
Georgian Mathematical Journal
Volume 10 (2003), Number 1, 165–191

STURM–LIOUVILLE AND FOCAL HIGHER ORDER BVPs
WITH SINGULARITIES IN PHASE VARIABLES

IRENA RACHŮNKOVÁ AND SVATOSLAV STANĚK

Abstract. The paper deals with the existence of solutions for singular higher
order differential equations with Sturm–Liouville or (p, n − p) right focal
boundary conditions or the (n− p, p) left focal boundary conditions. Right-
hand sides of differential equations may be singular in the zero values of
all their phase variables. The proofs are based on the regularization and
sequential techniques.
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1. Introduction

Let T be a positive constant, J = [0, T ] and R− = (−∞, 0), R+ = (0,∞),
R0 = R \ {0}.

We will consider two types of singular boundary value problems for nth order
differential equations, where n ≥ 2. The first one is the singular Sturm–Liouville
boundary value problem (BVP for short)

−xn(t) = f(t, x(t), . . . , x(n−1)(t)), (1.1)

x(i)(0) = 0, 0 ≤ i ≤ n− 3,

αx(n−2)(0)− βx(n−1)(0) = 0,

γx(n−2)(T ) + δx(n−1)(T ) = 0,

(1.2)

where α, γ > 0, β, δ ≥ 0 and f satisfies the local Carathéodory conditions on
J ×D (f ∈ Car(J ×D)) with

D = Rn−1
+ × R0.

The second one is the singular (p, n− p) right focal BVP

(−1)n−px(n)(t) = f(t, x(t), . . . , x(n−1)(t)), (1.3)

x(i)(0) = 0, 0 ≤ i ≤ p− 1, x(i)(T ) = 0, p ≤ i ≤ n− 1, (1.4)
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where p ∈ N is fixed, 1 ≤ p ≤ n− 1, and f ∈ Car(J ×X) with

X =





Rp+1
+ × R− × R+ × R− × · · · × R+︸ ︷︷ ︸

n

if n− p is odd

Rp+1
+ × R− × R+ × R− × · · · × R−︸ ︷︷ ︸

n

if n− p is even
.

In both cases the function f(t, x0, . . . , xn−1) may be singular at the points
xi = 0, 0 ≤ i ≤ n− 1, of all its phase variables x0, . . . , xn−1.

The aim of this paper is to give conditions for the existence of solutions to
problems (1.1), (1.2) and (1.3), (1.4).

Definition 1.1. By a solution of BVP (1.1), (1.2) we understand a function
x ∈ ACn−1(J) which is positive on (0, T ], satisfies conditions (1.2) and for a.e.
t ∈ J fulfils (1.1).

Similarly, by a solution of BVP (1.3), (1.4) we understand a function x ∈
ACn−1(J) which is positive on (0, T ], satisfies conditions (1.4) and for a.e. t ∈ J
fulfils (1.3).

From now on, ‖x‖ = max{|x(t)| : 0 ≤ t ≤ T}, ‖x‖L =
T∫
0

|x(t)| dt and

‖x‖∞ = ess max {|x(t)| : 0 ≤ t ≤ T} stand for the norm in C0(J), L1(J) and
L∞(J), respectively. For a subset Ω of a Banach space, cl(Ω) and ∂Ω stand for
the closure and the boundary of Ω, respectively. Finally, for any measurable set
M, µ(M) denotes the Lebesgue measure of M.

The fact that a BVP is singular means that the right-hand side f of the
considered differential equation does not fulfil the Carathéodory conditions on
a domain where we seek for solutions, i.e. on J × cl(D) if we work with equa-
tion (1.1) or on J × cl(X) if we study equation (1.3). In singular problems the
Carathéodory conditions can be broken in the time variable t or in the phase
variables or in the both types of variables. The first type of singularities where
f need not be integrable on J for fixed phase variables was studied by many
authors. For BVPs of n-th order differential equations such problems were
considered for the first time by Kiguradze in [16]. The second type of singular-
ities, i.e., the case where f is unbounded in some values of its phase variables
x0, x1, . . . , xn−1 for fixed t ∈ J was mainly solved for BVPs of second order
differential equations, but during the last decade papers dealing with higher
order BVPs having singularities in phase variables have appeared as well. We
can refer to the papers [2]–[7], [9]–[14] and [19]–[23]. Some of them (see [3]–[7])
concern higher order singular Sturm–Liouville or right focal BVPs.

