

Georgian Mathematical Journal
1(1994), No. 5, 477-484


ON SOME PROPERTIES OF SOLUTIONS OF SECOND
ORDER LINEAR FUNCTIONAL DIFFERENTIAL


EQUATIONS


I. KIGURADZE


Abstract. The properties of solutions of the equation u′′(t) =
p1(t)u(τ1(t)) + p2(t)u′(τ2(t)) are investigated where pi : [a, +∞[→ R
(i = 1, 2) are locally summable functions, τ1 : [a, +∞[→ R is a mea-
surable function and τ2 : [a, +∞[→ R is a nondecreasing locally ab-
solutely continuous one. Moreover, τi(t) ≥ t (i = 1, 2), p1(t) ≥ 0,
p2
2(t) ≤ (4− ε)τ ′2(t)p1(t), ε = const > 0 and


∫ +∞
a


(τ1(t)− t)p1(t)dt <
+∞. In particular, it is proved that solutions whose derivatives are
square integrable on [a, +∞[ form a one-dimensional linear space and
for any such solution to vanish at infinity it is necessary and sufficient
that


∫ +∞
a


tp1(t)dt = +∞.


Consider the differential equation


u′′(t) = p1(t)u(τ1(t)) + p2(t)u′(τ2(t)), (1)


where pi : [a, +∞[→ R (i = 1, 2) are locally summable functions, τi :
[a, +∞[→ R (i = 1, 2) are measurable functions and


τi(t) ≥ t for t ≥ a (i = 1, 2). (2)


We say that a solution u of the equation (1) is a Kneser-type solution if
it satisfies the inequality u′(t)u(t) ≤ 0 for t ≥ a0 for some a0 ∈ [a, +∞[. A
set of such solutions is denoted by K. By W we denote a space of solutions
of (1) that satisfy


∫ +∞
a u′2(t)dt < +∞. The results of [1, 2] imply that if


p1(t) ≥ 0 for t ≥ a and the condition


(i) τi(t) ≡ t, (i = 1, 2),


+∞
∫


a


|p2(t)|dt < +∞,
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or


(ii) p2(t)≤0, for t≥0,


+∞
∫


a


sp1(s)ds<+∞,


+∞
∫


a


s
τ2(s)


|p2(s)|ds<+∞,


holds, then W ⊃ K and K is a one-dimensional linear space. The case when
the conditions (i) and (ii) are violated, the matter of dimension of K and
W and their interconnection has actually remained unstudied. An attempt
is made in this note to fill up this gap to a certain extent.


Theorem 1. Let τi(t) ≥ t (i = 1, 2), p1(t) ≥ 0 for t ≥ a,


+∞
∫


a


[


τ1(t)− t
]


p1(t)dt < +∞, (3)


and let τ2 be a nondecreasing locally absolutely continuous function satisfy-
ing


p2
2(t) ≤ (4− ε)τ ′2(t)p1(t) for t ≥ a , (4)


where ε = const > 0. Then


W ⊂ K, dim W = 1. (5)


Before proceeding to the proof of the theorem we shall give two auxiliary
statements.


Lemma 1. Let the conditions of Theorem 1 be fulfilled and let a0 ∈
[a,+∞[ be large enough for the equality


+∞
∫


a0


[


τ1(s)− s
]


p1(s)ds ≤ 4δ2, (6)


where δ = 1
4 [2 − (4 − ε)1/2], to hold. Then any solution u of the equation


(1) satisfies


δ


x
∫


t


[


u′2(s) + p1(s)u2(s)]ds ≤ u′(x)u(x)− u′(t)u(t) +


+(1− δ)


τ(x)
∫


x


u′2(s)ds for a0 ≤ t ≤ x < +∞ , (7)
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where τ(x) = ess supa0≤t≤x[max1≤i≤2 τi(x)]. Moreover, if u ∈ W , then


u′(t)u(t) ≤ −δ


+∞
∫


t


[


u′2(s) + p1(s)u2(s)]ds for t ≥ a0 (8)


and


2δ


+∞
∫


t


(s− t)
[


u′2(s) + p1(s)u2(s)]ds ≤ u2(t) for t ≥ a0. (9)


Proof. Let u be any solution of the equation (1). Then


−u′′(t)u(t) + p1(t)u2(t) = p1(t)u(t)


t
∫


τ1(t)


u′(s)ds− p2(t)u′(τ2(t))u(t).


Integrating this equality from t to x, we obtain


u′(t)u(t)− u′(x)u(x) +


x
∫


t


[


u′2(s) + p1(s)u2(s)]ds =


=


x
∫


t


[


p1(s)u(s)


s
∫


τ1(s)


u′(y)dy
]


ds−
x


∫


t


p2(s)u′(τ2(s))u(s)ds.


