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CRITERIA OF WEIGHTED INEQUALITIES IN ORLICZ
CLASSES FOR MAXIMAL FUNCTIONS DEFINED ON


HOMOGENEOUS TYPE SPACES


A. GOGATISHVILI AND V. KOKILASHVILI


Abstract. The necessary and sufficient conditions are derived in or-
der that a strong type weighted inequality be fulfilled in Orlicz classes
for scalar and vector-valued maximal functions defined on homoge-
neous type space. A weak type problem with weights is solved for
vector-valued maximal functions.


§ 0. Introduction


The main goal of this paper is to obtain criteria for the validity of an
inequality of the form


∫


X


ϕ(Mf(x))w(x) dµ ≤ c
∫


X


ϕ(f(x))w(x) dµ (0.1)


for maximal functions defined on homogeneous type spaces.
The solution of a strong type one-weighted problem for classical maximal


functions in reflexive Orlicz spaces was obtained for the first time by R.
Kerman and A. Torchinsky [5]. This investigation was further developed in
[6], [7]). Quite a simple criterion established in this paper in the general
case is the new one for Hardy–Littlewood–Wiener maximal functions as well.
Our present investigation is a natural continuation of the non-weighted case
[1], [2], [3], [4]. Conceptually it is close to [2], [8], [9], [15], [16].


For vector-valued Hardy–Littlewood–Wiener maximal functions in the
non-weighted case the boundedness in Lp, 1 < p < ∞, was established
in [9]. A weighted analogue of this result was obtained in [10] (see also
[11], [12], [13]). Finally, we should mention [14], [15], [16] containing the
full descriptions of functions ϕ and a set of weight functions ensuring the
validity of a weak type weighted inequality for maximal functions.
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We shall now make some comments on how this paper is organized. The
introduction contains some commonly known facts on homogeneous type
spaces and weight functions defined in such spaces. Here the reader will
also find the definition of quasi-convex functions and a brief discussion of
some of their simple properties. The main results are formulated at the end
of the introduction. In §1 we describe the class of quasi-convex functions,
also functions which are quasi-convex to some degree less than 1. A number
of useful properties to be used in our further discussion are established for
such functions. The further sections contain the proofs of the main results.


Let (X, d, µ) be a homogeneous type space (see, for example, [17], [19]). It
is a metric space with a complete measure µ such that the class of compactly
supported continuous functions is dense in the space L1(X,µ). It is also
assumed that there is a nonnegative real-valued function d : X ×X → R1


satisfying the following conditions:
(i) d(x, x) = 0 for all x ∈ X;
(ii) d(x, y) > 0 for all x 6= y in X;
(iii) there is a constant a0 such that d(x, y) ≤ a0d(y, x) for all x, y in X;
(iv) there is a constant a1 such that d(x, y) ≤ a1(d(x, z) + d(z, y)) for all


x, y, z in X;
(v) for each neighbourhood V of x in X there is an r > 0 such that the


ball B(x, r) = {y ∈ X; d(x, y) < r} is contained in V ;
(vi) the balls B(x, r) are measurable for all x and r > 0;
(vii) there is a constant b such that µB(x, 2r) ≤ bµB(x, r) for all x ∈ X


and r > 0.
An almost everywhere positive locally µ-summable function w : X → R1


will be called a weight function. For an arbitrary µ-measurable set E we
shall assume


wE =
∫


E


w(x) dµ.


By definition, the weight function w ∈ Ap(X) (1 ≤ p < ∞) if


sup
B


( 1
µB


∫


B


w(x)dµ
)( 1


µB


∫


B


(


w(x)
)−1/(p−1)


dµ
)p−1


< ∞ for 1 < p < ∞,


where the supremum is taken over all balls B ⊂ X and


1
µB


∫


B


w(x) dµ ≤ c ess inf
y∈B


w(y) for p = 1.


In the latter inequality c does not depend on B. The above conditions are
analogues of the well-known Muckenhoupt’s conditions.
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Let us recall the basic properties of classes Ap (see [17], [20], [23]). If
w ∈ Ap for some p ∈ [1,∞), then w ∈ As for all s ∈ [p,∞) and there is an
ε > 0 such that w ∈ Ap−ε.


By definition, the weight function w belongs to A∞(X) if to each ε ∈
(0, 1) there corresponds δ ∈ (0, 1) such that if B ⊂ X is a ball and E is any
measurable set of B, then µE < δµB implies wE < εwB.


On account of the well-known properties of classes Ap we have


A∞(X) = ∪
p≥1


Ap(X)


(see [17], [20], [21].)
In what follows we shall use the symbol Φ to denote the set of all functions


ϕ : R1 → R1 which are nonnegative, even and increasing on (0,∞) such
that ϕ(0+) = 0, limt→∞ ϕ(t) = ∞. For our purpose we shall also need the
following basic definition of quasi-convex functions:


A function ω is called a Young function on [0,∞) if ω(0) = 0, ω(∞) = ∞
and it is not identically zero or ∞ on (0,∞); it may have a jump up to ∞
at some point t > 0 but in that case it should be left continuous at t (see
[18]).


A function ϕ is called quasi-convex if there exist a Young function ω and
a constant c > 1 such that ω(t) ≤ ϕ(t) ≤ ω(ct), t ≥ 0. Clearly, ϕ(0) = 0
and for s ≤ t we have ϕ(s) ≤ ϕ(ct).


To each quasi-convex function ϕ we can put into correspondence its com-
plementary function ϕ̃ defined by


ϕ̃(t) = sup
s≥0


(


st− ϕ(s)
)


. (0.2)


The subadditivity of the supremum readily implies that ϕ̃ is always a Young


function and
≈
ϕ≤ ϕ. This equality holds if ϕ itself is a Young function. If


ϕ1 ≤ ϕ2, then ϕ̃2 ≤ ϕ̃1, and if ϕ1(t) = aψ(bt) then


ϕ̃1(t) = aϕ̃
( t
ab


)


.


Hence and from (0.2) we have


ω̃
( t
c
)


≤ ϕ̃(t) ≤ ω̃(t). (0.3)


Now from the definition of ϕ̃ we obtain the Young inequality


st ≤ ϕ(s) + ϕ̃(t), s, t ≥ 0.


By definition, the function ψ satisfies the global condition ∆2 (ψ ∈ ∆2)
if there is c > 0 such that ψ(2t) ≤ cψ(t), t > 0.
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If ψ ∈ ∆2, then there are p > 1 and c > 1 such that


ψ(t2)
tp2


≤ cψ(t1)
tp1


for 0 < t1 < t2 (0.4)


(see [3], Lemma 1.3.2).
Given locally integrable real functions f on X, we define the maximal


function Mf(x) by


Mf(x) = sup(µB)−1
∫


B


|f(y)| dµ, x ∈ X,


where the supremum is taken over all balls B containing x.
As is well-known (see [20]), for the operator M : f → Mf inequality


(0.1) is fulfilled when ϕ(u) = up (1 < p < ∞) and w ∈ Ap(X). Now we are
ready to formulate the main results of this paper.


Theorem I. Let ϕ ∈ Φ. The following conditions are equivalent:
(i) there is a constant c > 0 such that for any function f : X → R1


locally summable in the sense of µ-measure we have the inequality
∫


x


ϕ(Mf(x))w(x) dµ ≤ c
∫


X


ϕ(f(x))w(x) dµ, (0.5)


(ii) ϕα is quasi-convex for some α, 0 < α < 1, and w ∈ Ap(ϕ) where


1
p(ϕ)


= inf
{


α : ϕα is quasi-convex
}


. (0.6)


Theorem II. Let ϕ ∈ Φ, 1 < θ < ∞. In order that there exist a constant
c > 0 such that the inequality


∫


X


ϕ
(


(
∞
∑


i=1


Mθfi(x)
)1/θ


)


w(x) dµ ≤


≤ c
∫


X


ϕ
(


(
∞
∑


i=1


|fi(x)|θ
)1/θ


)


w(x) dµ (0.7)


be fulfilled for any vector-function f = (f1, f2, . . . ) with locally summable
components, it is necessary and sufficient that the following conditions be
fulfilled: ϕ ∈ ∆2, ϕα is quasi-convex for some α, 0 < α < 1, and w ∈
Ap(ϕ).


