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ON THE OSCILLATION OF SOLUTIONS OF FIRST
ORDER DELAY DIFFERENTIAL INEQUALITIES AND

EQUATIONS

R.KOPLATADZE AND G.KVINIKADZE

Abstract. Oscillation criteria generalizing a series of earlier results
are established for first order linear delay differential inequalities and
equations.

1. Introduction. It is a trivial consequence of the uniqueness of solutions
of initial value problems that a first order linear ordinary differential equa-
tion cannot have oscillatory solutions. As to the equation

u′(t) + p(t)u(τ(t)) = 0,

the introduction of a delay leads to the fact that oscillatory solutions do
appear. Moreover, if p is nonnegative and the delay is sufficiently large, all
proper solutions (see Definition 1 below) turn out to be oscillatory. Specific
criteria for the oscillation of proper solutions of linear delay equations were
for the first time proposed by A.D.Myshkis (see [1]). It follows from the
results of [2,3] that if the functions p : R+ → R+(R+ = [0,+∞[) and
τ : R+ → R are continuous, τ is nondecreasing, τ(t) ≤ t for t ∈ R+,
limt→+∞ τ(t) = +∞,

p∗ = lim
t→+∞

t
∫

τ(t)

p(s)ds, p∗ = lim
t→+∞

t
∫

τ(t)

p(s)ds (1)

and

either p∗ > 1 or p∗ >
1
e
, (2)

then the inequality

u′(t) sign u(t) + p(t)|u(τ(t))| ≤ 0 (3)
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is oscillatory (see Definition 3 below).
If p∗ ≤ 1/e, the condition p∗ > 1 can be improved. For τ(t) ≡ t− τ(τ =

const > 0) such an improvement was carried out successively in [4,5,6]
where the condition p∗ > 1 was replaced, respectively, by p∗ > 1 − p2

∗
4 ,

p∗ > 1− p2
∗

2(1−p∗)
and

p∗ > 1−
1− p∗ −

√

1− 2p∗ − p2
∗

2
. (4)

Below we shall prove that the condition (4) remains to be sufficient for (3)
to be oscillatory when τ : R+ → R is an arbitrary continuous nondecreasing
function.

On the other hand, in [7] the sufficient conditions for the oscillation of
all proper solutions of (3) are given which involve the classes of inequalities
not satisfying (2).

In the present paper, using the ideas contained in [6] and [7], we establish
some criteria for the inequality (3) to be oscillatory which imply, among
others, all the above mentioned results.

2. Formulation of the main results. Throughout the paper we shall
assume that p : R+ → R is locally integrable, τ : R+ → R is continuous
and

p(t) ≥ 0, τ(t) ≤ t for t ∈ R+, lim
t→+∞

τ(t) = +∞. (5)

Put

ητ (t) = max{s : τ(s) ≤ t} for t ∈ R+,

ητ
1 = ητ , ητ

i = ητ ◦ ητ
i−1 (i = 2, 3, . . . ).

(6)

Definition 1. Let a ∈ R+. A continuous function u : [a, +∞[→ R is
said to be a proper solution of the inequality (3) if it is locally absolutely
continuous on [ητ (a),+∞[, satisfies (3) almost everywhere in [ητ (a), +∞[
and

sup{|u(s)| : t ≤ s < +∞} > 0 for t ≥ a.

Definition 2. A proper solution of (3) is said to be oscillatory if the set
of its zeros is unbounded from above. Otherwise it is said to be nonoscilla-
tory.

Definition 3. The inequality (3) is said to be oscillatory if any of its
proper solutions is oscillatory.
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Define

ψ1(t) = 0, ψi(t) = exp
{

t
∫

τ(t)

p(ξ)ψi−1(ξ)
}

(7)

(i = 2, 3, . . . ) for t ∈ R+,

δ(t) = max
{

τ(s) : s ∈ [a, t]
}

for t ∈ R+. (8)

Theorem 1. Let k ∈ {1, 2, . . . } exist such that

lim
t→+∞

t
∫

δ(t)

p(s) exp
{

δ(t)
∫

δ(s)

p(ξ)ψk(ξ)dξ
}

ds > 1− c(p∗), (9)

where ψk, δ are defined by (7),(8), p∗ is defined by (1) and

c(p∗) =







0 if p∗ > 1/e,
1− p∗ −

√

1− 2p∗ − p2
∗

2
if 0 ≤ p∗ ≤ 1/e.