In this paper we extend results in the cited papers to the case of a general
Carathéodory right-hand side f which may depend on higher derivatives up to
order n − 1 and which may have singularities in all its phase variables. The
proofs are based on the construction of a proper sequence of regular problems
and in limiting processes. The correctness of such processes is warrantable by
the Lebesgue dominated convergence theorem in the case of problem (1.3), (1.4).
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As regards problem (1.1), (1.2) note that conditions (1.2) imply that for any so-
lution x of this problem its derivative x(n−1) is a sign-changing function on J .
Therefore this derivative goes through the singularity of f somewhere inside J ,
which makes it impossible to find a Lebesgue integrable majorant function for
any auxiliary sequence of regular functions {fm} relevant to problem (1.1), (1.2).
This implies that in this case instead of the Lebesgue theorem the Vitali con-
vergence theorem is used.

The proofs of the existence results for the auxiliary regular BVPs considered
in Section 3 are based on the Nonlinear Fredholm Alternative (see e.g. [17],
Theorem 4 or [21], p. 25) which we formulate in the form convenient for the
application to the problems mentioned above. In particular, we consider the
differential equation

x(n)(t) +
n−1∑
i=0

ai(t)x
(i)(t) = h

(
t, x(t), . . . , x(n−1)(t)

)
(1.5)

and the corresponding homogeneous equation

x(n)(t) +
n−1∑
i=0

ai(t)x
(i)(t) = 0, (1.6)

where ai ∈ L1(J), 0 ≤ i ≤ n − 1, h ∈ Car(J × Rn). Further we deal with the
boundary conditions

Lj(x) = rj, 1 ≤ j ≤ n, (1.7)

with rj ∈ R and continuous linear functionals Lj : Cn−1(J) → R, 1 ≤ j ≤ n.

Definition 1.2. By a solution of BVP (1.5), (1.7) we understand a function
x ∈ ACn−1(J) which satisfies conditions (1.7) and for a.e. t ∈ J fulfils (1.5).

Theorem 1.3 (Nonlinear Fredholm Alternative). Let problem (1.6), (1.7)
has only a trivial solution and there exist a function g ∈ L1(J) such that

∣∣h(t, x0, . . . , xn−1)
∣∣ ≤ g(t) for a.e. t ∈ J and all x0, . . . , xn−1 ∈ R.

Then problem (1.5), (1.7) has a solution.

The following assumptions will be used in the study of problem (1.1), (1.2):

(H1) f ∈ Car(J ×D) and there exist positive constants ε, r such that

εtr ≤ f(t, x0, . . . , xn−1)

for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ D;
(H2) For a.e. t ∈ J and for each (x0, . . . , xn−1) ∈ D,

f(t, x0, . . . , xn−1) ≤ φ(t) +
n−1∑
i=0

qi(t)ωi(|xi|) +
n−1∑
i=0

hi(t)|xi|αi , (1.8)
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where αi ∈ (0, 1), φ, hi ∈ L1(J), qi ∈ L∞(J) are nonnegative, ωi : R+ →
R+ are nonincreasing, 0 ≤ i ≤ n− 1, and

T∫

0

ωn−1(t
r+1) dt < ∞,

T∫

0

ωi(t
n−i−1) dt < ∞ for 0 ≤ i ≤ n− 2; (1.9)

(H3) For a.e. t ∈ J and for each (x0, . . . , xn−1) ∈ D, the function f satisfies
(1.8) where αi ∈ (0, 1), φ, hi, qn−2 ∈ L1(J), qj, qn−1 ∈ L∞(J) are non-
negative, ωi : R+ → R+ are nonincreasing, 0 ≤ i ≤ n−1, 0 ≤ j ≤ n−3,
and1