However, in view of (4) and (6),


x
∫


t


[


p1(s)u(s)


s
∫


τ1(s)


u′(y)dy
]


ds ≤ δ


x
∫


t


p1(s)u2(s)ds +


+
1
4δ


[
x


∫


t


[


τ1(s)− s
]


p1(s)ds
][


τ(x)
∫


t


u′2(s)ds
]


≤


≤ δ


x
∫


t


p1(s)u2(s)ds + δ


τ(x)
∫


t


u′2(s)ds for a0 ≤ t ≤ x < +∞


and


−
x


∫


t


p2(s)u′(τ2(s))u(s)ds ≤
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≤ 2(1− 2δ)


x
∫


t


[


p1(s)u2(s)
]1/2[


τ ′2(s)u
′2(τ2(s))


]1/2
ds ≤


≤ (1− 2δ)


x
∫


t


p1(s)u2(s)ds + (1− 2δ)


x
∫


t


τ ′2(s)u
′2(τ2(s))ds ≤


≤ (1− 2δ)


x
∫


t


p1(s)u2(s)ds + (1− 2δ)


τ(x)
∫


t


u′2(s)ds


for a0 ≤ t ≤ x < +∞.


Therefore


u′(t)u(t)− u′(x)u(x) +


x
∫


t


[


u′2(s) + p1(s)u2(s)]ds ≤


≤(1− δ)


x
∫


t


[


u′2(s)+p1(s)u2(s)
]


ds+(1− δ)


τ(x)
∫


x


u′2(s)ds


for a0 ≤ t ≤ x < +∞


and thus the inequality (7) holds.
Suppose now that u ∈ W . Then, as one can easily verify,


lim inf
x→+∞


|u′(x)u(x)| = 0.


So (7) immediately implies (8). Integrating both sides of (8) from t to +∞,
we obtain the estimate (9).


Lemma 2. Let the conditions of Lemma 1 be fulfilled and there exist
b ∈]a0,+∞[ such that


pi(t) = 0 for t ≥ b (i = 1, 2). (10)


Then for any c ∈ R there exists a unique solution of the equation (1) satis-
fying


u(a0) = c, u′(t) = 0 for t ≥ b. (11)


Proof. In view of (2) and (10), for any α ∈ R the equation (1) has a
unique solution v(·;α) satisfying v(t; α) = α for b ≤ t < +∞. More-
over, v(t; α) = αv(t; 1). On the other hand, by Lemma 1 the function
v(·; 1) : [a0, +∞[→ R is non increasing and v(a0; 1) ≥ 1. Therefore the
function u(·) = c


v(a0;1)
v(a0; ·) is a unique solution of (1), (11).
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Proof of Theorem 1. First of all we shall prove that for any c ∈ R the
equation (1) has at least one solution satisfying


u(a0) = c,


+∞
∫


a0


u′2(s)ds < +∞. (12)


For any natural k put


pik(t) =


{


pi(t) for a0 ≤ t ≤ a0 + k
0 for t > a0 + k


(i = 1, 2). (13)


According to Lemma 2, for any k the equation u′′(t) = p1k(t)u(τ1(t)) +
p2k(t)u′(τ2(t)) has a unique solution uk satisfying


uk(a0) = c, u′k(t) = 0 for t ≥ a + k. (14)


On the other hand, by Lemma 1


|uk(t)| ≤ |c| for t ≥ a0, 2δ


+∞
∫


a0


(s− a0)u′
2
k(s)ds ≤ c2. (15)


Taking (2) and (13)–(15) into account, it is easy to show that the se-
quences


(


uk
)+∞
k=1 and


(


u′k
)+∞
k=1 are uniformly bounded and equicontinuous


on each closed subinterval of [a0, +∞[. Therefore, by the Arzela-Ascoli
lemma, we can choose a subsequence


(


ukm


)+∞
m=1 out of


(


uk
)+∞
k=1, which is


uniformly convergent alongside with
(


u′km


)+∞
m=1 on each closed subinterval


of [a, +∞[. By (13)–(15) the function u(t) = limm→+∞ ukm(t) for t ≥ a is
a solution of the problem (1), (12).


We have thus proved that dim W ≥ 1. On the other hand, by Lemma 1
any solution u ∈ W satisfies (8) and is therefore a Kneser-type solution. To
complete the proof it remains only to show that dim W ≤ 1, i.e., that the
problem (1), (12) has at most one solution for any c ∈ R. Let u1 and u2


be two artbitrary solutions of this problem and u0(t) = u2(t)− u1(t). Since
u0 ∈ W and u0(a0) = 0, by Lemma 1


2


+∞
∫


a0


(s− a0)u′
2
0(s)ds = 0 and u0(t) = 0 for t ≥ a0,


i.e., u1(t) ≡ u2(t).


