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ON THE CORRECTNESS OF LINEAR BOUNDARY
VALUE PROBLEMS FOR SYSTEMS OF GENERALIZED

ORDINARY DIFFERENTIAL EQUATIONS

M. ASHORDIA

Abstract. The sufficient conditions are established for the correct-
ness of the linear boundary value problem

dx(t) = dA(t) · x(t) + df(t), l(x) = c0,

where A : [a, b] → Rn×n and f : [a, b] → Rn are matrix- and vector-
functions of bounded variation, c0 ∈ Rn, and l is a linear continuous
operator from the space of n-dimentional vector-functions of bounded
variation into Rn.

Let the matrix- and vector-functions, A : [a, b] → Rn×n and f : [a, b] →
Rn, respectively, be of bounded variation, c0 ∈ Rn, and let l : BVn(a, b) →
Rn be a linear continuous operator such that the boundary value problem

dx(t) = dA(t) · x(t) + df(t), (1)

l(x) = c0 (2)

has the unique solution x0.
Consider the sequences of matrix- and vector-functions of bounded vari-

ation Ak : [a, b] → Rn×n (k = 1, 2, . . . ) and fk : [a, b] → Rn (k = 1, 2, . . . ),
respectively, the sequence of constant vectors ck ∈ Rn (k = 1, 2, . . . ) and the
sequence of linear continuous operators lk : BVn(a, b) → Rn (k = 1, 2, . . . ).

In this paper the sufficient conditions are given for the problem

dx(t) = dAk(t) · x(t) + dfk(t), (3)

lk(x) = ck (4)

to have a unique solution xk for any sufficiently large k and

lim
k→+∞

xk(t) = x0(t) uniformly on [a, b]. (5)
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An analogous question is studied in [2–4] for the boundary value problem
for a system of ordinary differential equations.

The theory of generalized ordinary differential equations enables one to
investigate ordinary differential and difference equations from the common
standpoint. Moreover, the convergence conditions for difference schemes
corresponding to boundary value problems for systems of ordinary differen-
tial equations can be deduced from the correctness results for aprropriate
boundary value problems for systems of generalized ordinary differential
equations [1, 5, 6].

The following notations and definitions will be used throughout the pa-
per:
R =]−∞, +∞[;
Rn is a space of real column n-vectors x = (xi)n

i=1 with the norm

‖x‖ =
n

∑

i=1

|xi|;

Rn×n is a space of real n× n-matrices X = (xij)n
i,j=1 with the norm

‖X‖ = max
j=1,...,n

n
∑

i=1

|xij |;

If X ∈ Rn×n, then X−1 and det(X) are the matrix inverse to X and the
determinant of X, respectively; E is the identity n× n matrix;

b
∨
a
x and

b
∨
a
X are the sums of total variations of components of vector- and

matrix-functions, x : [a, b] → Rn and X : [a, b] → Rn×n, respectively;
BVn(a, b) is a space of all vector-functions of bounded variation x :

[a, b] → Rn (i.e., such that
b
∨
a
x < +∞) with the norm

‖x‖sup = sup{‖x(t)‖ : t ∈ [a, b]}1;

x(t−) and x(t+) (x(a−) = x(a), x(b+) = x(b)) are the left and the right
limits of the vector-function x : [a, b] → Rn at the point t;

d1x(t) = x(t)− x(t−), d2x(t) = x(t+)− x(t);
BVn×n(a, b) is a set of all matrix-functions of bounded variation X :

[a, b] → Rn×n, i.e., such that
b
∨
a
X < +∞;

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);
If X = (xij)n

i,j=1 ∈ BVn×n(a, b), then V (X) : [a, b] → Rn×n is defined by

V (X)(a) = 0, V (X)(t) =
( t
∨
a

xij
)n
i,j=1 (a < t ≤ b);

1BVn(a, b) is not the Banach space with respect to this norm.