(10)

Then the inequality (3) is oscillatory.

Corollary 1 ([7]). Let k ∈ {1, 2, . . . } exist such that

lim
t→+∞

t
∫

δ(t)

p(s) exp
{

δ(t)
∫

δ(s)

p(ξ)ψk(ξ)dξ
}

ds > 1,

where ψk and δ are defined by (7), (8). Then the inequality (3) is oscillatory.

Corollary 2 (see [6] for τ(t) ≡ t− τ). Let p∗ ≤ 1/e and

lim
t→+∞

t
∫

δ(t)

p(s)ds > 1− c(p∗)

where p∗, δ and c(p∗) are defined respectively by (1),(8) and (10). Then the
inequality (3) is oscillatory.

Corollary 3 ([2]). Let

lim
t→+∞

t
∫

δ(t)

p(s)ds > 1,

where δ is defined by (8). Then the inequality (3) is oscillatory.
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Theorem 2 ([3]). Let p∗ > 1/e where p∗ is defined by (1). Then the
inequality (3) is oscillatory.

Theorem 3. Let p∗ ≤ 1/e and

lim
t→+∞

t
∫

δ(t)

p(s) exp
{

λ(p∗)

δ(t)
∫

δ(s)

p(ξ)dξ
}

ds > 1− c(p∗), (11)

where p∗, δ, c(p∗) are defined respectively by (1), (8), (10) and λ(p∗) is the
least root of the equation

ep∗λ = λ. (12)

Then the inequality (3) is oscillatory.

3. Some auxiliary statements. In this section we establish the estimates
of the quotient |u(τ(t))|/|u(t)|, where u is a nonoscillatory solution of (3).

Lemma 1. Let a ∈ R+ and u : [a, +∞[→ R be a solution of (3) satisfy-
ing

u(t) 6= 0 for t ≥ a. (13)

Then for any i ∈ {1, 2, . . . }

|u(τ(t))| ≥ ψi(t)|u(t)| for t ≥ ητ
i (a), (14)

where the functions ητ
i and ψi (i = 1, 2, . . . ) are defined respectively by (6)

and (7).

Proof. Put x(t) = |u(t)| for t ≥ a. By (3) and (13) we have

x′(t) ≤ −p(t)
x(τ(t))

x(t)
x(t) for t ≥ ητ (a),

whence

x(t) ≥ exp
{

s
∫

t

p(ξ)
x(τ(ξ))
x(ξ)

dξ
}

x(s) for ητ (a) ≤ t ≤ s. (15)

The inequality (14) is obviously fulfilled for i = 1. Assuming its validity for
some i = {1, 2, . . . }, by (15) we obtain

x(τ(t))≥exp
{

t
∫

τ(t)

p(ξ)ψi(ξ)dξ
}

x(t)=ψi+1(t)x(t) for t≥ητ
i+1(a). �
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Lemma 2. Let p∗ ≤ 1/e, where p∗ is defined by (1). Let, moreover,
a ∈ R+ and u : [a, +∞[→ R be a solution of (3) satisfying (13). Then for
any sufficiently small ε > 0

|u(τ(t))| ≥ (λ(p∗)− ε)|u(t)| for large t (16)

where λ(p∗) is the least root of the equation (12).

