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ON PERFECT MAPPINGS FROM R TO R


I. TSERETELI


Abstract. Perfect mappings from R to R and also mappings close
to perfect ones are considered. Some of their properties are given.


This paper deals with some properties of perfect mappings from the space
of real numbers with natural topology R to R. For example, it is shown that
no perfect mapping from R to R has finite partial limits at +∞ and −∞,
that no bounded mapping from R to R is perfect, and so on. We also
consider mappings from R to R (not necessarily continuous) with closed,
compact and bounded fibers and mapppings under which the image of any
closed subset of R is closed in R.


Recall that a mapping f : X → Y of topological spaces is called a closed
mapping [1] if f is continuous and the following condition is satisfied:


(CL ↓) for every closed subset F of the space X the image f(F ) is closed
in Y .


Recall also that a mapping f : X → Y of topological spaces is said to be
perfect [1] if X is a Hausdorff space, f is a closed mapping and f satisfies
the following condition:


(CM−1
p ) for any point y ∈ Y the fiber f−1(y) is compact.


Note that if f : X → Y is a mapping from the Hausdorff space X to
the space Y (not necessarily continuous), satisfying the conditions (CL ↓)
and (CM−1


p ) (see Example 1 below), then for every compact subspace Z of
the space Y the inverse image f−1(Z) is compact. (The proof of this fact
repeats the proof of Theorem 3.7.2 [11].) This implies that every function
f : X → R from the Hausdorff space X to R, satisfying the conditions
(CL ↓) and (CM−1


p ), is a Borel function.
In the sequel K will denote the class of mappings (not necessarily con-


tinuous) from R to R.
We shall define the following classes of mappings:
K(C) ≡ {f ∈ K|f is continuous };
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K(CL ↓) ≡ {f ∈ K| for any closed subset F of K the image f(F ) is closed
in R};
K(CM−1


p ) ≡ {f ∈ K| for any point y ∈ R the fiber f−1(y) is compact };
K(CL−1


p ) ≡ {f ∈ K| for any point y ∈ R the fiber f−1(y) is closed in R};
K(B−1


p ) ≡ {f ∈ K| for any point y ∈ R the fiber f−1(y) is a bounded
subset of R}.


Theorem 1. Let f : R→ R be a closed mapping and let


lim
x→+∞


f(x) = a ∈ R ( lim
x→−∞


f(x) = a ∈ R).


Then there exists a real number M such that for any x > M (for any
x < M) we have f(x) = a.


Proof. Let limx→+∞ f(x) = a ∈ R (the other case is analogous). Assume
that our assertion is not true. Then for any real number M there must exist
a real number xM > M such that f(xM ) 6= a. In particular, ∃x1 : x1 > 1 :
f(x1) 6= a; ∃x2 > x1 + 1 : f(x2) 6= a and so on ∃xk : xk−1 + 1 : f(xk) 6=
a; ∃x2 > x1 + 1 : f(x2) 6= a and so on. Thus we have a sequence (xk)k≥1 of
real numbers such that xk > k and f(xk) 6= a. for any natural number k.


It is obvious that limk→∞ xk = +∞, the set {xk}∞k=1 is closed in R and
a ∈ {f(xk)}∞k=1. But, by assumption, limx→+∞ f(x) = a. Hence, by virtue
of the continuity of f , limk→∞ f(xk) = a. Therefore a belongs to the closure
of the set {xk}∞k=1 in R. Since a ∈ {f(xk)}∞k=1, the set {f(xk)}∞k=1 is not
closed in R.


On the other hand, since the set {xk}∞k=1 is closed in R, the set f({xk})∞k=1
must be closed too by the condition. This is the contradiction. �


Corollary 1. Let f : R→ R be a closed mapping and let


lim
x→+∞


f(x) = a ∈ R ( lim
x→−∞


f(x) = a ∈ R).


Then the set f−1(a) is not bounded.


Proof. Let limx→+∞ f(x) = a ∈ R (limx→−∞ f(x) = a ∈ R). Then, by
the above theorem, there exists a real number M such that f−1(a) ⊃
(M ; +∞)(f−1(a) ⊃ (−∞; M)). Therefore f−1(a) is not bounded. �


Corollary 2. If f : R → R is a perfect mapping, then there are no
limits of the function f at +∞ and −∞. In particular, no perfect mapping
f : R→ R has asymptotes.


