact, with the number of
geometrically distinct points.
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We will consider two important cases: when X is the zero-set of a non-
degenerate endomorphism (i.e. #I = n and fi define a proper endomor-
phism of K̄n, where K̄ = K(

√
−1) is the algebraic closure of K), and when

one has no inequalities (i.e. J = ∅).
In the first case the solution may be obtained by means of a suitable modi-

fication of the classical signature method going back to Hermite and Jacobi
[3] which was outlined in [4] and then thoroughly studied in the Candidate
Dissertation of T.Aliashvili for the field of reals (see [5]). The proposed
generalisation is based on the existence of a purely algebraic definition of
the Grothendieck residue symbol [6].

The same approach is also valid in the second case but better results
may be obtained by means of more sophisticated algebraical tools used by
G.Khimshiashvili [7], also by D. Eisenbud and H.Levine [8], and develo-
ped later in [9] and [10]. This enables us to get rid of the multiplicity
one assumption, which seems impossible in the framework of the signature
method.

In fact, some other approaches, e.g., the so-called Newton polygon method
developed in the works of A.G.Khovansky [11], are possible, but the author
has never seen any published results of that kind. Moreover, it seems that
the named method does not in principle enable one to consider the case
when inequalities are really present in the definition of X.

2. Consider now a set X of the type (1) and let fj define a nondegenerate
polynomial endomorphism f̄ : K̄n → K̄n with simple roots. Nondegeneracy
here means as usual the absence of ”roots at the infinity”, that is, the ”lead-
ers” (homogeneous forms of the highest degree deg fi) f∗i have no nontrivial
common roots in K̄n [2] (for K = R this is equivalent to f̄ being proper).

The Bezout theorem for real closed fields [12] implies that f̄ has exactly
N =

∏

deg fj roots in K̄n so that we have f̄−1(0) = {z0, z1 . . . , zN−1} with
zi 6= zj for i 6= j.

Without loss of generality we may assume that the first coordinates of
roots are pairwise distinct and in such a case we say that the endomorphism
is separable. This condition may always be verified effectively in terms of
resultants and one can always reduce the problem to this case by performing
not more than N(N-1)/2 rotations of the coordinate system.

Write now every root in the form zj = (uj , z′j) with the first coordinate
singled out and introduce an auxiliary quadratic form on KN which depends
on an arbitrary g ∈ Kn :

Qg
f (ξ) =

N−1
∑

j=0

g(zj)(ξ0 + ujξ1 + · · ·+ +uN−1
j ξN−1)2. (2)

It is easy to verify that all coefficients of this form belong to K because
here we have a complete analogy with the case of reals. More precisely, the
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roots which do not belong to Kn appear in conjugated pairs with respect
to the natural ”complex conjugation” operation in K̄, which implies the
assertion.

Recall that one can define as usual the rank rk Qg
f and the signature

sig Qg
f of the form Qg

f [1].
The following result provides a multidimensional analogue of the Sturm

algorithm [1] and enables one to solve the problem for #J = 1, i.e. for
domains of the type {g > 0}.

Theorem 1. If f : Kn → Kn is a separable polynomial endomorphism
over a real closed field K and g ∈ Kn, then the rank and signature of the
form (2) satisfy the relations:

N − rk Qg
f = #

(

f−1(0) ∩ g−1(0)
)

, (3)

sig Qg
f = #

[

f−1(0) ∩ {g > 0}
]

−#
[

f−1(0) ∩ {g < 0}
]

. (4)

Denoting by Qf the form (2) for g ≡ 1, we are able to derive some
corollaries.

Corollary 1. Under conditions of the theorem the form Qf is nonde-
generate and one has:

sig Qf = #f−1(0) (5)

Corollary 2. Under the same conditions for X = f−1(0)∩ {g > 0} one
has:

#X =
(

sig Qf + sig Qg
f + rk Qg

f −N
)/

2 (6)

Using some simple combinatorics we may also increase the number of
inequalities determining X.

Corollary 3. If besides f−1(0)∩ g−1
j (0) = ∅ holds for every j ∈ J , then

#X =
(

∑

α

sig Qα
f

)

/

2#J ,

where a runs through all multiindices of the form α = (α1, . . . , αk) with
1 ≤ k ≤ #J and α1 < · · · < αk, and Qα

f = Qgα
f with gα = gα1 · . . . · gk.

For the sake of simplicity we have excluded here degenerations connected
with the presence of roots on boundaries of domains {gj > 0}.

Before presenting the proof of the theorem let us explain why it gives a
solution of our problem. It suffices to show that coefficients of the form (2)
may be computed by a finite sequence of rational operations over coefficients
of fj and g.