Theorem III. Let ϕ ∈ Φ. Then the following conditions are equivalent:
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(i) there is a constant c1 > 0 such that the inequality
∫


X


ϕ
(Mf(x)


w(x)


)


w(x) dµ ≤ c1


∫


X


ϕ
(c1f(x)


w(x)


)


w(x) dµ


holds for any µ-measurable f : X → R1;
(ii) ϕα is quasi-convex for some α ∈ (0, 1) and w ∈ Ap(ϕ̃);
(iii) ϕα is quasi-convex for some α ∈ (0, 1) and there is a constant c2 > 0


such that


ϕ̃
(


1
λµB


∫


B


ϕ
( λ


w(x)


)


w(x) dµ
)


wB ≤ c2


∫


B


ϕ
( λ


w(x)


)


w(x) dµ


for any λ > 0 and ball B;
(iv) ϕα is quasi-convex for some α ∈ (0, 1) and there exists a constant


c3 > 0 such that
∫


B


ϕ
( λwB


w(x)µB


)


w(x) dµ ≤ c3ϕ(λ)wB


for any λ > 0 and ball B.


Theorem IV. Let ϕ and γ be nonnegative nondecreasing on [0,∞]
functions. Further we suppose that ψ is a quasi-convex function and ψ ∈ ∆2.
If 0 < θ < 1, then the following conditions are equivalent:


(i) there exists a constant c1 > 0 such that the inequality


ϕ(λ)w


{


x ∈ X,
(
∞
∑


i=1


(


Mfi(x)
)θ


)1/θ
> λ


}


≤


≤ c1


∫


X


ψ
(


c1


γ(λ)


(
∞
∑


i=1


|fi(x)|θ
)1/θ


)


w(x) dµ (0.8)


is fulfilled for any λ > 0 and vector-function f = (f1, . . . , fn, . . . ) with
locally summable components;


(ii) there is a ε > 0 such that


sup
B


sup
s>0


1
ϕ(s)wB


∫


B


˜ψ
(


ε
ϕ(s)γ(s)


s
wB


µBw(x)


)


w(x) dµ < ∞. (0.9)


In this paper the letter c may denote different positive constants which are
independent of the meaningful variables in the present context. Throughout
this paper we take 0 · ∞ to be zero.
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§ 1. Some Properties of Quasi-convex Functions


In this paragraph we describe the class of quasi-convex functions.


Lemma 1.1. Let ϕ ∈ Φ. Then the following conditions are equivalent:
(i) ϕ is quasi-convex;
(ii) there is a constant c1 > 0 such that


ϕ(t1)
t1


≤ c1
ϕ(c1t2)


t2
(1.1)


is fulfilled for any t1 and t2 provided that t1 < t2;
(iii) there is a constant c2 > 0 such that


ϕ(t) ≤
≈
ϕ (c2t), t > 0; (1.2)


(iv) there are positive ε and c3 such that


ϕ̃
(


ε
ϕ(t)


t


)


≤ c3ϕ(t), t > 0; (1.3)


(v) there is a constant c4 > 0 such that


ϕ
( 1


µB


∫


B


f(y) dµ
)


≤ c4


µB


∫


B


ϕ
(


c4f(y)
)


dµ (1.4)


for any locally summable function f and an arbitrary ball B.


Proof. For the equivalency of the conditions (i) and (ii) see [3], Lemma 1.1.1.
We shall prove that the conditions (i) and (iii) are equivalent. Indeed, if the
function ϕ is quasi-convex, then for some convex function ω and constant


c2 we have ϕ(t) ≤ ω(c2t) =
≈
ω (c2t) ≤


≈
ϕ (c2t). Conversely, let (iii) hold. The


function
≈
ϕ is convex and


≈
ϕ≤ ϕ. Therefore by (iii) ϕ(t) ≤


≈
ϕ (c2t) ≤ ϕ(c2t),


which means the quasi-convexity of the function ϕ.
Now we shall show that (i)⇔(iv). The condition (i) implies that there is


a convex function ω such that for some c > 0 ω(t) ≤ ϕ(t) ≤ ω(ct), t > 0.
The function ω̃ is convex and ϕ̃(t) ≤ ω̃(t). Therefore we have (see Lemmas
2.1 and 2.2 from [16])


ϕ̃
(


ε
ϕ(t)


t


)


≤ ω̃
(


ε
ϕ(t)


t


)


≤ ϕ(t)
ω(ct)


ω̃
(


εc
ω(ct)


ct


)


≤ ϕ(t),


provided that cε < 1. We have thereby proved the implication (i)⇒(iv).
Let us now assume that the condition (iv) holds. By the Young inequality
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we have for s < t


ϕ(s)
s


=
1


2c3t
ε


ϕ(s)
s


2c3


ε
t ≤ 1


2c3t
ϕ̃
(


ε
ϕ(s)


s


)


+
1


2c3t
ϕ
(2c3


ε
t
)


≤


≤ 1
2


ϕ(s)
s


+
1


2c3t
ϕ
(2c3


ε
t
)


.


Hence we obtain
ϕ(s)


s
≤ 1


c3t
ϕ
(2c3


ε
t
)


,


which means the fulfilment of (ii) and, accordingly, of (i). The equivalency
of the conditions (i) and (v) is proved as in [3], Lemma 1.1.1. �


Corollary 1.1. For a quasi-convex function ϕ we have the estimates


εϕ(t) ≤ ϕ(cεt), t > 0, ε > 1,


ϕ(γt) ≤ γϕ(ct), t > 0, γ < 1,


where the constant c does not depend on t.


Corollary 1.2. Let ϕ ∈ Φ and ϕ be quasi-convex. Then there is a con-
stant ε > 0 such that for an arbitrary t > 0 the following inequalities are
fulfilled:


ϕ̃
(


ε
ϕ(t)


t


)


≤ ϕ(t) ≤ ϕ̃
(


2
ϕ(t)


t


)


, (1.5)


ϕ
(


ε
ϕ̃(t)


t


)


≤ ϕ̃(t) ≤ ϕ
(


2
ϕ̃(t)


t


)


. (1.6)


Proof. The right-hand inequality of (1.5) is contained in Lemma 1.1. Fur-
ther, the convexity of the function ϕ̃ implies


≈
ϕ


( ϕ̃(t)
t


)


≤ ϕ̃(t), t > 0,


while by Lemma 1.1 the quasi-convexity of the function ϕ implies


ϕ(t) ≤
≈
ϕ (ct), t > 0,


for some c > 0. Therefore, choosing ε > 0 such that cε < 1, we obtain


ϕ
(


ε
ϕ̃(t)


t


)


≤
≈
ϕ


(


cε
ϕ̃(t)


t


)


≤
≈
ϕ


( ϕ̃(t)
t


)


≤ ϕ̃(t),


thereby proving the left-hand inequality of (1.6).
Next, by virtue of the Young inequality


ϕ(t) ≤ 1
2


ϕ̃
(


2
ϕ(t)


t


)


+
1
2
ϕ(t).
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Hence


ϕ(t) ≤ ϕ̃
(


2
ϕ(t)


t


)


.


Analogously, we obtain


ϕ̃(t) ≤ ϕ
(


2
ϕ̃(t)


t


)


,


thereby also proving the right-hand sides of inequalities (1.5) and (1.6). �


Lemma 1.2. Let ϕ ∈ Φ. Then the following conditions are equaivalent:
(i) the function ϕα is quasi-convex for some α, 0 < α < 1;
(ii) the function ϕ is quasi-convex and ϕ̃ ∈ ∆2;
(iii) there is a a > 1 such that


ϕ(at) ≥ 2aϕ(t), t > 0; (1.7)


(iv) there is a constant c > 0 such that for any t we have


t
∫


0


ϕ(s)
s2 ds ≤ c


ϕ(ct)
t


. (1.8)


Proof. The equivalency of the conditions (i), (iii) and (iv) is proved in [3]
(Theorem 1.2.1). It remains for us to assume that each of these conditions
is equivalent to the condition (ii). We shall show that (ii)⇔(iii). Assume
that (iii) holds. Then


ϕ̃(2t) = sup
s≥0


(


2ts− ϕ(s)
)


= sup
s≥0


(


2ats− ϕ(as)
)


≤


≤ sup
s≥0


(


2ats− 2aϕ(s)
)


= 2aϕ̃(t).


Let now ϕ̃(2t) ≤ c1ϕ̃(t) for some constant c1 and an arbitrary t > 0.


Since ϕ is quasi-convex, then by Lemma 1.1
≈
ϕ (ct) ≥ ϕ(t) for some c > 0


and any t > 0.
For the constant a1 with the condition 2a1 > c1 we have


≈
ϕ (a1t) = sup


s≥0


(


a1ts− ϕ̃(s)
)


= sup
s≥0


(


2a1ts− ϕ̃(2s)
)


≥


≥ sup
s>0


(


2a1ts− c1ϕ̃(s)
)


> 2a1
≈
ϕ (t).