LINEAR BOUNDARY VALUE PROBLEMS 345

If α ∈ BV1(a, b), x : [a, b] → R and a ≤ s < t ≤ b, then

t
∫

s

x(τ) dα(τ) = x(t)d1α(t) + x(s)d2α(s) +
∫

]s,t[

x(τ) dα(τ),

where
∫

]s,t[ x(τ) dα(τ) is the Lebesgue–Stieltjes integral over the open inter-

val ]s, t[ (if s = t, then
∫ t

s x(τ) dα(τ) = 0);
If A = (aij)n

i,j=1 ∈ BVn×n(a, b), X = (xij)n
i,j=1 : [a, b] → Rn×n, x =

(xi)n
i=1 : [a, b] → Rn and a ≤ s ≤ t ≤ b, then

t
∫

s

dA(τ) ·X(τ) =
(

n
∑

k=1

t
∫

s

xkj(τ) daik(τ)
)n

i,j=1
,

t
∫

s

dA(τ) · x(τ) =
(

n
∑

k=1

t
∫

s

xk(τ) daik(τ)
)n

i=1
;

‖l‖ is the norm of the linear continuous operator l : BVn(a, b) → Rn;
If X ∈ BVn×n(a, b) is the matrix-function with columns x1, . . . , xn, then

l(X) is the matrix with columns l(x1), . . . , l(xn).
A function x ∈ BVn(a, b) is said to be a solution of problem (1), (2) if it

satisfies condition (2) and

x(t) = x(s) +

t
∫

s

dA(τ) · x(τ) + f(t)− f(s) for a ≤ s ≤ t ≤ b.

Alongside with (1) and (3), we shall consider the corresponding homoge-
neous systems

dx(t) = dA(t) · x(t) (10)

and

dx(t) = dAk(t) · x(t), (30)

respectively.
A matrix-function Y ∈ BVn×n(a, b) is said to be a fundamental matrix

of the homogeneous system (10) if

Y (t) = Y (s) +

t
∫

s

dA(τ) · Y (τ) for a ≤ s ≤ t ≤ b

and det
(

Y (t)
)

6= 0 for t ∈ [a, b].
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Theorem 1. Let the conditions

det
(

E + (−1)jdjA(t)
)

6= 0 for t ∈ [a, b] (j = 1, 2), (6)

lim
k→+∞

lk(y) = l(y) for y ∈ BVn(a, b), (7)

lim
k→+∞

ck = c0, (8)

lim
k→+∞

sup ‖lk‖ < +∞, (9)

lim
k→+∞

sup
b
∨
a
Ak < +∞ (10)

be satisfied and let the conditions

lim
k→+∞

[

Ak(t)−Ak(a)
]

= A(t)−A(a), (11)

lim
k→+∞

[

fk(t)− fk(a)
]

= f(t)− f(a) (12)

be fulfilled uniformly on [a, b]. Then for any sufficiently large k problem (3),
(4) has the unique solution xk and (5) is valid.

To prove the theorem we shall use the following lemmas.

Lemma 1. Let αk, βk ∈ BV1(a, b) (k = 0, 1 . . . ),

lim
k→+∞

‖βk − β0‖sup = 0, (13)

r = sup
{ b
∨
a

αk : k = 0, 1, . . .
}

< +∞ (14)

and the condition

lim
k→+∞

[

αk(t)− αk(a)
]

= α0(t)− α0(a) (15)

be fulfilled uniformly on [a, b]. Then

lim
k→+∞

t
∫

a

βk(τ) dαk(τ) =

t
∫

a

β0(τ) dα0(τ)

uniformly on [a, b].

Proof. Let ε be an arbitrary positive number. We denote

Dj(a, b, ε; g) =
{

t ∈ [a, b] : djg(t) ≥ ε
}

(j = 1, 2)

where
g(t) = V (β0)(t) for t ∈ [a, b].

By Lemma 1.1.1 from [5] there exists a finite subdivision
{α0, τ1, α1, . . . , τm, αm} of [a, b] such that

a) a = α0 < α1 < · · · < αm = b, α0 ≤ τ1 ≤ α1 ≤ · · · ≤ τm ≤ αm;
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b) If τi 6∈ D1(a, b, ε; g), then g(τi)− g(αi−1) < ε;
If τi ∈ D1(a, b, ε; g), then αi−1 < τi and g(τi−)− g(αi−1) < ε;

c) If τi 6∈ D2(a, b, ε; g), then g(αi)− g(τi) < ε;
If τi ∈ D2(a, b, ε; g), then τi < αi and g(αi)− g(τi+) < ε.