Remark 1. The condition (4) of Theorem 1 cannot be replaced by the
condition


p2
2(t) ≤ (4 + ε)τ ′2(t)p1(t) for t ≥ a. (16)
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Indeed, consider the equation


u′′(t) =
1


(4 + ε)t2
u(t)− 1


t
u′(t), (17)


satisfying all conditions of Theorem 1 except (4), instead of which the condi-
tion (16) is fulfilled. On the other hand, the equation (17) has the solutions


ui(t) = t
λi (i = 1, 2), where λi = (−1)i(4 + ε)


− 1
2 (i = 1, 2). Clearly, ui ∈ W


(i = 1, 2). Therefore in our case instead of (5) we have K ⊂ W , dim W = 2.


Corollary 1. Let the conditions of Theorem 1 be fulfilled. Let, moreover,


p2(t) ≤ 0 for t ≥ a. (18)


Then


K = W, dim K = 1. (19)


Proof. Let u ∈ K. Then by virtue of (18) and the non-negativity of p1 there
exists t0 ∈ [a, +∞[ such that u(t)u′(t) ≤ 0, u′′(t)u(t) ≥ 0 for t ≥ t0. Hence


+∞
∫


t0


u′2(s)ds ≤ |u(t0)u′(t0)|.


Therefore u ∈ W . Thus we have proved that W ⊃ K. This fact, together
with (5), implies (19).


A solution u of the equation (1) will be called vanishing at infinity if


lim
t→+∞


u(t) = 0. (20)


Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then for any
solution u ∈ W to vanish at infinity it is necessary and sufficient that


+∞
∫


a


sp1(s)ds = +∞. (21)


Proof. Let u ∈ W . Then by Lemma 1 u2(t) ≥ η for t ≥ a0, where η =
limt→+∞ u2(t), and


∫ +∞
a0


(s− a0)p1(s)u2(s)ds ≤ u2(a0)/2δ. Hence it follows
that (21) implies η = 0, i.e., u is a vanishing solution at infnity.


To complete the proof it is enough to establish that if


+∞
∫


a


sp1(s)ds < +∞, (22)
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then any nontrivial solution u ∈ W tends to a nonzero limit as t → +∞. Let
us assume the contrary: the equation (1) has a nontrivial solution u ∈ W
vanishing at infinity. Then by Lemma 1


u(t)u′(t) ≤ 0, ρ(t) ≤ η2u2(t) for t ≥ a0, (23)


where


ρ(t) =


+∞
∫


t


(s− t)
[


u′2(s) + p1(s)u2(s)
]


ds, η = (2δ)
− 1


2 .


On the other hand, by (4), (20) and (22) we have


|u(t)| =
∣


∣


∣


∣


+∞
∫


t


(s− t)
[


p1(s)u(τ1(s)) + p2(s)u′(τ2(s))
]


ds
∣


∣


∣


∣


≤


≤
[


+∞
∫


t


(s− t)p1(s)ds
]1/2[ +∞


∫


t


(s− t)p1(s)u2(τ1(s))ds
]1/2


+


+2


+∞
∫


t


(s− t)[p1(s)]1/2[τ ′2(s)]
1/2|u′(τ2(s)|ds ≤


≤
[


+∞
∫


t


(s− t)p1(s)
]1/2[ +∞


∫


t


(s− t)p1(s)u2(τ1(s))ds
]1/2


+


+2
[


+∞
∫


t


(s− t)p1(s)ds
]1/2[ +∞


∫


t


(s− t)τ ′2(s)u
′2(τ2(s))ds


]1/2


for t ≥ a0.


Hence by (2) and (23) we find


|u(t)| ≤
[


+∞
∫


t


(s− t)p1(s)ds
∣


∣


∣


∣


1/2[ +∞
∫


t


(s− t)p1(s)u2(s)ds
]1/2


+


+2
[


+∞
∫


t


(s− t)p1(s)ds
]1/2[ +∞


∫


t


(s− t)u′2(s)ds
]1/2


≤


≤ 3η
[


+∞
∫


t


(s− t)p1(s)ds
]1/2


|u(t)| for t ≥ a0
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and therefore u(t) = 0 for t ≥ a1, where a1 is a sufficiently large number.
By virtue of (2) the last equality implies u(t) = 0 for t ≥ a. But this is
impossible, since by our assumption u is a nontrivial solution. The obtained
contradiction proves the theorem.
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