After trivial modifications of the formula (2) it is easy to see that the
coefficients cij in the standard presentation of the form Qg

f (ξ) =
∑

cijξiξj
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are expressed algebraically in terms of the so-called mixed Newton sums of
roots

Sα(f) =
N−1
∑

j=0

(z1
j )α1 · . . . · (zn

j )αn , (7)

where α ∈ (Z+)n, zj = (z1
j , . . . , zn

j ), j = 0, 1, . . . , N − 1.
In fact, certain sums Sα may be easily computed using iterated resultants.

For example, this is so for small |α| and for ”pure” Newton sums with
only one nonzero αj and this enables one already to provide the separa-
tion of roots, which was the original classical problem [3]. There are some
hints in [3] about such a possibility but without any details and with a
remark that this is not a universal method. For n = 2 the storage of
easily computable Newton sums was described by T.Aliashvili who has also
shown using the Hilbert theorem on invariants that all Newton sums may
be computed algebraically in this case [4], [5]. Unfortunately, this approach
is not constructive and it meets with serious difficulties for arbitrary n.

For K = R a radical tool for suppressing this difficulties is provided by an
ingenious algebraic device called the Grothendieck residue symbol [6, 13]. It
was shown in [7] and [8] how this residue serves to compute the topological
degree of a smooth map-germ and so we naturally used it in our situation.
In fact, here we need the global variant of this notion which was outlined
in [6] and further investigated in [13].

For the sake of completeness we recall that the global residue of a poly-
nomial g ∈ Rn with respect to a nondegenerate endomorphism f ∈ (Rn)n

is defined by the integral

Resfg =
1

(2πi)n

∫

ΓR

g(z)
f1(z) · . . . · fn(z)

dµ, (8)

where the cycle ΓR = {z ∈ Cn : |fj(z)| = R for j = 1, . . . , n} is defined for
sufficiently large R > 0, its orientation is induced by the differential form
d(arg f1)∧ · · ·∧d(arg fn) and the integral is taken with respect to the usual
Lebesque measure.

This integral doesn’t depend on R and vanishes on the ideal (f) generated
by the components of f in Rn [13]. Moreover, if all roots of f are simple,
one has the relation

Resfg =
∑

z∈f−1(0)

g(z)
Jf (z)

, (9)

where Jf (z) = det(∂fj/∂zk)(z) is the Jacobian of f .
Now it is clear that in the situation of Theorem 1 we have

Sα(f) = Resf (Jfeα), (10)
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where α ∈ (Z+)n, eα = xα1
1 · . . . · xαn

n is a monomial in Rn.
Consequently, it remains to show that Resfg itself can be computed

by the coefficients of f and g. This circumstance should not seem strange
because the global residue is the sum of local residues [13] and the latter are
known to be algebraically computable but, of course, a technical difficulty
arises here because we cannot assume the positions zj of local residues are
known.

Nevertheless, it turns out that the situation can be saved by means of a
clever use of the transformation formula for global residues [13]. In fact, one
may always reduce the problem to the case of the so-called ”pure powers”
fj = zkj

j , where it is trivialized. The necessary transformation can be
obtained from the so-called Hefer decomposition of polynomials fj and all
the procedures rise up to algorithms. We have no space here for presenting
details which may be borrowed from [13], but for future generalizations
it is important to notice that the main point was just the transformation
formula. Thus we conclude that the Newton sums can be also computed
algebraically, which gives a principal solution of our problem.

Now we observe that the same arguments can be used also for an arbitrary
real closed field K because there exists a pure algebraic definition of the
Grothendieck residue symbol [6] which generalizes (8) and possesses the
same functorial properties.

As was already mentioned, a straightforward analysis of the residue com-
putation in [13] shows that it uses, in fact, only the formal properties of
residues and therefore also extends to the general case.

Thus we arrive to the following conclusion which complements Theorem
1 and completes the desired solution.

Theorem 2. Under the conditions of Theorem 1 coefficients of the form
Qg

f may be algebraically expressed through coefficients of given polynomials.

Now it is time to return to the proof of Theorem 1 which proceeds as fol-
lows. Write first f̄−1(0) in the form f̄−1(0) = {x1, ..., xr, z1, ..., zk, z̄1, ..., z̄k},
where x1, . . . , xr ∈ Kn, z 6∈ Kn, r + 2k = N , which is always possible in
virtue of the observation following the formula (2).

Define now a linear transformation T in KN by the formulas










ηj = ξ0 + ξ1uj + · · ·+ ξN−1uN−1
j , j = 1, . . . , r;

ηr+j = Re(ξ0 + · · ·+ ξN−1uN−1
r+j ), j = 1, . . . , k;

ηr+k+j = Im(ξ0 + · · ·+ ξN−1uN−1
r+j ), j = 1, . . . , k.