We set

η(t) =







































β0(t) for t ∈ {α0, τ1, α1, . . . , τm, αm};
β0(τi−) for t ∈]αi−1, τi[, τi ∈ D1(a, b, ε; g);
β0(τi) for t ∈]αi−1, τi[, τi 6∈ D1(a, b, ε; g) or

for t ∈]τi, αi[, τi 6∈ D2(a, b, ε; g);
β0(τi+) for t ∈]τi, αi[, τi ∈ D2(a, b, ε; g);

(i = 1, . . . ,m).

It can be easily shown that η ∈ BV1(a, b) and

|β0(t)− η(t)| < 2ε for t ∈ [a, b]. (16)

For every natural k and t ∈ [a, b] we assume

γk(t) =

t
∫

a

βk(τ) dαk(t)−
t

∫

a

β0(τ) dα0(τ)

and

δk(t) =

t
∫

a

η(t) d[αk(τ)− α0(τ)].

It follows from (15) that

lim
k→+∞

‖δk‖sup = 0. (17)

On the other hand, by (14) and (16) we have

‖γk‖sup ≤ 4rε + r‖βk − β0‖sup + ‖δ‖sup (k = 1, 2, . . . ).

Hence in view of (13) and (17) limk→+∞ ‖γk‖sup = 0 since ε is arbitrary.

Lemma 2. Let condition (6) be fulfilled and

lim
k→+∞

Yk(t) = Y (t) uniformly on [a, b], (18)

where Y and Yk are the fundamental matrices of the homogeneous systems
(10) and (30), respectively. Then

inf
{∣

∣ det(Y (t))
∣

∣ : t ∈ [a, b]
}

> 0, (19)

inf
{∣

∣ det(Y −1(t))
∣

∣ : t ∈ [a, b]
}

> 0 (20)
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and

lim
k→+∞

Y −1
k (t) = Y −1(t) uniformly on [a, b]. (21)

Proof. It is known ([6], Theorem III.2.10) that djY (t) = djA(t) · Y (t) for
t ∈ [a, b] (j = 1, 2). Therefore (6) implies

det
(

Y (t−) · Y (t+)
)

=
[

det(Y (t))2
]

·
2

∏

j=1

det
(

E + (−1)jdjA(t)
)

6= 0

for t ∈ [a, b]. (22)

Let us show that (19) is valid. Assume the contrary. Then it can be easily
shown that there exists a point t0 ∈ [a, b] such that det

(

Y (t0−) ·Y (t0+)
)

=
0. But this equality contradicts (22). Inequality (19) is proved.

The proof of inequality (20) is analogous.
In view of (18) and (19) there exists a positive number q such that

inf
{∣

∣ det(Yk(t))
∣

∣ : t ∈ [a, b]
}

> q > 0 for any sufficiently large k. From
this and (18) we obtain (21).

Proof of the Theorem. Let us show that

det
(

E + (−1)jdjAk(t)
)

6= 0 for t ∈ [a, b] (j = 1, 2) (23)

for any sufficiently large k.
By (11)

lim
k→+∞

djAk(t) = djA(t) (j = 1, 2) (24)

uniformly on [a, b]. Since
b
∨
a
A < +∞, the series

∑

t∈[a,b] ‖djA(t)‖ (j = 1, 2)

converges. Thus for any j ∈ {1, 2} the inequality

‖djA(t)‖ ≥ 1
2

may hold only for some finite number of points tj1, . . . , tj mj in [a, b]. There-
fore

‖djA(t)‖ <
1
2

for t ∈ [a, b], t 6= tji (i = 1, . . . , mj). (25)

It follows from (6), (24) and (25) that for any sufficiently large k and for
j ∈ {1, 2}

det
(

E + (−1)jdjAk(tji)
)

6= 0 (i = 1, . . . ,mj) (26)

and

‖djAk(t)‖ <
1
2

for t ∈ [a, b], t 6= tji (i = 1, . . . , mj). (27)
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The latter inequality implies that the matrices E + (−1)jdjAk(t) (j = 1, 2)
are invertible for t ∈ [a, b], t 6= tji (i = 1, . . . ,mj) too. Therefore (23) is
proved.

Besides, by (26) and (27) there exists a positive number r0 such that for
any sufficiently large k

∥

∥

[

E + (−1)jdjAk(t)
]−1∥

∥ ≤ r0 for t ∈ [a, b] (j = 1, 2). (28)

Let k be a sufficiently large natural number. In view of (6) and (23) there
exist ([6], Theorem III.2.10) fundamental matrices Y and Yk of systems (10)
and (30), respectively, satisfying Y (a) = Yk(a) = E. Moreover, Y −1

k ∈
BVn×n(a, b).