Further,


ϕ(cak
1t) ≥


≈
ϕ (ak


1ct) ≥ 2kak
1
≈
ϕ (ct) ≥ 2kak


1ϕ(t).


For 2k ≥ 2c the latter estimate implies ϕ(at) ≥ 2aϕ(t), where a = cak
1 . �
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§ 2. A Weak Type One-Weighted Problem in Orlicz Classes
for Maximal Functions (the Scalar Case)


We begin by presenting two results to be used in our further reasoning.
The first of them describes the class of those functions ϕ from Φ for which
a strong type inequality is fulfilled in the nonweighted case.


Theorem A. Let ϕ ∈ Φ, µE > 0. Then the conditions below are equiv-
alent:


(i) the inequality
∫


E


ϕ(Mf(x)) dµ ≤ c
∫


E


ϕ(cf(x)) dµ


holds for an arbitrary µ-measurable function f with the condition supp f ⊂
E and with the constant c not depending on f ;


(ii) ϕα is quasi-convex for some α, 0 < α < 1.
For E = X the proof of Theorem A is given in [4]. In the general case


the proof is nearly the same and we therefore leave it out.


Theorem B. Let ϕ ∈ Φ. Then the conditions below are equivalent:
(i) there is a c1 > 0 such that the inequality


ϕ(λ) w{x ∈ X : Mf(x) > λ} ≥ c1


∫


X


ϕ(c1f(x))w(x) dµ (2.1)


is fulfilled for any λ > 0 and locally summable function f : X → R1;
(ii) there are positive constants ε and c2 such that the inequality


∫


B


ϕ̃
(


ε
ϕ(λ)


λ
wB


µBw(x)


)


w(x) dµ ≤ c2ϕ(λ)wB (2.2)


is fulfilled for any ball B and positive number λ;
(iii) there is a positive constant c3 such that the inequality


ϕ
( 1


µB


∫


B


f(x) dµ
)


≤ c3


wB


∫


B


ϕ(c3f(x))w(x) dµ. (2.3)


is fulfilled for any ball B and nonnegative measurable locally summable func-
tion f with the condition supp f ⊂ B.


Theorem B is the particular case of Theorem 5.1 from [16] for θ(u) ≡ u,
γ = 0, dβ = wdµ ⊗ δ0, η ≡ 1, ψ(t) = ϕ(t) and ν(x) = σ(x) = w(x), where
δ0 is the Dirac measure supported at the origin.


Now we shall prove several lemmas on which the proof of Theorem I
rests.
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Lemma 2.1. If condition (2.2) is fulfilled for ϕ from Φ and the weight
function w, then the function ϕ is quasi-convex and w ∈ As for an arbitrary
s > p(ϕ) where p(ϕ) is defined by (0.6).


Proof. We shall show in the first place that in the conditions of the theorem
ϕ is quasi-convex. Let E = { 1


k < w(x) < k} be such that the set has a
positive µ-measure. Choose a ball such that µB ∩ E > 0. From (2.2) we
have


k
µB ∩ E


wB
ϕ̃
(


ε
wB
µB


k
ϕ(λ)


λ


)


≤ c1ϕ(λ),


which means that there are positive numbers ε1 and c2 such that we have


ϕ̃
(


ε1
ϕ(λ)


λ


)


≤ c2ϕ(λ)


for any λ > 0. By virtue of Lemma 1.1 the latter inequality is equivalent to
the quasi-convexity of ϕ.


The definition of the number p(ϕ) implies that the function ϕ
α


p(ϕ) is not
quasi-convex for anyone of α ∈ (0, 1). Therefore, according to Lemma 1.2,
for an arbitrary a > 1 there exists a t > 0 such that


ϕ
1


p(ϕ) (at) < 2aϕ
1


p(ϕ) (t)


or, which is the same thing,


ϕ(at) < (2a)p(ϕ)ϕ(t). (2.4)


Let B be an arbitrary ball and E be its any µ-measurable subset. Using
the Young inequality and condition (2.2), we obtain


wB =
1


2c2ϕ(t)


∫


E


2c2


ε
t
µB
µE


ε
ϕ(t)


t
wB


µBw(x)
w(x) dµ ≤


≤ 1
2c2ϕ(t)


ϕ
(2c2


ε
t
µB
µE


)


wE+
1


2c2ϕ(t)


∫


E


ϕ̃
(εϕ(t)


t
wB


µBw(x)


)


w(x)dµ≤


≤ 1
2c2ϕ(t)


ϕ
(2c2


ε
t
µB
µE


)


wE +
1
2


wB


from which we conclude that


wB
wE


ϕ(t) ≤ c2ϕ
(


c2
µB
µE


t
)


. (2.5)


Let a = c2
µB
µE and t be a corresponding number such that (2.4) holds.


On substituting this value of t in (2.5), we get


wB
wE


ϕ(t) ≤ c2ϕ
(


c2
µB
µE


t
)


≤ c2


(


c2
µB
µE


)p(ϕ)
ϕ(t)
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from which we conclude that


wB
wE


≤ c
(µB


µE


)p(ϕ)
.


This means (see [21]) that w ∈ As for an arbitrary s > p(ϕ) when p(ϕ) > 1
and w ∈ A1 when p(ϕ) = 1. �


Lemma 2.2. Let condition (2.2) be fulfilled and ϕ̃ ∈ ∆2. If


ψ = uϕ̃
( 1
u


)


,


then the function ψ(tw) ∈ A∞ uniformly with respect to t, t > 0.


Proof. Let B be an arbitrary ball and E be its any µ-measurable subset.


The convexity of the function ϕ̃ implies that ϕ̃(t)
t increases. Using this fact


and the condition ϕ̃ ∈ ∆2, from (2.2) we obtain
∫


B


ϕ̃
(ϕ(λ)


λ
wE


µBw(x)


)


w(x) dµ ≤ cϕ(λ)wE, (2.6)


where c does not depend on λ, B and E.
Setting


ϕ(λ)
λ


wE
µB


=
1
t
,


we have
∫


B


ϕ̃
( 1


tw(x)


)


tw(x) dµ ≤ ctϕ(λ)wE.


From the expression for t and the Young inequality we obtain


tϕ(λ)wE ≤ t
2
ϕ(λ)wE +


1
2


∫


E


ϕ̃
(


2
µB
µE


1
tw(x)


)


tw(x) dµ.


Hence we conclude that
∫


B


ϕ̃
( 1


tw(x)


)


tw(x) dµ ≤ c
∫


E


ϕ̃
(


2
µB
µE


1
tw(x)


)


tw(x) dµ. (2.7)


The condition ϕ̃ ∈ ∆2 implies that (see [3], Lemma 1.3.2)


ϕ̃(aτ) ≤ c1apϕ̃(τ), (2.8)


where the constant c1 does not depend on a > 1 and τ > 0. If in the latter
inequality we take a = µB


µE and τ = 1
tw(x) , we shall obtain


˜ψ
(µE


µB
tw(x)tw(x)


)


≤ c
(µB


µE


)p
˜ψ(tw(x)). (2.9)







652 A. GOGATISHVILI AND V. KOKILASHVILI


Using (2.9), from the inequality (2.7) we obtain
∫


B


ψ(tw(x)) dµ ≤ c
(µB


µE


)p
∫


E


ψ(tw(x)) dµ.


Thus ψ(tw) ∈ A∞ uniformly with respect to t. �


Lemma 2.3. Let ϕ ∈ Φ and ϕα be quasi-convex for some α, 0 < α < 1.
If now condition (2.2) is fulfilled, then there is a convex function ϕ0 such
that p(ϕ) > p(ϕ0) > 1 and condition (2.2) with ϕ replaced by ϕ0 is fulfilled.


Proof. By Lemma 2.2 the function ψ(tw) ∈ A∞ uniformly with respect to
t. Therefore (see [17], [20]) the reverse Hölder inequality


( 1
µB


∫


B


ψ1+δ(tw(x)) dµ
)1+δ


≤ c
( 1


µB


∫


B


ψ(tw(x)) dµ
)


(2.10)


holds, where the constant c does not depend on t.
We set


ψ0(t) =
ϕ̃1+δ(t)


tδ
. (2.11)


Since the function ϕ̃ is convex, ψ0 will be convex, too. Therefore if ϕ0 =
˜ψ0, we shall have ϕ̃0 =


≈
ψ0= ψ0. Moreover, the condition ϕ̃ ∈ ∆2 implies


ϕ̃0 ∈ ∆2. By Lemma 1.2 hence it follows that p(ϕ0) > 1.
Substituting t = λ


ϕ0(λ)
µB
wB into (2.10) and making use of (2.11), we obtain








1
ϕ0(λ)wB


∫


B


ϕ̃0


(ϕ0(λ)
λ


wB
µBw(x)


)


w(x) dµ








1
1+δ


≤


≤ cλ
δ


1+δ
(


ϕ0(λ)wB
)−1


∫


B


ϕ̃
(ϕ0(λ)


λ
wB


µBw(x)


)


w(x) dµ. (2.12)


Let s be such that for a given λ


ϕ0(λ)
λ


=
ϕ(s)


s
.