Proof. Let limx→+∞ f(x) = a ∈ R (limx→−∞ f(x) = a ∈ R). Then, by
the previous corollary, f−1(a) is not bounded. But since f is a perfect
mapping, the set f−1(a) must be compact and hence bounded. This is the
contradiction. �
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Theorem 2. Let f ∈ K(CL ↓) ∩ K(CL−1
p ) (see Example 2 below). As-


sume that a ∈ R. If there exists a left-hand limit limx→a− f(x) (respectively,
if there exists a right-hand limit limx→a+ f(x)), then limx→a− f(x) = f(a)
(respectively, limx→a+ f(x) = f(a)).


Proof. Let limx→a− f(x) = b ∈ R. Assume that b 6= f(a). (The other case
is analogous.)


We have two possible cases:
1) ∃δ > 0 (δ ∈ R) : ∀x ∈ (a− δ; a) : f(x) = b;
2) ∀δ > 0 (δ ∈ R) ∃xδ ∈ (a− δ; a) : f(xδ) 6= b.
Let us consider each of them separately.
Case 1. We have f−1(b) ⊃ (a−δ; a). By assumption, f(a) 6= b. Therefore


a 6∈ f−1(b). On the other hand, since f−1(b) ⊃ (a−δ; a), the point a belongs
to the closure of the set f−1(b). Hence the set f−1(b) is not closed. This is
the contradiction. Therefore case 1 is impossible.


Case 2. Denote |b−f(a)|
2 ≡ ε. Clearly, ε > 0. Since limx→a− f(x) = b,


there exists a positive real number δ such that for f(x) ∈ (f(a)−ε; f(a)+ε)
for any x ∈ (a− δ; a). Therefore b 6∈ (f(a)− ε; f(a) + ε).


By the condition ∃x1 ∈ (a− δ; a) : f(x1) 6= b.
Assume that z1 ≡ a − δ and z2 ≡ max{a − δ


2 ; x1}. Then there exists
x2 ∈ (z2; a) such that f(x2) 6= b.


Let the points x1, x2, . . . , xk−1 be already constructed. Denote zk ≡
max{a− δ


k ; xk−1}. According to the condition there exists a point xk such
that xk ∈ (zk; a) and f(xk) 6= b.


Therefore for any natural k we have a point xk ∈ R such that a − δ
k <


xk < a and f(xk) 6= b.
Since limk→∞(a− δ


k ) = a, we have limk→∞ xk = a.
Since limx→a− f(x) = b, we have limk→∞ f(xk) = b.
The set {a} ∪ {xk}∞k=1 is obviously closed in R.
Now let us consider the set f({a} ∪ {xk}∞k=1) = {f(a)} ∪ {f(xk)}∞k=1.


Since for any k ≥ 1 f(xk) 6= b and, by assumption, f(a) 6= b, we obtain
b 6∈ f({a}∪{xk}∞k=1). On the other hand, since limk→∞ f(xk) = b, b belongs
to the closure of the set f({a} ∪ {xk}∞k=1) = {f(a)} ∪ {f(xk)}∞k=1. Hence
the set f({a} ∪ {xk}∞k=1) is not closed in R.


But the set {a} ∪ {xk}∞k=1 is closed in R and, by the condition, the set
f({a} ∪ {xk}∞k=1) must be closed in R. This is the contradiction. �


Corollary 3. Let f ∈ K(CL ↓)∩K(CL−1
p ). Then any point of disconti-


nuity of the mapping f must be only of the second kind.