T∫

0

ωn−1(t
r+1) dt < ∞,

T∫

0

ωj(t
n−j−2) dt < ∞ for 0 ≤ j ≤ n− 3. (1.10)

In the study of problem (1.3), (1.4) we will work with the assumptions:

(H4) f ∈ Car(J ×X) and there exist positive constants ε, r such that

ε(T − t)r ≤ f(t, x0, . . . , xn−1)

for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ X;
(H5) For a.e. t ∈ J and for each (x0, . . . , xn−1) ∈ X, the function f satisfies

(1.8) where αi ∈ (0, 1), φ, hi ∈ L1(J), qi ∈ L∞(J) are nonnegative,
ωi : R+ → R+ are nonincreasing, 0 ≤ i ≤ n− 1, and

T∫

0

ωi(t
r+n−i) dt < ∞ for 0 ≤ i ≤ n− 1. (1.11)

Remark 1.4. Since ωi : R+ → R+ in (H2) are nonincreasing, assumption (1.9)
implies that

V∫

0

ωn−1(t
r+1) dt < ∞,

V∫

0

ωi(t
n−i−1) dt < ∞, 0 ≤ i ≤ n− 2

for each V ∈ R+. The same is true for all integrals into (1.10) and (1.11).

Remark 1.5. After substituting t = T − s in (1.3), (1.4), we get the singular
(n− p, p) left focal BVP

(−1)px(n)(s) = f̃
(
s, x(s), . . . , x(n−1)(s)

)
, (1.12)

x(i)(0) = 0, p ≤ i ≤ n− 1, x(i)(T ) = 0, 0 ≤ i ≤ p− 1, (1.13)

1Throughout the paper conditions and statements depending on j with 0 ≤ j ≤ n− 3 are
realized only in the case where n ≥ 3.
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where p is fixed, 1 ≤ p ≤ n−1, and f̃ ∈ Car(J×Y ) fulfils f̃(s, x0, x1, . . . , xn−1) =
f(T − s, x0,−x1, . . . , (−1)n−1xn−1). Here

Y =





R+ × R− × R+ × · · · × R− × Rn−p
+︸ ︷︷ ︸

n

if p is even,

R+ × R− × R+ × · · · × R+ × Rn−p
−︸ ︷︷ ︸

n

if p is odd.

By a solution of BVP (1.12), (1.13) we understand a function x ∈ ACn−1(J)
which is positive on [0, T ), satisfies conditions (1.13) and for a.e. s ∈ J fulfils
(1.12).

The corresponding assumptions for problem (1.12), (1.13) have the form:

(H6) f̃ ∈ Car(J × Y ) and there exist positive constants ε, r such that

εsr ≤ f̃(s, x0, . . . , xn−1)

for a.e. s ∈ J and each (x0, . . . , xn−1) ∈ Y ;

(H7) For a.e. s ∈ J and for each (x0, . . . , xn−1) ∈ Y the function f̃ satisfies

f̃(s, x0, . . . , xn−1) ≤ φ(s) +
n−1∑
i=0

qi(s)ωi(|xi|) +
n−1∑
i=0

hi(s)|xi|αi ,

where αi ∈ (0, 1), φ, hi ∈ L1(J), qi ∈ L∞(J) are nonnegative, ωi : R+ →
R+ are nonincreasing, 0 ≤ i ≤ n− 1, and ωi fulfil (1.11).

2. Green’s Functions and a Priori Estimates

2.1. Problem (1.1), (1.2). From now on, G(t, s) denotes the Green’s function
of the BVP

−x′′(t) = 0, (2.1)

αx(0)− βx′(0) = 0, γx(T ) + δx′(T ) = 0. (2.2)

Then (see, e.g., [1])

G(t, s) =





1

d
(β + αs)(δ + γ(T − t)) for 0 ≤ s ≤ t ≤ T,

1

d
(β + αt)(δ + γ(T − s)) for 0 ≤ t < s ≤ T,

(2.3)

where

d = αγT + αδ + βγ > 0.