Then by virtue of (1.5) and the condition ϕ̃ ∈ ∆2 we have


ϕ(s) ≤ ϕ̃
(


2
ϕ(s)


s


)


≤ cϕ̃
(ϕ0(λ)


λ


)


=


= c
(


ϕ̃0


(ϕ0(λ)
λ


)) 1
1+δ


(ϕ0(λ)
λ


) δ
1+δ ≤ cϕ0(λ)λ−


δ
1+δ .
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Therefore


λ
δ


1+δ


ϕ0(λ)
≤ c


1
ϕ(s)


. (2.13)


Now from (2.13) and (2.12) we conclude that


1
ϕ0(λ)wB


∫


B


ϕ̃0


(ϕ0(λ)
λ


wB
µBw(x)


)


w(x) dµ ≤ c. (2.14)


Thus (2.2) holds, where ϕ is replaced by the convex function ϕ0. Now it
remains for us to show that p(ϕ) > p(ϕ0). First, we shall prove that there
are constants c1 and c2 such that


c1t
δ


1+δ ϕ
(


c1t
1


1+δ
)


≤ ϕ0(t) ≤ c2t
δ


1+δ ϕ
(


c2t
1


1+δ
)


. (2.15)


Using (1.5), (1.6) and the Young inequality, on the one hand, we have


ϕ0(t) = t
δ


1+δ ε
ϕ0(t)


t
1
ε


t
1


1+δ ≤ t
δ


1+δ ϕ̃
(


ε
ϕ0(t)


t


)


+ t
δ


1+δ ϕ
(1


ε
t


1
1+δ


)


=


= ϕ̃
1


1+δ
0


(


ε
ϕ0(t)


t


)


(


εϕ0(t)
) δ


1+δ + t
δ


1+δ ϕ
(1


ε
t


1
1+δ


)


≤


≤ ε
δ


1+δ ϕ
1


1+δ
0 (t)


(


ϕ0(t)
) δ


1+δ + t
δ


1+δ ϕ
(1


ε
t


1
1+δ


)


≤


≤ ε
δ


1+δ ϕ0(t) + t
δ


1+δ ϕ
(1


ε
t


1
1+δ


)


.


Hence we conclude that


ϕ0(t) ≤ c2t
δ


1+δ ϕ
(


c2t
1


1+δ
)


.


On the other hand,


t
δ


1+δ ϕ
(


t
1


1+δ
)


=
εδ


2
ε


ϕ(t
1


1+δ )


t
1


1+δ


2t
ε1+δ ≤


εδ


2
ϕ0


( 2t
ε1+δ


)


+
εδ


2
ϕ̃0


(εϕ(t
1


1+δ )


t
1


1+δ


)


=


=
εδ


2
ϕ0


( 2t
ε1+δ


)


+
εδ


2


(


ε
ϕ(t


1
1+δ )


t
1


1+δ


)−δ
ϕ̃1+δ


(


ε
ϕ(t


1
1+δ )


t
1


1+δ


)


≤


≤ εδ


2
ϕ0


( 2
ε1+δ t


)


+
1
2


ϕ0
(


t
1


1+δ
)


t
δ


1+δ .


This implies


t
δ


1+δ ϕ
(


t
1


1+δ
)


≤ εδϕ0


( 2
ε1+δ t


)


.


Inequality (2.15) is therefore proved. From the definition of p(ϕ0) the func-


tion ϕ
1


p(ϕ0)−ε


0 is quasi-convex for an arbitrary sufficiently small ε > 0 . By
Lemma 1.1 this is equivalent to the fact that the function t−1ϕ


1
p(ϕ0)−ε (t) al-


most increases. On account of (2.15) this means that the function
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tε−p(ϕ0)ϕ(t
1


1+δ )t
δ


1+δ is almost increasing. Therefore the function
ϕ(u)u−((p(ϕ0)−ε)(1+δ)−δ) almost increases. The latter conclusion is equiv-
alent to the fact that the function ϕ


1
(1+δ)(p(ϕ0)−ε)−δ is quasi-convex. From


the definition of p(ϕ) we have p(ϕ) > (1+ δ)(p(ϕ0)− ε)− δ for a sufficiently
small ε. Since p(ϕ0) > 1, we conclude that p(ϕ) > p(ϕ0). �


Proof of Theorem I. First, we shall prove that (ii)⇒(i). By virtue of the Ap-
condition there is a p1 < p(ϕ) such that w ∈ Ap1 . On the other hand, the
definition of p(ϕ) implies that the function ϕ


1
p1 is quasi-convex. Applying


the definition of quasi-convexity, the Jensen inequality and the fact that the
operator M : f → Mf is bounded in Lp1


w (X) for w ∈ Ap1 (see [20]), we
obtain


∫


X


ϕ(Mf(x))w(x) dµ =
∫


X


[


ϕ
1


p1 (Mf(x))
]p1w(x) dx ≤


≤ c
∫


X


(


M
(


ϕ
1


p1 (cf(x))
))p1w(x) dx ≤ c1


∫


X


ϕ(c1f(x)w(x) dx.


Next we shall show that (i)⇒(ii). Choose k > 0 such that the set E =
{k−1 ≤ w(x) ≤ k} have a positive measure. Then from the condition (i) it
follows that


∫


E


ϕ(Mf(x)) dµ ≤ ck2
∫


E


ϕ(cf(x)) dµ


for an arbitrary f provided that supp f ⊂ E. By Theorem A hence we
conclude that ϕα is quasi-convex for some α, 0 < α < 1. Now let us prove
that w ∈ Ap(ϕ). The condition (i) implies that inequality (2.2) is fulfilled.
Applying Lemma 2.3, we arrive at the existence of a convex function ϕ0


such that
∫


B


ϕ̃
(


ε
ϕ0(λ)


λ
wB


µBw(x)


)


w(x) dµ ≤ c2ϕ0(λ)wB,


where the constant c2 does not depend on λ and the ball B and, besides,
p(ϕ) > p(ϕ0) > 1. But in that case, according to Lemma 2.1, the function
w ∈ As for any s > p(ϕ0) and therefore w ∈ Ap(ϕ). �


Finally, we wish to make some useful remarks.


Proposition 2.4. Either of conditions (2.1) and (2.2) is equivalent to
the fact that the function ϕ is quasi-convex and w ∈ Ap(ϕ).


Proof. The fact that the condition w ∈ Ap(ϕ) implies (2.2) (and, accord-
ingly, 2.1) can be proved directly.


Let w ∈ Ap(ϕ) and p(ϕ) > 1. Then there is a p2 < p(ϕ) such that
w ∈ Ap2 . The definition of p(ϕ) implies the existence of a p1 such that p2 <
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p1 < p(ϕ) and the function ϕ
1


p1 is quasi-convex. Therefore by Corollary 1.1
we have sp1ϕ(t) ≤ ϕ(cst), s ≥ 1. Hence for a > 1 we obtain


ϕ̃(at) = sup
s>0


(sat− ϕ(s)) = sup
s>0


(


a
p1


p1−1 tcs− ϕ(a
1


p1−1 cs
)


≤


≤ sup
s>0


(


a
p1


p1−1 cts− a
p1


p1−1 ϕ(s)
)


= a
p1


p1−1 ϕ̃(ct).


From the latter estimate, inequality (1.5) and the condition w ∈ Ap1 we
derive


∫


{x: wB
µBw(x) >1}


ϕ̃
(


ελ
wB


µBw(x)


)


w(x) dx ≤


≤ ϕ̃(cελ)
∫


B


( wB
µBw(x)


)
p1


p1−1
w(x) dµ ≤ cϕ̃(λ)wB.