Theorem 3. Let f ∈ K(CL ↓) ∩ K(B−1
p ) (see Example 3 below). Then


the function f does not have finite partial limits at +∞ and −∞.
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Proof. Assume, conversely, that there is a sequence of real numbers
x1, x2, . . . , xn, . . . such that limn→∞ xn = +∞ and limn→∞ f(xn) exists.
Let limn→∞ f(xn) = a ∈ R. (The case concerning −∞ is analogous.) Here
we have two possible cases:


(a) the set { n | f(xn) = a } is empty or finite;
(b) the set { n | f(xn) = a } is infinite.
Consider each of them separately.
Case (a). There exists a natural number n0 such that f(xn) 6= a for any


n ≥ n0. Then a 6= f({xn}∞n=n0
) = {f(xn)}∞n=n0


. But limn→∞ f(xn) = a.
Therefore the set f({xn}∞n=n0


) is not closed in R. On the other hand, since
limn→∞ xn = +∞, the set {xn}∞n=n0


is closed in R and, hence, by the con-
dition, the set f({xn}∞n=n0


) must be closed in R. This is the contradiction.
Case (b). There exists a subsequence (xni)i ≥ 1 of the sequence (xn)n≥1


such that f(xni) = a for any i ≥ 1. Since limn→∞ xn = +∞, we have
limi→∞ xni = +∞. Hence the set {xni}∞i=1 is not bounded. On the other
hand, f−1(a) ⊃ {xni}∞i=1 and therefore the set f−1(a) will not be bounded.
This is the contradiction. �


Remark 1. Corollary 2 is a consequence of Theorem 3.


Corollary 4. No perfect mapping from R to R has finite partial limits
at +∞ and −∞.


Corollary 5. Let f : R → R be a function such that at least one of the
following two conditions is satisfied:


1) ∃M, L ∈ R : ∀x > M : |f(x)| < L;
2) ∃M, L ∈ R : ∀x < M : |f(x)| < L.
Then the function f is not perfect. in particular, no bounded function


from R to R is perfet.


Proof. If f : R → R, satisfies for example, the first condition, then there
exist at least two (possibly equal to each other) partial limits of f at +∞:
lim x→+∞f(x) and lim x→+∞f(x). But this contradicts Corollary 4. �


Corollary 6. If f : R → R is a perfect mapping, then for any positive
real numbers M and L there exist points x′′M < −M and x′M > M such that
|f(x′′M )| > L and |f(x′M )| > L.


Theorem 4. Let f ∈ K(CL ↓) ∩ K(CL−1
p ) (see Example 2 below). As-


sume that a ∈ R and let (xn)n≥1 be a sequence of real numbers such that
limn→∞ xn = a. Assume also that the limit limn→∞ f(xn) exists. Then
limn→∞ f(xn) = f(a).
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Proof. Assume that limn→∞ f(xn) = b ∈ R and b 6= f(a). The following
two cases are possible:


1) ∃n0 : ∀n ≥ n0 f(xn) = b;
2) ∀n ∃m(n) > n : f(xm(n)) 6= b.
Case 1. Clearly, f−1(b) ⊃ {xn}∞n=n0


and since, by assumption, f(a) 6= b,
we have a 6∈f−1(b). From f−1(b)⊃{xn}∞n=n0


and limn→∞ xn =a it follows
that the point a belong to the closure of the set f−1(b). hence the set f−1(b)
is not closed in R. This is the contradiction.


Case 2. There exists a subsequence (xni)i≥1 of the sequence (xn)n≥1 such
that for any natural i ≥ 1 we have f(xni) 6= b. Clearly, limi→∞ f(xni) = b.
Since limn→∞ xn = a, we have limi→∞ xni = a. Hence the set {a}∪{xni}∞i=1
is closed in R. Consider the image f({a}∪{xni}∞i=1) = {f(a)}∪{f(xni)}∞i=1.
Since f(xni) 6= b and f(a) 6= b for any i ≥ 1, we obtain b 6∈ {f(a)} ∪
{f(xni)}∞i=1. On the other hand, since limi→∞ f(xni) = b, b belongs to the
closure of the set {f(a)} ∪ {f(xni)}∞i=1. Hence this set is not closed. This
is the contradiction. �


We shall conclude the paper with several examples:


Example 1. Let f1 : R→ R be a function defined by the formula


f1(x) =


{


log 1
2
|x|, for x 6= 0,


0, for x = 0.