Let us prove (18). We set Zk(t) = Yk(t)− Y (t) for t ∈ [a, b] and Bk(t) =
Ak(t−) for t ∈ [a, b]. Obviously, for every t ∈ [a, b]

d1
[

Bk(t)−Ak(t)
]

= −d2
[

Bk(t)−Ak(t)
]

= −d1Ak(t)

and
t

∫

a

d
[

Bk(τ)−Ak(τ)
]

· Zk(τ) = −d1Ak(t) · Zk(t).

Consequently,

Zk(t) ≡
[

E − d1Ak(t)
]−1

[

t
∫

a

d
[

Ak(τ)−A(τ)
]

· Y (τ) +

t
∫

a

dBk(τ) · Zk(τ)
]

.

From this and (28) we get

‖Zk(t)‖ ≤ r0

(

εk +

t
∫

a

d‖V (Bk)(τ)‖ · ‖Zk(τ)‖
)

for t ∈ [a, b],

where

εk = sup
{∥

∥

∥

t
∫

a

d
[

Ak(τ)−A(τ)
]

· Y (τ)
∥

∥

∥ : t ∈ [a, b]
}

.

Hence, according to the Gronwall inequality ([6], Theorem I.4.30),

‖Zk(t)‖ ≤ r0εk exp
(

r0
b
∨
a

Bk
)

≤ r0εk exp
(

r0
b
∨
a

Ak
)

for t ∈ [a, b].

By (10), (11) and Lemma 1 this inequality implies (18).
It is known ([6], Theorem III.2.13) that if xk is the solution of (3), then

xk(t) ≡ Yk(t)xk(a) + fk(t)− fk(a)− Yk(t)

t
∫

a

dY −1
k (τ) ·

[

fk(τ)− fk(a)
]

.
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Thus problem (3), (4) has the unique solution if and only if

det
(

lk(Yk)
)

6= 0. (29)

Since problem (1), (2) has the unique solution x0, we have

det
(

l(Y )
)

6= 0. (30)

Besides, by (7), (9) and (18)

lim
k→+∞

lk(Yk) = l(Y ).

Therefore, in view of (30), there exists a natural number k0 such that condi-
tion (29) is fulfilled for every k ≥ k0. Thus problem (3), (4) has the unique
solution xk for k ≥ k0 and

xk(t) ≡ Yk(t)
[

lk(Yk)
]−1[

ck − lk(Fk(fk))
]

+ Fk(fk)(t), (31)

where

Fk(fk)(t) = fk(t)− fk(a)− Yk(t)

t
∫

a

dY −1
k (τ) ·

[

fk(τ)− fk(a)
]

.

According to Lemma 2 condition (21) is fulfilled and

ρ = sup
{

‖Y −1
k (t)‖+ ‖Yk(t)‖ : t ∈ [a, b], k ≥ k0

}

< +∞. (32)

The equality

Y −1
k (t)− Y −1

k (s) = Y −1
k (s)

s
∫

t

dAk(τ) · Yk(τ) Y −1
k (t)

implies

‖Y −1
k (t)− Y −1

k (s)‖ ≤ ρ3 t
∨
s

Ak for a ≤ s ≤ t ≤ b (k ≥ k0).

This inequality, together with (10) and (32), yields

lim
k→+∞

sup
b
∨
a
Y −1

k < +∞.

By this, (12) and (21) it follows from Lemma 1 that

lim
k→+∞

t
∫

a

dY −1
k (τ) ·

[

fk(τ)− fk(a)
]

=

=

t
∫

a

dY −1(τ) ·
[

f(τ)− f(a)
]

(33)
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uniformly on [a, b].
Using (7)-(9), (12), (18), (29), (30) and (33), from (31) we get lim

k→+∞
xk(t)

= z(t) uniformly on [a, b], where

z(t) = Y (t)
[

l(Y )
]−1[

c0 − l
(

F (f)
)]

+ F (f)(t),

F (f)(t) = f(t)− f(a)− Y (t)

t
∫

a

dY −1(τ) ·
[

f(τ)− f(a)
]

.

It is easy to verify that the vector-function z : [a, b] → Rn is the solution of
problem (1), (2). Therefore

x0(t) = z(t) for t ∈ [a, b].
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