Proof. In view of Lemma 1 it suffices to show that there exists k ∈ {1, 2, . . . }
such that

lim
t→+∞

ψk(t) > λ(p∗)− ε. (17)

By (1) p0 ∈]0, p∗] and t0 ≥ a can by chosen such that

t
∫

τ(t)

p(s)ds ≥ p0 for t ≥ t0, λ0 > λ(p∗)− ε, (18)

where λ0 is the least root of the equation ep0λ = λ. From (7) and (18) we
can easily obtain that

ψi(t) ≥ αi for t ≥ ητ
i (t0), (19)

where α1 = 0, αi = ep0αi−1 (i = 2, 3, . . . ). It is not difficult to verify that the
sequence {αi}∞i=1 is increasing and bounded from above by λ0. Moreover,
limt→+∞ αi = λ0. This fact, together with (18) and (19), shows that (17)
is true. �

Remark 1. The equation u′ + pu(t − τ) = 0, where p > 0, τ > 0 are
constants and pτ ≤ 1/e has the solution u(t) = eλ0t, where λ0 is the greatest
root of the equation λ+pe−λτ = 0. Since u(t− τ)/u(t) = e−λ0τ = −λ0

p and
this constant is the least root of the equation e(pτ)λ = λ, we see that the
constant λ(p∗) in (16) is exact.

Lemma 3. Let p∗ ≤ 1/e, where p∗ is defined by (1) and let τ be non-
decreasing. Let, moreover, a ≥ 0 and u : [a, +∞[→ R be a solution of (3)
satisfying (13). Then for any sufficiently small ε > 0

|u(t)| ≥ (c(p∗)− ε)|u(τ(t))| for large t, (20)

where c(p∗) is defined by (10).
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Proof. If p∗ = 0, (20) is obviously fulfilled. So suppose that 0 < p∗ ≤ 1/e
and define the sequence {βi}∞i=1 as follows:

β1 =
1
4
p2
∗, βi = β2

i−1 + p∗βi−1 +
1
2
p2
∗ (i = 2, 3, . . . ). (21)

Since β1 < c(p∗), β2 − β1 = 1
16p4

∗ + 1
4p3
∗ + 1

4p2
∗ > 0 and βi − βi−1 =

(βi−1−βi−2)(βi−1+βi−2+p∗), we see that the sequence {βi}∞i=1 is increasing
and bounded from above by c(p∗). Since, moreover, limi→∞ βi = c(p∗), in
order to prove the lemma it suffices to show that for any i ∈ {1, 2, . . . } and
ε > 0

x(t) ≥ (βi − ε)x(τ(t)) for large t, (22)

where x(t) = |u(t)| for t ≥ a.
First show that (22) is valid for i = 1. In view of (1)

t
∫

τ(t)

p(s)ds > p∗ − ε for large t. (23)

Therefore, since τ is nondecreasing, for any sufficienty large t there exists
t∗ ∈ [τ(t), t] such that

t∗
∫

τ(t)

p(s)ds =
1
2
(p∗ − ε),

τ(t)
∫

τ(t∗)

p(s)ds ≥ 1
2
(p∗ − ε). (24)

By (1) and the monotonicity of τ we have

x(τ(t)) ≥
t

∫

τ(t)

p(s)x(τ(s))ds ≥
t

∫

τ(t)

p(s)
(

s
∫

τ(s)

p(ξ)x(τ(ξ))dξ
)

ds ≥

≥
(

t
∫

τ(t)

p(s)
(

τ(t)
∫

τ(s)

p(ξ)dξ
)

ds
)

· x
(

τ(τ(t))
)

for large t. (25)

Since by (24)

t
∫

τ(t)

p(s)
(

τ(t)
∫

τ(s)

p(ξ)dξ
)

ds ≥
t∗

∫

τ(t)

p(s)
(

τ(t)
∫

τ(s)

p(ξ)dξ
)

ds ≥

≥
t∗

∫

τ(t)

p(s)
(

τ(t)
∫

τ(t∗)

p(ξ)dξ
)

ds ≥ 1
4
(p∗ − ε)2 ≥ β1 −

ε
2p∗

, (26)
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τ(t) → +∞ as t → +∞, τ is continuous and ε > 0 is arbitrary, the validity
of (22) for i = 1 follows from (25).