Evidently, this transformation diagonalizes our form, this immediately
implying (3) and (4). It remains to verify that this is a genuine change of
coordinates, that is its determinant is nonzero. Anyone who is fond of linear
algebra can easily compute it by reducing it to a Vandermonde of the first
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coordinates which is nonzero due to the separability of f . Another way is to
observe that the form Qf becomes nondegenerate; hence rk T ≥ N , which
again finishes the proof. �

All corollaries become immediate now. We have only to introduce num-
bers mα of roots belonging to Uα = ∩{gαk > 0} and to sum up all relations
(4) for functions gα, which terminates all the numbers m except the required
m1,...,n = #X.

Turning again to the proof of Theorem 2 we shall also point out that
there were two nearly equivalent possibilities of deducing the general case
from the case of real numbers. Firstly, one can mimic the algorithm from
[13] referring to the properties of the general notion from [6]. Secondly, one
can directly define the global residue Resfg by the formula presented in
[13], page 60, and verify that it possesses all necessary properties forcing it
to coincide with the residue from [6].

In both cases details are routine and we have omitted them. In fact, the
shortest though a little mistifying way is concerned with the Zaidenberg–
Tarski principle [12], which makes all these troubles unnecessary as soon as
a formula for Resf is proven for reals so that the proof of our generalization
becomes complete.

Nevertheless, we preferred to recall the analytical formula for the global
residue having in mind an effective algorithm for dealing with the problem
in practice, which is by no means available by the Zaidenberg–Tarski yoga.

A number of curious questions arise here. For example, one can try
to estimate the computational complexity of corresponding algorithms and
compare it with that of the cylindrical decomposition method from [14].
When g = Jf and we are dealing with the topological degree of f necessary
estimates were obtained by T.Aliashvili [5] and they witness in favour of
the approach outlined above.

3. Let now X be an affine algebraic subset of Kn, that is a set of the
type (1) with J = ∅. We are going to describe an ano ther solution of our
problem also valid without assuming that all points of X are simple.

As is well known, every such subset may be represented as a hypersurface
X = {F = 0} with F = f2

1 + · · · + f2
#I so that we may assume that X is

a hypersurface consisting of a finite number of points. At first glance such
an object may seem unusual but the point is that for a hypersurface one
can always compute its Euler characteristic in a pure algebraic form as in
[7, 9, 10]. In our situation the Euler characteristic simply reduces to the
number of geometrically distinct points so that we become able to give a
very concise solution of our problem.

The discussion below can be adapted for arbitrary real closed fields, but
this requires some caution and additional work so that we consider here
only the case when K = R.
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Recall that we deal with the usual Euler characteristic χ(X) which is the
alternated sum of homology groups ranks (Betti numbers) of a topological
space X under consideration. We write degp f for the local degree of an
endomorphism f : Rn → Rn in an isolated preimage of the origin p ∈
f−1(0) which is defined as the topological degree of a mapping ̂f = f/‖f‖ :
Sn−1

ε (p) → Sn−1
1 (0) = Sn−1.

All the results below are based on the following formulas obtained by the
author in [7].

Theorem 3. Let F : Rn → R be a polynomial with an isolated singula-
rity at the origin. Then for a sufficiently small enough λ > 0 one has

χ
(

{F < λ} ∩Bn
δ

)

= 1 + (−1)n−1 deg 0(grad F ), (11)

where Bn
δ is a ball of the small radius δ.

If the polynomial F is homogeneous then for sufficiently small
λ, δ > 0 one has also the equality

χ
(

{F ≥ 0} ∩ Sn−1
δ

)

= 1 + (−1)n−1 deg 0(grad F ). (12)

These results are local but there is a natural link with the global ones
provided by the projectivization.

With this in mind, suppose that f1, . . . , fp are homogeneous polynomials
of the degrees d1 ≤ d2 ≤ · · · ≤ dp , respectively. Then, besides X, they also
define a projective algebraic variety Vf in RPn−1 which can also be deter-
mined by a single homogeneous polynomial f =

∑

f2
j · ‖x‖2(dp−dj) of the

degree 2dp, where ‖x‖ is the usual euclidean norm of x ∈ Rn. Now it is not
difficult to tie together the invariants of X with those of its projectivization
using the following lemma established in [10].