Thus
∫


B


ϕ̃
(


ελ
wB


µBw(x)


)


w(x) dx ≤ ϕ̃(ελ)wB + cϕ̃(λ)wB ≤ c1ϕ̃(λ)wB.
(2.16)


Let now p(ϕ) = 1. Then the function wB
µBw(x) is bounded on B by a


constant independent of B and we have (2.16).
Further, if in inequality (2.16) we replace λ by ε0


ϕ(λ)
λ where ε0 is the


respective constant from (1.3) and in the right-hand side use the above-
mentioned inequality, then we shall obtain (2.2). �


Proposition 2.5. Let ϕ be quasi-convex. The conditions below are equiv-
alent:


(i) there are constants ε1 and c1 such that


ϕ








ε1


λµB


∫


B


ϕ̃
( λ


w(x)


)


w(x)dµ





 wB ≤ c1


∫


B


ϕ̃
( λ


w(x)


)


w(x) dµ (2.17)


for any ball B and number λ > 0;
(ii) there are constants ε2 and c2 such that


∫


B


ϕ̃
(


ε2
λwB


w(x)µB


)


w(x) dµ ≤ c2ϕ̃(λ)wB (2.18)


for any ball B and number λ > 0;
(iii) w ∈ Ap(ϕ).
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Proof. It is easy to show that (i)⇒(ii). To this effect in (2.17) it is sufficient
to replace λ by λwB


2c1µB . Then (2.17) can be rewritten as


2ϕ
( 2c1


λwB


∫


B


ϕ̃
( 1


2c1


λwB
µB


)


w(x)dµ
)


2c1


λwB


∫


B


ϕ̃
( 1


2c1


λwB
µB


)


w(x)dµ
≤ λ. (2.19)


Taking into account that ϕ̃(t)
t increases and using inequality (1.5), we con-


clude from (2.19) that (2.18) is valid.
The implication (ii)⇒(iii) is obtained as follows. In Proposition 2.4 it


was actually proved that (ii)⇒(2.2). By Lemma 2.4 it follows from (2.2)
that w ∈ Ap(ϕ). The reverse statement was shown in proving Proposition
2.4. �


Now we proceed to proving Theorem III. The proof will be based on the
following propositions.


Proposition 2.6. Let ϕ ∈ Φ. Then the statements below are equivalent:
(i) there is a constant c such that the inequality


∫


{x:Mf(x)>λ}


ϕ
( λ


w(x)


)


w(x) dµ ≤ c
∫


X


ϕ
(


c
f(x)
w(x)


)


w(x) dµ


is fulfilled for any µ-measurable function f : X → R1 and an arbitrary
λ > 0;


(ii) the function ϕ is quasi-convex and there are positive constants ε > 0
and c1 > 0 such that


ϕ̃








ε
λµB


∫


B


ϕ
( λ


w(x)


)


w(x) dµ





wB ≤ c1


∫


B


ϕ
( λ


w(x)


)


w(x) dµ.


Since the proof of this proposition repeats that of Theorem 5.1 from [16],
we leave it out.


If in Proposition 2.6 we replace ϕ by ϕ̃ and take into account that
≈
ϕ∼ ϕ


for a quasi-convex function ϕ (see Lemma 1.1), then by Proposition 2.5 we
conclude that the following proposition is valid.


Proposition 2.7. Let ϕ ∈ Φ. The conditions below are equivalent:
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(i) the function ϕ is quasi-convex and there is a constant c1 > 0 such
that the inequality


∫


{x:Mf(x)>λ}


ϕ̃
( λ


w(x)


)


w(x) dµ ≤ c1


∫


X


ϕ̃
(


c1
f(x)
w(x)


)


w(x) dµ


is fulfilled for any λ > 0 and µ-measurable function f : X → R1;
(ii) there is a constant c2 > 0 such that the inequality


ϕ(λ)
∫


{x:Mf(x)>λ}


w(x) dµ ≤ c2


∫


X


ϕ(c2f(x))w(x) dµ


is fulfilled for an arbitrary λ > 0;
(iii) the function ϕ is quasi-convex and there are positive numbers ε and


c3 such that


ϕ








ε
λµB


∫


B


ϕ̃
( λ


w(x)


)


w(x) dµ





wB ≤ c3


∫


B


ϕ̃
( λ


w(x)


)


w(x) dµ


is fulfilled for any λ > 0 and an arbitrary ball B;
(iv) there are positive numbers ε and c4 such that the inequality


∫


B


ϕ̃
(


ε
ϕ(λ)


λ
wB


w(x)µB


)


w(x) dµ ≤ c4ϕ(λ)wB


is fulfilled for any λ > 0 and ball B;
(v) the function ϕ is quasi-convex and w ∈ Ap(ϕ).


Proof of Theorem III. First, we shall prove the implication (i)⇒(iii). From
the condition (i) we obtain a weak type inequality. Moreover, the same
condition implies that ϕα is quasi-convex. Indeed, the condition (i) implies
that the inequality


∫


E


ϕ(Mf(x)) dµ ≤ c
∫


E


ϕ(cf(x)) dµ


is fulfilled on the set E = { 1
k < w(x) < k} where k is a number such that


µE > 0. Therefore on account of Theorem A the function ϕα is quasi-
convex for some α, 0 < α < 1. Further by Lemma 1.2 the quasi-convexity
of ϕα (0 < α < 1) implies ϕ̃ ∈ ∆2. Now by Proposition 2.6 from (i) we
conclude that (iii) is valid.


The implication (iii)⇒(iv) follows from Proposition 2.5. We shall prove
the validity of the implication (iv)⇒(i). By virtue of Lemma 2.1 the condi-
tion (iv) implies w ∈ A∞. Now we shall use the method developed in [25].
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Let Bk
j and Ek


j (j ∈ N , k ∈ Z) be respectively balls and sets from Lemma
2 of [2]. We set


mBk
j
(f) =


1
µBk


j


∫


Bk
j


f(y) dµ.


Applying the above-mentioned lemma, we obtain
∫


X


ϕ
(Mf(x)


w(x)


)


w(x)dµ ≤
∑


k,j


∫


Ek
j


ϕ
(b2mBk


j
(f)


w(x)


)


w(x)dµ. (2.20)


Now in the condition (iv) we set


λ =
1


wBk
j


∫


Bk
j


|f(y)| dµ


and use the resulting inequality to estimate the right-hand side of (2.20).
This leads us to the estimates


∫


X


ϕ
(Mf(x)


w(x)


)


w(x) dµ ≤ c
∑


k,j


ϕ


(


b2
∫


Bk
j
|f(y)|dµ


wBk
j


)


wBk
j ≤


≤ c
∑


k,j


ϕ
( b2


wBk
j


∫


Bk
j


|f(x)|
w(x)


w(x) dµ
)


wEk
j .


We set
Mwf(x) = sup


B3x


1
wB


∫


B


|f(y)|w(y) dµ,


which implies that
∫


X


ϕ
(Mf(x)


w(x)


)


w(x) dµ ≤ c
∑


k,j


∫


Ek
j


ϕ
(


Mw


(b2f(x)
w(x)


))


w(x) dµ ≤


≤ c
∫


X


ϕ
(


b2Mw


( f(x)
w(x)


))


w(x) dµ.


On the other hand, the function ϕα is quasi-convex for some α ∈ (0, 1)
and w ∈ A∞. The latter condition implies that w satisfies the doubling
condition. Therefore we are able to apply Theorem A to the right-hand
side of the above inequality. As a result, we conclude that


∫


X


ϕ
(Mf(x)


w(x)


)


w(x) dµ ≤ c
∫


X


ϕ
(


c
f(x)
w(x)


)


w(x) dµ. �
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§ 3. Criterion of a Strong Type One-Weighted Inequality for
Vector-Valued Functions. The proof of Theorem II


Let f = (f1, f2, . . . , fn, . . . ) where fj : X → R1 are µ-measurable locally
summable functions for each i = 1, 2, . . . , n. For θ, 1 < θ < ∞, and x ∈ X
we set


‖f(x)‖θ =
(
∞
∑


j=1


|fj(x)|θ
) 1


θ
.


Let Mf = (Mf1,Mf2, . . . ,Mfn, . . . ).
The proof of Theorem II will be based on some auxiliary results to be


discussed below.


Theorem 3.1. Let 1 < p, θ < ∞. Then the following conditions are
equivalent:


(i) there is a constant c > 0 such that the inequality
∫


X


‖Mf(x)‖p
θw(x) dµ ≤ c


∫


X


‖f(x)‖p
θw(x) dµ (3.1)


is fulfilled for any vector-function f ;
(ii) w ∈ Ap(X).


To prove the theorem we need the following lemmas:


Lemma A ([17], Lemma 2). Let F be a family {B(x, r)} of balls with
bounded radii. Then there is a countable subfamily {B(xi, ri)} consisting of
pairwise disjoint balls such that each ball in F is contained in one of the
balls B(xi, ari) where a = 3a2


1 + 2a0a1.