Suppose now that (22) is true for some i ∈ {1, 2, . . . }. By (23) for any
sufficienty large t there exists t∗ > t such that

t∗
∫

τ(t∗)

p(s)ds > p∗ − ε,

t∗
∫

t

p(s)ds = p∗ − ε, (27)

which implies that τ(t∗) < t.
Integrating (3) from t to t∗ we obtain

x(t) ≥ x(t∗) +

t∗
∫

t

p(s)x(τ(s))ds. (28)

Since τ(t) ≤ τ(s) ≤ τ(t∗) < t for s ∈ [t, t∗], again integrating (3) from
τ(s) to t and using (22),(27) and the fact that x is nonincreasing, we obtain
for large t

x(τ(s)) ≥ x(t) +

t
∫

τ(s)

p(ξ)x(τ(ξ))dξ ≥ (βi − ε)x(τ(t)) +

+x(τ(t))

t
∫

τ(s)

p(ξ)dξ = x(τ(t))
(

βi − ε +

s
∫

τ(s)

p(ξ)dξ −
s

∫

t

p(ξ)dξ
)

≥

≥
(

βi + p∗ − 2ε−
s

∫

t

p(ξ)dξ
)

x(τ(t)).

Substituting this into (28), taking into account that by (22) x(t∗) ≥
(βi − ε)x(τ(t∗)) ≥ (βi − ε)x(t) ≥ (βi − ε)2x(τ(t)) and using (27) we find

x(t) ≥ x(t∗) + x(τ(t))

t∗
∫

t

p(s)
(

βi + p∗ − 2ε−
s

∫

t

p(ξ)dξ
)

ds =

= x(t∗) + x(τ(t))
(

(p∗ − ε)(βi + p∗ − 2ε)−

−
t∗

∫

t

(

s
∫

t

p(ξ)dξ
)

ds
(

s
∫

t

p(ξ)dξ
)

)

≥

≥
[

(βi − ε)2 + (p∗ − ε)(βi + p∗ − 2ε)− 1
2
(p∗ − ε)2

]

x(τ(t)).



682 R.KOPLATADZE AND G.KVINIKADZE

Since ε > 0 is arbitrary, by (21) this completes the proof of the induction
step. �

4. Proofs of the theorems. Proof of Theorem 1. Suppose, to the con-
trary, that the inequality (3) has a nonoscillatory solution u : [a, +∞[→ R
and put x(t) = |u(t)| for t ≥ a. As seen while proving Lemma 1, the
inequality (15) holds. So, according to this lemma,

x(δ(s)) ≥ exp
{

δ(t)
∫

δ(s)

p(ξ)ψk(ξ)dξ
}

x(δ(t)) for ητ
k+1(a) ≤ δ(t) ≤ s ≤ t.

Substituting this into (3) and integrating with respect to s from δ(t) to t,
we obtain

x(t)− x(δ(t)) + x(δ(t))

t
∫

δ(t)

p(s) exp
{

δ(t)
∫

δ(s)

p(ξ)ψk(ξ)dξ
}

ds ≤ 0.

Since by Lemma 3 (20) is fulfilled for any ε > 0 the last inequality implies

t
∫

δ(t)

p(s) exp
{

δ(t)
∫

δ(s)

p(ξ)ψk(ξ)dξ
}

ds ≤ 1− c(p∗) + ε

for large t, which contradicts (9). �

Proof of Theorem 2. Note that the condition p∗ > 1/e implies

lim
t→+∞

t
∫

δ(t)

p(s)ds >
1
e
. (29)

Indeed, if this is not so, then there exist ε > 0 and a sequence {ti}∞i=1 such
that ti → +∞ as i →∞ and

ti
∫

δ(ti)

p(s)ds ≤ 1
e

+ ε.