Lemma. Under these conditions for all λ 6= 0 the polynomial Fλ =
f2 − λ2(

∑

x2d+2
j ) has an isolated singularity at 0 and for a sufficiently

small |λ| the real hypersurface {Fλ = 0} does not have singularities inside
small balls and is transversal to their boundaries. Moreover, denoting Z =
{x ∈ Sn−1

1 : f(x) = 0}, Zλ = {x ∈ Sn−1
1 : Fλ(x) ≤ 0}, one has that Zλ\Z

is diffeomorphic to Yλ × (0, λ], where Yλ = {x ∈ Sn−1
1 : Fλ(x) = 0}.

Collecting together these observations, we are able to obtain the final
result.

Theorem 4. Let f1, . . . , fp ∈ Rn be real polynomials of degrees not ex-
ceeding d. Suppose that they have only a finite number M of real common
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zeroes. Set

hi(x0, x1, . . . , xn) = xd+1
0 fi(x1/x0, . . . , xn/x0),

H =
p

∑

i=1

h2
i −

n
∑

k=0

x2d+4
k .

Then H has an algebraically isolated critical point at the origin and the
following equality holds:

M =
[

(−1)n − deg 0(grad H)
]/

2. (13)

Proof. Evidently, all polynomials hj are homogeneous of the degree d + 1,
which enables us to transplant considerations on the unit sphere Sn ⊂ Rn+1

and use the lemma.
With this purpose we introduce a subset Y = Sn ∩ {h1 = · · · = hp = 0}

and observe that Y = Y+∪Y−∪Sn−1 with Y± = {x ∈ Sn : ±x0 > 0, h1(x) =
· · · = hp(x) = 0}.

Evidently, Y+ and Y− are homeomorphic to X so that we obtain χ(Y ) =
2χ(X)−χ(Sn−1) or, equivalently, χ(X) = [χ(Y )+χ(Sn−1)]/2 and it remains
to compute χ(Y ), which is already possible using (11) for H.

Working with homology with integer coefficients, in virtue of the Lefshetz
duality [2] we obtain

χ(S\Y ) =
∑

(−1)k rk Hk(S\Y ) =
∑

(−1)k rkHn−k−1(S, Y ) =

= (−1)n+1χ(S, Y ) = (−1)n+1[χ(S)− χ(Y )] =

= (−1)nχ(Y ) + (−1)n+1 + 1.

On the other hand, applying the lemma to H instead of F one gets
S\Y = (S ∩ {Fλ ≤ 0}) ∪ (S ∩ {Fλ ≤ 0}).

The first set is fibred in virtue of the lemma and the second one cannot
contain any points of Y because there we have

∑

x2d+4
j > 0. Consequently,

we obtain

χ(S\Y )=χ
(

{Fλ =0} ∩ S
)

+χ
(

{Fλ≥0} ∩ S
)

−χ
(

{Fλ =0} ∩ S
)

=

=χ
(

{Fλ ≥ 0}
)

=1 + (−1)n+1 deg 0(grad Fλ).

This naturally implies

χ(Y ) = (−1)n[

(−1)n + (−1)n+1 deg 0(grad Fλ)
]

= 1− deg 0(grad Fλ).

Now, our lemma yields that the family F provides an admissible ho-
motopy with F1 = H so that we may put λ = 1 and get χ(Y ) = 1 −
deg 0(grad H), which immediately gives (13) and finishes the proof.
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Granted formula (13) we have only to observe that the local topological
degree is algebraically computable being, in fact, equal to the signature of
an effectively constructible quadratic form on the coordinate algebra of a
given mapping [7, 8]. Thus, we obtain another way of computing #X, which
turns out to be more convenient and effective than the method of §2.

One could now combine our results with those on algorithmic computa-
tion of the local degree in order to estimate the computational complexity
of this method. We shall not pursue this topic here but rather make several
remarks in conclusion.

An interesting open problem is to generalize all these things for arbitrary
real closed fields. In fact, most of necessary algebraical and topological no-
tions are also available in the general case. One has only to obtain a formula
expressing the local Euler characteristic in terms of the local topological de-
gree as in [7]. The author feels that a portion of the semi-algebraic topology
in the spirit of [15] should be helpful here. One could also try to combine
this with the discussion of real singularities in [16].

Some concrete results become more or less immediate now. For example,
one can directly verify a result of R.Thom stating that the number of cusps
of a stable smooth mapping from the real projective plane into real plane
is always odd because such maps may be approximated by rational ones
given by ratios of polynomials of even degrees for which the result follows
directly from the formula (11). Perhaps, some other ”oddity results” may
be obtained in a similar manner.

One can also give a closed algebraical formula for the number of cusps
of a polynomial Whitney mapping (stable mapping of R2 in itself) which
complements recent results of K.Aoki and T.Fukuda [17] and provides sharp
estimates for such numbers.
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