Let us choose positive constants ε and r and define the set

A(r, ε) =
{
x ∈ ACn−1(J) : x fulfils (1.2) and (2.4)

}

where

−x(n)(t) ≥ εtr for a.e. t ∈ J. (2.4)
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2.1.1. Problem (1.1), (1.2) with min{β, δ} = 0. In this subsection we assume
that at least one constant of β and δ appearing in (1.2) is equal to zero.

Lemma 2.1. Let x ∈ A(r, ε) and set

A =
ε

(r + 1)(r + 2)

(T

2

)r+1

. (2.5)

Then x(n−1) is decreasing on J ,

x(n−1)(t) ≥ ε

r + 1
(ξ − t)r+1 for t ∈ [0, ξ],

x(n−1)(t) < − ε

r + 1
(t− ξ)r+1 for t ∈ (ξ, T ],

(2.6)

where ξ ∈ (0, T ) is the unique zero of x(n−1),

x(n−2)(t) ≥





At for t ∈
[
0,

T

2

]

A(T − t) for t ∈
(T

2
, T

] (2.7)

and

x(j)(t) ≥ A

4(n− j − 1)!
tn−j−1 for t ∈ J, 0 ≤ j ≤ n− 3. (2.8)

Proof. From the equality

x(n−2)(t) = −
T∫

0

G(t, s)x(n)(s) ds, t ∈ J,

(2.3) and (2.4) we deduce that

x(n−2)(0) = −
T∫

0

G(0, s)x(n)(s) ds = −β

d

T∫

0

(δ + γ(T − s))x(n)(s) ds

≥ εβγ

d

T∫

0

(T − s)sr ds ≥ 0, (2.9)

x(n−2)(T ) = −
T∫

0

G(T, s)x(n)(s) ds = −δ

d

T∫

0

(β + αs)x(n)(s) ds

≥ εαδ

d

T∫

0

sr+1 ds ≥ 0, (2.10)

x(n−1)(0) = −
T∫

0

∂G(t, s)

∂t

∣∣∣∣
t=0

x(n)(s) ds = −α

d

T∫

0

(δ + γ(T − s))x(n)(s) ds
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≥ εαγ

d

T∫

0

(T − s)sr ds > 0

and

x(n−1)(T ) = −
T∫

0

∂G(t, s)

∂t

∣∣∣∣
t=T

x(n)(s) ds =
γ

d

T∫

0

(β + αs)x(n)(s) ds

≤ −εαγ

d

T∫

0

sr+1 ds < 0.

Since x(n−1) is decreasing on J by (2.4) and x(n−1)(0) > 0, x(n−1)(T ) < 0, we
see that x(n−1) has a unique zero ξ ∈ (0, T ). Then

−x(n−1)(t) =

ξ∫

t

x(n)(s) ds ≤ −ε

ξ∫

t

sr ds = − ε

r + 1
(ξr+1 − tr+1), t ∈ [0, ξ],

and so
x(n−1)(t) ≥ ε

r + 1
(ξ − t)r+1, t ∈ [0, ξ],

since ξr+1 − tr+1 ≥ (ξ − t)r+1 for t ∈ [0, ξ]. Analogously, using the inequality
tr+1 − ξr+1 > (t− ξ)r+1 for t ∈ (ξ, T ], we obtain

x(n−1)(t) =

t∫

ξ

x(n)(s) ds ≤ −ε

t∫

ξ

sr ds = − ε

r + 1
(tr+1 − ξr+1) < − ε

r + 1
(t− ξ)r+1

for t ∈ (ξ, T ]. We have proved that (2.6) holds.
We are going to verify (2.7). From the assumption min{β, δ} = 0, (2.9) and