Lemma 3.1. Let 1 < p < ∞, f : X → R1, ϕ : X → R1 be non-negative
measurable functions. Then there is a constant c > 0, not depending on f
and ϕ, such that


∫


X


(Mf(x))pϕ(x) dµ ≤ c
∫


X


fp(x)Mϕ(x) dµ.


Proof. This lemma is well-known for classical maximal functions and so we
give its proof just for the sake of completeness of our discussion.


As can be easily verified, for any nonnegative locally summable function
ϕ we have the estimate


1
µB


∫


B


ϕ(x) dµ
( 1


µB


∫


B


(


Mϕ(x)
)− 1


p−1 dµ
)p−1


≤ c, (3.2)


where c does not depend on the ball B.
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Further, let λ > 0 and B0 be a fixed ball in X. We set


Hλ =
{


x ∈ X : Mf(x) > λ
}


∩B0.


Obviously, for an arbitrary point x ∈ Hλ there is a ball B(x, rx) such that


1
µB(x, rx)


∫


B(x,rx)


f(y) dy > λ.


According to Lemma A, from the family {B(x, rx)} we can choose pair-
wise disjoint balls B(xj , arj) such that each chosen ball will be contained
in one of the balls B(xj , arj) where a is the absolute constant. Applying
the Hölder inequality, the doubling property of the measure µ and (3.2), we
obtain


∫


Hλ


ϕ(x) dµ ≤
∞
∑


j=1


∫


B(xj ,arj)


ϕ(x) dµ ≤ λ−p
∞
∑


j=1


1
µBj


∫


B(xj ,arj)


ϕ(x) dµ×


×
(


∫


B(xj ,rj)


fp(x)Mϕ(x) dµ
)( 1


µBj


∫


Bj


(


Mϕ(x)
)− 1


p−1 dµ
)p−1


≤


≤ cλ−p
∞
∑


j=1


∫


B(xj ,rj)


fp(x)Mϕ(x) dµ ≤ cλ−p
∫


X


fp(x)Mϕ(x) dµ.


Now to complete the proof we only have to apply Marcinkiewicz’ interpo-
lation theorem. �


Proof of Theorem 3.1. Let 1 < p < θ < ∞ and w ∈ Ap(X). Since inequality
(0.1) is fulfilled for ϕ(u) = up, 1 < p < ∞, and w ∈ Ap (see [20]), we have


∫


X


‖Mf(x)‖p
pw(x) dx ≤ c1


∫


X


‖f(x)‖p
pw(x) dx


and also
∫


X


(


sup
i


Mfi(x)
)p


w(x) dx ≤
∫


X


(


M(sup
i


fi(x))
)p


w(x) dx ≤


≤ c2


∫


X


(


sup fi(x)
)p


w(x) dx.


If we apply an interpolation theorem of the Marcinkiewicz type (see, for
example, [24]), (3.1) will hold for an arbitrary θ, 1 < p < θ < ∞.


Next let 1 < θ < p < ∞. By virtue of the property of the class Ap(X)
there is a number θ0 < p such that w ∈ Ap/θ for an arbitrary θ, 1 < θ ≤
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θ0 < p. It will be now shown that (3.1) holds for an arbitrary θ provided
that 1 < θ ≤ θ0 < p.


We have
(


∫


X


‖Mf(x)‖p
θw(x) dµ


)θ/p
= sup


∣


∣


∣


∫


X


‖Mf(x)‖θ
θϕ(x) dµ


∣


∣


∣,


where the least upper bound is taken with respect to all functions ϕ : X →
R1 for which


∫


X


|ϕ(x)|
p


p−θ
(


w(x)
)− θ


p−θ dµ ≤ 1. (3.3)


By virtue of (3.2) we obtain


∫


X


(
∞
∑


i=1


Mθfi(x)
)


|ϕ(x)| dµ =
∞
∑


i=1


∫


X


Mθfi(x)|ϕ(x)| dµ ≤


≤ c
∞
∑


i=1


∫


X


|fi(x)|θMϕ(x) dµ = c
∫


X


‖f(x)‖θ
θMϕ(x) dµ.


Applying the Hölder inequality to the latter expression, we have


∫


X


(
∞
∑


i=1


Mθfi(x)
)


|ϕ(x)| dµ ≤ c








∫


X


(
∞
∑


i=1


|fi(x)|θ
)p/θ


w(x)|dµ








θ/p


×


×








∫


X


(


Mϕ(x)
)


p
p−θ w−


θ
p−θ (x)dµ








p−θ
p


. (3.4)


The fact w ∈ Ap/θ implies w−
θ


p−θ ∈ A p
p−θ


. Taking into account (3.3), we
estimate the second multiplier in the right-hand side of (3.4) as follows:


(


∫


X


‖Mf(x)‖p
θw(x)dµ


)θ/p
≤


∫


X


‖Mf(x)‖θ
θ|ϕ(x)|dµ≤c


(
∫


X


‖f(x)‖p
θw(x)dµ


)θ/p


provided that 1 < θ ≤ θ0.
Now let us show that (3.1) holds for θ0 < θ < p as well. Consider two


pairs of numbers, (p, θ0) and (p, p). By virtue of the above reasoning and
the well-known result in the scalar case we have the inequalities


∫


X


‖Mf(x)‖p
θ0


w(x) dµ ≤ c1


∫


X


‖f(x)‖p
θ0


w(x) dµ
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and
∫


X


‖Mf(x)‖p
pw(x) dµ ≤ c2


∫


X


‖f(x)‖p
pw(x) dµ.


The proof is completed by applying Marcinkiewicz’ interpolation theorem.
�


Theorem 3.2. Let ϕ ∈ Φ and 1 < θ < ∞. Then the following conditions
are equivalent:


(i) there exists a constant c > 0 such that


ϕ(λ)w
{


x ∈ X :
(
∞
∑


i=1


(


Mϕi(x)
)θ


)1/θ
> λ


}


≤


≤ c
∫


X


ϕ
(


c
(
∞
∑


i=1


|fi(x)|θ
)1/θ)


w(x) dµ (3.5)


for all λ > 0 and vector-functions f ;
(ii) the function ϕ is quasi-convex and ϕ ∈ ∆2.


Proof. The quasi-convexity follows from (3.5) by virtue of Lemma 2.1. We
shall prove that ϕ ∈ ∆2.


Let x0 ∈ X and µ{x} > 0. We set r0 = 1 and


rk = sup
{


r : µB(x0, r) <
1
2b


µB(x0, rk−1)
}


, k = 1, 2, . . . ,


where the constant b is taken from the doubling condition of the measure
µ. Obviously, by the definition of numbers rk we shall have


µB(x0, rk)\B(x0, rk+1) = µB(x0, rk)− µB(x0, rk+1) ≥ µB(x0, rk)−


−bµB(x0,
1
2
rk+1) ≥ µB(x0, rk)− 1


2
µB(x0, rk) =


1
2
µB(x0, rk).


Therefore


µB(x0, rk)\B(x0, rk+1) ≥
1
2
µB(x0, rk). (3.6)


Let us define the vector-function f = (f1, . . . , fn, . . . ) where


fj(x) =
t
c
χB(x0,rj)\B(x0,rj+1)(x),


with the constant c taken from the condition (i).
Obviously,


(
∞
∑


j=1


|fj(x)|θ
)1/θ


=
t
c
µB(x0, r1).
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At the same time, for any x ∈ B(x0, rj), (j = 1, 2, . . . ), we have on account
of (3.6)


Mfj(x) ≥ t
c


µB(x0, rj)\B(x0, rj+1)
µB(x0, rj)


≥ t
2c


.


Now let k > 4c. Then it is obvious that


(
∞
∑


j=1


(


Mfj(x)
)θ


)1/θ
≥ kt


2c
> 2t (3.7)


for an arbitrary x ∈ B(x0, rk).
Next set λ = 2t in (3.5). By (3.7) we obtain the estimate


ϕ(2t)wB(x0, rk) ≤ cϕ(t)wB(x0, r1).


Therefore ϕ ∈ ∆2.
The implication (ii)⇒(i) can be proved by the arguments used in proving


Theorem 1.3.1 from [3]. �


Proof of Theorem II. The necessary condition for the function ϕα to be
quasi-convex for some α, 0 < α < 1, and w ∈ Ap(ϕ) follows from the scalar
case (Theorem I).