Putting ˜ti = min{t ∈ [0, ti] : τ(t) = δ(ti)} and recalling limt→+∞ τ(t) =
+∞, we see that ˜ti → +∞ as i →∞ and

t̃i
∫

τ (̃ti)

p(s)ds ≤
t̃i

∫

δ(̃ti)

p(s)ds ≤ 1
e

+ ε,
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which contradicts the condition p∗ > 1/e. Therefore (29) is proved. By (29)
there exist t0 ∈ R+ and a number c > 1/e such that

t
∫

δ(t)

p(s)ds ≥ c for t ≥ t0. (30)

Repeating the arguments used in proving the inequality (26), we see from
(30) that

t
∫

δ(t)

p(s)
(

δ(t)
∫

δ(s)

p(ξ)dξ
)

ds ≥ c2

4
for t ≥ t0. (31)

On the other hand, since δ(t) ≥ τ(t) for t ∈ R+ and ex ≥ ex for x ≥ 0, by
(7) and (30) we have

ψi(t) ≥ (ec)i−2 for large t (i = 2, 3, . . . ). (32)

Choose a natural k such that (ec)k−2 > 4/ec2, i.e. c̃ = c(ec)k−1/4 > 1.
Then by (31) and (32)

t
∫

δ(t)

p(s) exp
{

δ(t)
∫

δ(s)

p(ξ)ψk(ξ)dξ
}

ds ≥ c̃ > 1 for large t.

This means that the conditions of Corollary 1 are fulfilled. Therefore the
inequality (3) is oscillatory. �

Proof of Theorem 3. By (11) there exists ε ∈]0, λ(p∗)[ such that

lim
t→+∞

t
∫

δ(t)

p(s) exp
{

(λ(p∗)− ε)

δ(t)
∫

δ(s)

p(ξ)dξ
}

ds > 1− c(p∗).

It was proved in Lemma 2 that

lim
t→+∞

ψk(t) > λ(p∗)− ε

for some natural k. Therefore Theorem 3 is a straighforward consequence
of Theorem 1. �

Remark 2. Put

p(t) =

{

p∗ for t ∈ [2k, 2k + 1[
p∗ for t ∈ [2k + 1, 2k + 2[

(k = 0, 1, . . . ),
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τ(t) ≡ t− 1. It can easily be verified that

lim
t→+∞

t
∫

t−1

p(s) exp
{

t−1
∫

s−1

p(ξ)dξ
}

ds ≥

≥ lim
k→∞

2k+1
∫

2k

p∗ exp
{

2k
∫

s−1

p(ξ)dξ
}

ds =
p∗(ep∗ − 1)

p∗

Since (ex − 1)/x = 1 + x/2 + x2/6 + ◦(x2) and

(

1− 1− x−
√

1− 2x− x2

2

)−1
= 1 +

3
4
x2 + ◦(x2)

as x → 0, we can choose p∗ ∈]0, 1/e[ and p∗ ∈]p∗, 1[ such that the conditions
of Corollary 1 would be fulfilled for k = 2, while those of Corollary 2 would
be violated.

Consider, in conclusion, the equation

u′(t) + f
(

t, u(τ1(t)), . . . , u(τm(t))
)

= 0, (33)

where m ∈ {1, 2, . . . }, f : R+ × Rm → R satisfies the local Carathéodory
conditions, the functions τi : R+ → R are continuous, and

τi(t) ≤ t for t ∈ R+, lim
t→+∞

τi(t) = +∞ (i = 1, . . . , m). (34)

Put

τ(t) = min{τ1(t), . . . , τm(t)},
δ(t) = max{τi(s) : i ∈ {1, . . . , m}, s ∈ [a, t]}. (35)

Definitions 1-3 are trivially extended to the equation (33).
The above results immediately imply

Theorem 4. Let (34) be valid and

f(t, x1, . . . , xm) sign x0 ≥ p(t)|x0|
for t ∈ R+, |xi| ≥ |x0|, xix0 ≥ 0 (i = 1, . . . ,m)

where p : R+ → R+ is a locally integrable function. Let, moreover, the
conditions of one of Theorems 1–3 or Corollaries 1–3 be fulfilled, where the
functions τ : R+ → R and δ : R+ → R are defined by (35). Then the
equation (33) is oscillatory.
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