(2.10) we have x(n−2)(0) ≥ 0, x(n−2)(T ) ≥ 0 and min{x(n−2)(0), x(n−2)(T )} = 0.
Moreover, x(n−2) is concave on J , which follows from (2.4). Hence to prove (2.7)
it suffices to show that

x(n−2)
(T

2

)
≥ AT

2
, (2.11)

where A is given by (2.5). From (2.6) it follows that

x(n−2)(t) = x(n−2)(0) +

t∫

0

x(n−1)(s) ds ≥ ε

r + 1

t∫

0

(ξ − s)r+1 ds

=
ε

(r + 1)(r + 2)
(ξr+2 − (ξ − t)r+2), t ∈ [0, ξ],

−x(n−2)(t) = −x(n−2)(T ) +

T∫

t

x(n−1)(s) ds < − ε

r + 1

T∫

t

(s− ξ)r+1 ds

= − ε

(r + 1)(r + 2)
((T − ξ)r+2 − (t− ξ)r+2), t ∈ (ξ, T ],
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and since ξr+2 − (ξ − t)r+2 ≥ tr+2 for t ∈ [0, ξ] and (T − ξ)r+2 − (t − ξ)r+2 ≥
(T − t)r+2 for t ∈ (ξ, T ], we have

x(n−2)(t) ≥ ε

(r + 1)(r + 2)
tr+2 for t ∈ [0, ξ], (2.12)

x(n−2)(t) >
ε

(r + 1)(r + 2)
(T − t)r+2 for t ∈ (ξ, T ]. (2.13)

We know that max{x(n−2)(t) : t ∈ J} = x(n−2)(ξ). If ξ ≥ T/2, then (2.12) gives
(2.11) and if ξ < T/2 then from (2.13) we obtain (2.11) as well.

It remains to prove (2.8). By (2.7) and x(n−3)(0) = 0, we have

x(n−3)(t) =

t∫

0

x(n−2)(s) ds ≥ A

t∫

0

s ds =
A

2
t2

for t ∈ [0, T/2]. Hence x(n−3)(T/2) ≥ (A/2)(T/2)2 and since x(n−3) is increasing
on J and (t/2)2 ≤ (T/2)2 for t ∈ J , we see that

x(n−3)(t) ≥ A

4 · 2!
t2, t ∈ J.

Then using the equalities

x(i)(t) =

t∫

0

x(i+1)(s) ds, t ∈ J, 0 ≤ i ≤ n− 4,

we can verify that inequalities (2.8) are satisfied. ¤

Lemma 2.2. For 0 ≤ i ≤ n−1 let φ̂, hi ∈ L1(J), qi ∈ L∞(J) be nonnegative,
ωi : R+ → R+ be nonincreasing and satisfy (1.9) and αi ∈ (0, 1). Then there

exists a positive constant M̂ such that for each x ∈ A(r, ε) satisfying

−x(n)(t) ≤ φ̂(t) +
n−1∑
i=0

qi(t)ωi(|x(i)(t)|) +
n−1∑
i=0

hi(t)|x(i)(t)|αi (2.14)

for a.e. t ∈ J , the estimates

‖x(i)‖ ≤ M̂ for 0 ≤ i ≤ n− 1 (2.15)

are valid.

Proof. Let x ∈ A(r, ε) satisfy inequalities (2.14) a.e. on J . By Lemma 2.1,
x(n−1) has a unique zero ξ ∈ (0, T ) and x satisfies inequalities (2.6)–(2.8) with
A given by (2.5). From x(n−2)(0) = (β/α)x(n−1)(0) ≥ 0 (see (1.2)) it follows
that

|x(n−2)(t)| ≤ β

α
x(n−1)(0) +

t∫

0

|x(n−1)(s)| ds ≤
(
T +

β

α

)
‖x(n−1)‖, t ∈ J.

Hence

‖x(n−2)‖ ≤
(
T +

β

α

)
‖x(n−1)‖
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and then the equalities

x(j)(t) =
1

(n− j − 3)!

t∫

0

(t− s)n−j−3x(n−2)(s) ds, t ∈ J, 0 ≤ j ≤ n− 3,

give

‖x(j)‖ ≤ T n−j−2

(n− j − 3)!
‖x(n−2)‖

≤ T n−j−2

(n− j − 3)!