Assume that these conditions are fulfilled. Then there is an ε > 0 such
that w ∈ Ap(ϕ)−ε. The definition of the number p(ϕ) implies that there is


a p0 such that p(ϕ)− ε < p0 < p(ϕ) and the function ϕ
1


p0 is quasi-convex.
The function ϕ(t)


tp0 almost increases by virtue of Lemma 1.1. Therefore for
p1 with the condition p(ϕ)− ε < p1 < p we have


u
∫


0


dϕ(t)
tp1


=
ϕ(u)
up1


+ p1


u
∫


0


ϕ(u)
tp1−1 dt ≤ ϕ(u)


up1
+


+p1
ϕ(u)
up0


u
∫


0


dt
up1−p0−1 = c


ϕ(u)
up1


. (3.8)


On the other hand, since w ∈ Ap1 , by Theorem 3.1 we obtain


w
{


x ∈ X :
(
∞
∑


j=1


(


Mfj(x)
)θ


)1/θ
> λ


}


≤


≤ c
λp1


∫


X


(
∑


j


|fj(x)|θ
)


p1
θ


w(x) dµ. (3.9)
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At the same time, by the condition of the theorem we have ϕ ∈ ∆2. There-
fore there is a p such that ϕ(t)


tp almost decreases. Setting p2 = max{p(ϕ), p},
we have


∞
∫


u


dϕ(t)
tp2


≤p2


∞
∫


u


ϕ(t)dt
tp2−1 ≤cp2


ϕ(u)
up


∞
∫


u


dt
tp2−p−1 =


cp2


p2−p
ϕ(u)
up2


. (3.10)


Since p2 > p, the function w ∈ Ap2 and again by Theorem 3.1 we have


w
{


x ∈ X :
(
∞
∑


j=1


(


Mfj(x)
)θ


)1/θ
> λ


}


≤


≤ c
λp2


∫


X


(
∞
∑


j=1


|fj(x)|θ
)p2/θ


w(x) dµ. (3.11)


For each λ > 0 we write


λfj(x) =


{


fj(x) if ‖f(x)‖θ > λ,
0 if ‖f(x)‖θ ≤ λ,


λfj(x) =


{


fj(x) if ‖f(x)‖θ ≤ λ,
0 if ‖f(x)‖θ > λ.


Assume that λf = (λf1, . . . , λfj , . . . ), λf = (λf1, . . . , λfj , . . . ). It is obvious
that


Mfj(x) ≤ Mλfj(x) + Mλfj(x)


and hence, by Marcinkiewicz’ inequality,


‖Mf(x)‖θ ≤ ‖Mλf(x)‖θ + ‖Mλf(x)‖θ.


Therefore


ϕ(λ)w
{


x ∈ X : ‖Mf(x)‖θ > λ
}


≤ ϕ(λ)w
{


x ∈ X : ‖Mλf(x)‖θ >
λ
2
}


+


+ϕ(λ)w
{


x ∈ X : ‖Mλf(x)‖θ >
λ
2
}


.
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Further,


∫


X


ϕ
(


‖Mf(x)‖θ
)


w(x) dx ≤
∞
∫


0


w
{


x ∈ X : ‖Mf(x)‖θ > λ
}


dϕ(λ) ≤


≤
∞
∫


0


w
{


x ∈ X : ‖Mλf(x)‖θ >
λ
2
}


dϕ(λ) +


+


∞
∫


0


w
{


x ∈ X : ‖Mλf(x)‖θ >
λ
2
}


dϕ(λ) = I1 + I2.


Applying (3.9) and (3.8), we obtain


I1 ≤ c1


∞
∫


0


2
λp1


(


∫


X


‖λf(x)‖p1
θ w(x) dx


)


dϕ(λ) =


= c1


∞
∫


0


2
λp1


(


∫


{x:‖f(x)‖θ>λ}


‖f(x)‖p1
θ w(x) dx


)


dϕ(λ) =


= c1


∫


X


‖f(x)‖p1
θ


(


‖f(x)‖θ
∫


0


dϕ(λ)
λp1


)


w(x) dx = c1


∫


X


ϕ(‖f(x)‖θ)w(x) dx.


Analogously, applying (3.11) and (3.10), we ascertain that the estimate


I2 ≤ c2


∫


X


ϕ(‖f(x)‖θ)w(x) dx


is valid. �


§ 4. Weak Type Inequalities for Vector-Valued Maximal
Functions


This paragraph will be devoted to proving Theorem IV. To this end we
need several well-known facts.


Proposition 4.1 (see [19], p. 623). Let Ω be an open set in X. Then
there is a sequence (Bj) = (B(xj , rj)) such that


(i) Ω =
∞
∪


j=1
Bj;


(ii) there exists a constant ξ ≥ 0 such that
∞
∑


j=1


χBj
(x) ≤ ξ;
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(iii) for each j = 1, 2, . . . , we have B̄j ∩ (X\Ω) 6= ∅, where B̄j =
B(xj , 3a1rj) and the constant α1 is from the definition of the space X.


Proposition 4.2 (see [17], Lemma 1). For each number a > 0 there
is a constant α2 such that if B(x, r) ∩ B(y, r′) 6= ∅ and r ≤ αr′, then
B(x, r) ≤ B(y, a2r′). Note that a2 = a2


1(1 + a) + a0a1a.


Proposition 4.3 ([16], Lemma 3.2). If condition (0.8) is fulfilled,
then there is a constant c > 0 such that


ϕ(s)
s


≤ ct−1ψ
(


c
t


γ(s)


)


, 0 < s ≤ t. (4.1)


We start with an extension of Theorem B. The following statement is in
fact the sharpening of Theorem 5.1 from [16] for maximal functions in the
case θ(u) ≡ u, dβ ≡ wdµ⊗ δ0.


Theorem 4.1. Let ϕ and γ be nondecreasing functions defined on [0,∞),
ψ be a quasi-convex function. Further assume that w, ν and σ are weight
functions. Then the following statements are equivalent:


(i) there is a positive constant c1 such that the inequality


ϕ(λ)w{x : Mf(x) > λ} ≤ c1


∫


X


ψ
(


c1
f(x)ν(x)


γ(λ)


)


σ(x)dµ


is fulfilled for any λ > 0 and locally summable function f : X → R1;
(ii) there is a positive constant ε such that


sup
B


sup
λ>0


1
ϕ(λ)wB


∫


B


˜ψ
(


ε
ϕ(λ)γ(λ)


λ
wB


µBσ(x)ν(x)


)


σ(x)dµ < ∞.


Proof. Since in the proof of Theorem 5.1 the quasi-convexity of ϕγ was
used only to show that the implication (i)⇒(ii) is valid, now it is sufficient
to prove this implication by our weakened assumptions.


Let B be a fixed ball and s > 0. Given k ∈ N , put Bk = {x ∈ B :
σ(x)ν(x) > 1


k} and


g(x) =
(ϕ(s)


s
wB


µBσ(x)ν(x)


)−1
˜ψ
(


ε
ϕ(s)γ(s)


s
wB


µBσ(x)ν(x)


)


χBk(x)


with ε to be specified later.
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In our notation we have


I =
∫


Bk


˜ψ
(


ε
ϕ(s)γ(s)


s
wB


µBσ(x)ν(x)


)


σ(x)dµ =


=
ϕ(s)


s
wB
µB


∫


B


g(x)
ν(x)


dµ.


If B and s are chosen such that


1
µB


∫


B


g(x)
ν(x)


dµ < s,


then we obtain the estimate


I ≤ ϕ(s)wB.


Let now
1


µB


∫


B


g(x)
ν(x)


dµ > s.


By the condition (i) for the function


f(x) = 2s
( 1


µB


∫


B


g(x)
ν(x)


dµ
)−1 g(x)


ν(x)


and Corollary 1.1 we derive the estimates


I≤ ϕ(s)
s


1
µB


∫


B


g(x)
ν(x)


w{x∈X : Mf(x)>s}dµ≤ 1
s


1
µB


∫


B


g(x)
ν(x)


dµ×


×c1


∫


X


ψ
(


2c1


( 1
µB


∫


B


g(x)
ν(x)


dµ
)−1 g(x)s


γ(s)


)


σ(x)dµ ≤


≤ c1


∫


X


ψ
(


2c1c
g(x)
γ(s)


)


σ(x)dµ.


Therefore


I ≤ ϕ(s)wB + c1


∫


X


ψ
(


2c1c
g(x)
γ(s)


)


σ(x)dµ.