We shall show that f1 ∈ K(CL ↓)∩K(CM−1
p ) but f1 6∈ K(C). Indeed, it is


obvious that f1 ∈ K(CM−1
p ) and f1 6∈ K(C). Therefore it remains to show


that f1 ∈ K(CL ↓).
Let F be a closed subset of R and a be an accumulation point of the


set f(F ). Then there exists a sequence of real numbers (yk)k≥1 such that
for every k ≥ 1 we have yk ∈ f(F ), yk 6= a, yk 6= 0, and limk→∞ yk = a.
Clearly, for every k ≥ 1 there exists a point xk ∈ F such that f(xk) =
yk. We have a = limk→∞ yk = limk→∞ f(xk) = limk→∞ log 1


2
|xk| ⇒


limk→∞ |xk| = ( 1
2 )a. Then either there exists a subsequence (xni)i≥1 of


the sequence (xn)n≥1 such that limi→∞ xni = ( 1
2 )a or there exists a subse-


quence (xnj )j≥1 of the sequence (xn)n≥1 such that limj→∞ xnj = −( 1
2 )a.


Let (xnj )j≥1 be a subsequence of the sequence (xn)n≥1 such that


lim
j→∞


xnj = −
(1


2


)a
.


(If such a subsequence does not exist, one may consider a subsequence
(xni)i≥1 of the sequence (xn)n≥1 with limi→∞ xni = ( 1


2 )a).
Since F is closed and for xnj ∈ F, −( 1


2 )2 ∈ F for each j ≥ 1. But
f(−( 1


2 )a) = a. Therefore a ∈ f(F ). Hence the set f(F ) is closed in R.
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Example 2. Let the mapping f2 : R→ R be defined as follows:


f2(x) =


{


1, for x ≤ 0,
log 1


2
x, for x > 0.


We shall show that f2 ∈ K(CL ↓) ∩ K(CL−1
p ) but f2 6∈ K(C) and f2 6∈


K(B−1
p ).


It is obvious that f2 6∈ K(C) and f2 ∈ K(CL−1
p ).


Since f−1
2 (1) = (−∞; 0] ∪ { 1


2} , f2 6∈ K(B−1
p ).


Now let us prove that f2 ∈ K(CL ↓). Assume that F ⊆ R is a closed
subset of R and a ∈ R is an accumulation point of the set f(F ). Then there
exists a sequence of real numbers (yk)k≥1 such that for any k ≥ 1 we have
yk ∈ f(F ), yk 6= a, yk 6= 1, and limk→∞ yk = a.


Since for any k ≥ 1 we have yk 6= 1 and yk ∈ f(F ), there exists, for each
k ≥ 1, a positive real number xk such that xk ∈ F and f(xk) = log 1


2
xk = yk.


Thus
lim


k→∞
yk = a ⇒ lim


k→∞


(1
2


)yk
=


(1
2


)a
⇒ lim


k→∞
xk =


(1
2


)a
.


Since F is closed and for each k ≥ 1, we have xk ∈ F , ( 1
2 )a ∈ F . But


f(( 1
2 )a) = a. Hence a ∈ f(F ). Therefore the set f(F ) is closed in R.


Example 3. Let the mapping f3 : R→ R be determined by the formula


f3(x) =


{


x, for x ∈ (−∞; 0] ∪ [1;+∞),
0, for x ∈ (0; 1).


We shall show that f3 ∈ K(CL ↓) ∩ K(B−1
p ) but f3 6∈ K(C) and f3 6∈


K(CL−1
p ). That f3 6∈ K(C) and f3 ∈ K(B−1


p ) is obvious.
Since f−1


3 (0) = [0; 1), we have f3 6∈ K(CL−1
p ). Let us show that f3 ∈


K(CL ↓). For this take any closed subset F of R and consider an accumu-
lation point a of the set f(F ). Since f(F ) ⊂ f(R) = (−∞; 0] ∪ [1; +∞), we
have a ∈ (−∞; 0] ∪ [1;+∞).


If a ∈ (−∞; 0] (if a ∈ [1;+∞)), then there exists a sequence of real
numbers (yk)k≥1 such that for every k ≥ 1 we have yk ∈ f(F ), yk 6= a,
yk < 0 (respectively, yk > 1) and limk→∞ yk = a.


Since each yk ∈ f(F ), for every k ≥ 1 there exists xk ∈ F such that
yk = f(xk) = xk. Therefore a = limk→∞ yk = limk→∞ xk. Since F is
closed, a ∈ F . But, clearly, f(a) = a.


Hence a ∈ f(F ). Therefore f(F ) is a closed subset of R.
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