(
T +

β

α

)
‖x(n−1)‖, 0 ≤ j ≤ n− 3.

Setting

V =
(
T +

β

α

)
max{1, V1}, (2.16)

where

V1 = max
{ T n−j−2

(n− j − 3)!
: 0 ≤ j ≤ n− 3

}
,

we see that

‖x(j)‖ ≤ V ‖x(n−1)‖ for 0 ≤ j ≤ n− 2. (2.17)

Now (2.14) yields

|x(n−1)(t)| =
∣∣∣∣

t∫

ξ

x(n)(s) ds

∣∣∣∣

≤
T∫

0

[
φ̂(t) +

n−1∑
i=0

qi(t)ωi(|x(i)(t)|) +
n−1∑
i=0

hi(t)|x(i)(t)|αi

]
dt

≤ ‖φ̂‖L +
n−1∑
i=0

‖qi‖∞
T∫

0

ωi(|x(i)(t)|) dt +
n−1∑
i=0

‖hi‖LV αi‖x(n−1)‖αi . (2.18)

Set K = r+1
√

ε/(r + 1) and Rj = n−j−1
√

A/(4(n− j − 1)!), 0 ≤ j ≤ n− 3. Since
(cf. (2.6)–(2.8))

T∫

0

ωn−1(|x(n−1)(t)|) dt

≤
ξ∫

0

ωn−1

( ε

r + 1
(ξ − t)r+1

)
dt +

T∫

ξ

ωn−1

( ε

r + 1
(t− ξ)r+1

)
dt

=
1

K

[ Kξ∫

0

ωn−1(t
r+1) dt +

K(T−ξ)∫

0

ωn−1(t
r+1) dt

]
≤ 2

K

KT∫

0

ωn−1(t
r+1) dt, (2.19)
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T∫

0

ωn−2(|x(n−2)(t)|) dt

≤
T/2∫

0

ωn−2(At) dt +

T∫

T/2

ωn−2(A(T − t)) dt =
2

A

(AT )/2∫

0

ωn−2(t) dt

and (for 0 ≤ j ≤ n− 3)

T∫

0

ωj(|x(j)(t)|) dt ≤
T∫

0

ωj

( A

4(n− j − 1)!
tn−j−1

)
dt =

1

Rj

RjT∫

0

ωj(t
n−j−1) dt,

we deduce from (1.9) and Remark 1.4 that there is a positive constant Q inde-
pendent of x such that

n−1∑
i=0

‖gi‖∞
T∫

0

ωi(|x(i)(t)|) dt ≤ Q.

Then (2.1.1) yields

‖x(n−1)‖ ≤ ‖φ̂‖L + Q +
n−1∑
i=0

‖hi‖LV αi‖x(n−1)‖αi . (2.20)

Setting z(u) = (‖φ̂‖L + Q)/u +
n−1∑
i=0

‖hi‖LV αiuαi−1 for u ∈ (0,∞), we have

limu→∞ z(u) = 0, and so there is a positive constant P such that z(u) < 1
for all u ≥ P . Then from (2.20) it follows that ‖x(n−1)‖ ≤ P and, by (2.17),

‖x(j)‖ ≤ V P for 0 ≤ j ≤ n−2. Hence (2.15) is true with M̂ = max{P, V P}. ¤

2.1.2. Problem (1.1), (1.2) with min{β, δ} > 0. Throughout this subsection we
assume that the constants β and δ in (1.2) are positive.