Choose ε so small that 2c1c2ε < 1. By Corollaries 1.1 and 1.2 and the
definition of g we obtain, from the above inequality, the estimate


I ≤ ϕ(s)wB + cεI. (4.2)
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Now we shall show that I is finite for a small ε. Let ψ(t) · t−1 → ∞ as
t →∞; then ˜ψ is finite everywhere and thus


I ≤ ˜ψ
(


εk
ϕ(s)γ(s)


s
wB
µB


)


σB < ∞,


since σ and w are locally integrable.
Let now ψ(t) ≤ At, A > 0. Then the condition (i) implies


γ(λ)ϕ(λ)w{x ∈ X : Mf(x) > s} ≤ c
∫


X


|f(x)|ν(x)σ(x)dµ.


If in this inequality we put f(x) = sµB
µE χE(x), where E is a measurable


subset of B, we shall obtain the inequality


ϕ(s)γ(s)
s


wB
µB


≤ c
µE


∫


E


σ(x)ν(x)dµ


which yields the estimate


ϕ(s)γ(s)
s


wB
µBσ(x)γ(x)


≤ c


almost everywhere on B. Here the constant c does not depend on B and s.
Therefore we conclude that


I ≤ ˜ψ(εc)σB.


Choosing ε so small that ˜ψ(εc) < ∞, we see that I is finite.
Further, if cε < 1, then inequality (4.2) implies


∫


B


˜ψ
(


ε
ϕ(s)γ(s)


s
wB


µBσ(x)ν(x)


)


σ(x)dµ ≤ 1
1− cε


ϕ(s)wB.


Passing here to the limit as k →∞, we derive the desired inequality (ii). �


In the same manner we can generalize Theorem 5.1 from [16] to its full
extent.
Proof of Theorem IV. Let λ > 0 and


Ωλ =
{


x ∈ X : M(‖f‖θ)(x) > λ
}


.


Let further (Bj)j be a sequence from Proposition 4.1. We set Gλ = X\Ωλ
and introduce the notation f1 = fχGλ


= (f1χGλ
, . . . , fnχGλ


, . . . ), f2 = fχΩ .
Condition (0.9) readily implies that w ∈ A∞ and therefore w ∈ Ap for some
p > 1. Let a number p be chosen so that the function t−pψ(t) almost
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decreases. This is possible due to the condition ψ ∈ ∆2. As can be easily
verified,


ϕ(λ)w
{


x : ‖Mf(x)‖θ > λ
}


≤ ϕ(λ)w
{


x : ‖Mf1(x)‖θ >
λ
2
}


+


+ϕ(λ)w
{


x : ‖Mf2(x)‖θ >
λ
2
}


. (4.3)


By Theorem 3.1


ϕ(λ)w
{


x : ‖Mf1(x)‖θ >
λ
2
}


≤ cϕ(λ)
λp


∫


Gλ


‖f(x)‖p
θw(x)dµ. (4.4)


Next, since ‖f(x)‖θ ≤ λ for x ∈ Gλ, from (4.1) and the ∆2-condition we
obtain the estimate


ϕ(λ)
λp


∫


Gλ


‖f(x)‖p
θw(x)dµ ≤ c


∫


gλ


ψ(c λ
γ(λ) )


λp ‖f(x)‖p
θw(x) dµ ≤


≤ c
∫


Gλ


ψ
(


c
‖f(x)‖θ


γ(λ)


)


w(x) dµ ≤ c
∫


X


ψ
(‖f(x)‖θ


γ(λ)


)


w(x) dµ.


Therefore (4.4) implies


ϕ(λ)w
{


x∈X : ‖Mf1(x)‖θ >
λ
2
}


≤c
∫


X


ψ
(‖f(x)‖θ


γ(λ)


)


w(x)dµ. (4.5)


We set ˜f = ( ˜f1, . . . , ˜fj , . . . ), where


˜fj(x) =
∑


k


( 1
µBk


∫


Bk


|fj(y)|dµ
)


χBk
(x).


Let ˜Bk = B(xk, 2a1rk). We set ˜Ωλ = ∪k ˜Bk and ˜Gλ = X\˜Ωλ.
Now it will be shown that


M(fjχΩλ
)(x) ≤ cM ˜fj(x) (j = 1, 2, . . . ) (4.6)


for x ∈ ˜Gλ.
Let x ∈ ˜Gλ and B = B(y, r) be an arbitrary ball containing the point x


and B ∩ Ωλ 6= ∅. It will be shown that for an arbitrary k ∈ S, S = {k ∈
N : Bk ∩B 6= ∅}, we have Bk ⊂ a2B, where a2 is an absolute constant not
depending on k. Since x ∈ ˜Gλ, it is obvious that x ∈ B\ ˜Bk. Therefore


d(xk, x) > 2a1rk.
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Let z ∈ Bk ∩B. We have


d(z, x) ≤ a1(d(z, y) + d(y, x)) ≤ a1(a0 + 1)r


and


2a1rk ≤ d(xk, x) ≤ a1(d(xk, z) + d(z, x)) ≤ a1(rk + a1(a0 + 1)r).


Hence it follows that rk ≤ a1(a0 + 1)r. Now on account of Proposition
4.2 we have Bk ⊆ a2B, where a2 = a2


1(a1(a0 + 1)) + a0a2
1(a0 + 1), a2B =


B(y, a2r).
By virtue of the latter inclusion and doubling condition for µ we derive


the inequalities


1
µB


∫


B


fjχΩλ
(x) dµ =


1
µB


∑


k∈S


∫


B∩Bk


fj(y) dµ ≤


≤ 1
µB


∑


k∈S


∫


Bk


fj(y) dµ ≤ c
µa2B


∑


k∈S


( 1
µBk


∫


Bk


fj(y) dµ
)


µBk ≤


≤ c
µa2B


∫


a2B


(
∑


k


( 1
µBk


∫


Bk


fj(y) dµ
))


χBk
dµ ≤


≤ c
µa2B


∫


a2B


˜fj(y) dµ ≤ M ˜fj(x),


thereby proving (4.6).
Taking (4.3) into account, we obtain


ϕ(λ)w
{


x ∈ X : ‖Mf2(x)‖θ >
λ
2
}


≤ ϕ(λ)w˜Ωλ +


+ϕ(λ)w
{


x ∈ ˜Gλ : ‖M ˜f(x)‖θ > cλ
}


. (4.7)


Since condition (0.8) ensures the belonging of the function w to the class
A∞, this function will satisfy the doubling condition. Therefore


w˜Ωλ ≤
∞
∑


k=1


w ˜Bk ≤ c1


∞
∑


k=1


wBk ≤ c1


∫


∪
k
Bk


∑


k


χBk
dµ ≤ c1ξwΩλ. (4.8)


Further by virtue of Theorem 3.1 we have


ϕ(λ)w
{


x ∈ ˜Gλ : ‖M ˜f(x)‖θ > cλ
}


≤


≤ c2
ϕ(λ)
λp


∫


Ωλ


‖ ˜f(x)‖p
θw(x) dµ. (4.9)
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Applying the Minkowski inequality and taking into account that Bk∩Gλ 6=
∅ and M(‖f(x)‖θ)(z) ≤ λ for z ∈ Gλ, we find that for x ∈ Ωλ


‖ ˜f(x)‖θ =
(
∞
∑


j=1


| ˜fj(x)|θ
)1/θ


=


=











∞
∑


j=1


(
∑


k


1
µBk


∫


Bk


|fj(y)|dµχBk
(x)


)θ











1/θ


≤


=
∞
∑


k=1











∞
∑


j=1


( 1
µBk


∫


Bk


|fj(y)|dµχBk
(x)


)θ











1/θ


≤


=
∞
∑


k=1


1
µBk











∞
∑


j=1


(


∫


Bk


|fj(y)|dµ
)θ











1/θ


χBk
(x) ≤


=
∞
∑


k=1


1
µBk











∫


Bk


(
∞
∑


j=1


|fj(y)|θ
)1/θ


dµ








χBk
(x) =


=
∞
∑


k=1


( 1
µBk


∫


Bk


‖f(x)‖θdµ
)


χBk
(x) ≤ λ


∞
∑


k=1


χBk
(x) ≤ ξλ.


Thus (4.9) implies


ϕ(λ)w
{


x ∈ ˜Gλ : ‖M ˜f(x)‖θ > cλ
}


≤ c3ϕ(λ)wΩλ.


Due to the latter estimate (4.7) yields


ϕ(λ)w
{


x ∈ X : ‖Mf2(x)‖θ >
λ
2
}


≤ c3ϕ(λ)wΩλ. (4.10)


By virtue of the respective result in the scalar case (see Theorem 4.1) we
have


ϕ(λ)wΩλ ≤ c4


∫


X


ψ
(‖f(x)‖θ


γ(λ)


)


w(x) dµ. (4.11)


Now, from (4.3), (4.5), (4.10), (4.11) we obtain the validity of the desired
inequality. �
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