Lemma 2.3. Let x ∈ A(r, ε) and set

B =
ε

d
min

{
βγ

T∫

0

(T − s)sr ds, αδ

T∫

0

sr+1 ds

}
> 0. (2.21)

Then x(n−1) is decreasing on J , satisfies inequalities (2.6) where ξ ∈ (0, T ) is
its unique zero,

x(n−2)(t) ≥ B for t ∈ J (2.22)

and

x(j)(t) ≥ B

(n− j − 2)!
tn−j−2 for t ∈ J, 0 ≤ j ≤ n− 3. (2.23)
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Proof. The properties of x(n−1) follow immediately from Lemma 2.1 and its
proof. Next, by (2.9) and (2.10),

x(n−2)(0) ≥ εβγ

d

T∫

0

(T − s)sr ds > 0, x(n−2)(T ) ≥ εαδ

d

T∫

0

sr+1 ds > 0.

Since x(n−2) is concave on J , we see that x(n−2)(t) ≥ B for t ∈ J . Now from
the last inequality and the equalities x(j)(0) = 0, 0 ≤ j ≤ n − 3 we obtain the
validity of (2.23). ¤

Lemma 2.4. For 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 3, let φ̂, hi, qn−2 ∈ L1(J),
qj, qn−1 ∈ L∞(J) be nonnegative, ωi : R+ → R+ be nonincreasing and satisfying

(1.10) and αi ∈ (0, 1). Then there exists a positive constant V̂ such that

‖x(i)‖ ≤ V̂ for 0 ≤ i ≤ n− 1 (2.24)

whenever x ∈ A(r, ε) satisfies inequality (2.14) for a.e. t ∈ J .

Proof. Let x ∈ A(r, ε) satisfy inequality (2.14) for a.e. t ∈ J . By Lemma 2.3,
inequalities (2.6), (2.22) and (2.23) are true, where ξ ∈ (0, T ) is the unique zero
of x(n−1) and B is given by (2.21). From x(n−2)(0) = (β/α)x(n−1)(0) (see (1.2))
and using the same procedure as in the proof of Lemma 2.2 we see that (2.17)
holds, where L is defined by (2.16).

Since x(n−2)(t) ≥ B for t ∈ J and x(j)(0) = 0, 0 ≤ j ≤ n− 3, we have

x(j)(t) ≥ B

(n− j − 2)!
tn−j−2 for t ∈ J, 0 ≤ j ≤ n− 3. (2.25)

Hence

ωn−2

(
x(n−2)(t)

) ≤ ωn−2(B), t ∈ J,

and
T∫

0

ωj(x
(j)(t)) dt ≤

T∫

0

ωj

( B

(n− j − 2)!
tn−j−2

)
dt =

1

mj

mjT∫

0

ωj(t
n−j−2) dt

for 0 ≤ j ≤ n − 3, where mj = n−j−2
√

B/(n− j − 2)!. Then (see (2.14), (2.17)
and (2.1.1))

|x(n−1)(t)| =
∣∣∣∣

t∫

ξ

x(n)(s) ds

∣∣∣∣

≤
T∫

0

[
φ̂(t) +

n−1∑
i=0

qi(t)ωi(|x(i)(t)|) +
n−1∑
i=0

hi(t)|x(i)(t)|αi

]
dt

≤ ‖φ̂‖L +
n−3∑
i=0

‖qi‖∞
mi

miT∫

0

ωi(t
n−i−2) dt + ‖qn−2‖Lωn−2(B)
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+
2‖qn−1‖∞

K

KT∫

0

ωn−1(t
r+1) dt +

n−1∑
i=0

‖hi‖LLαi‖x(n−1)‖αi ,

where K = r+1
√

ε/(r + 1). Consequently,

‖x(n−1)‖ ≤ D∗ +
n−1∑
i=0

‖hi‖LLαi‖x(n−1)‖αi , (2.26)

where

D∗ = ‖φ̂‖L +
n−3∑
i=0

‖qi‖∞
mi

miT∫

0

ωi(t
n−i−2) dt

+ ‖qn−2‖Lωn−2(B) +
2‖qn−1‖∞

K

KT∫

0

ωn−1(t
r+1) dt

is independent of x. Since lim
u→∞

(D∗/u +
n−1∑
i=0

‖hi‖LLαiuαi−1) = 0, there is a

positive constant P∗ such that D∗/u +
n−1∑
i=0

‖hi‖LLαiuαi−1 < 1 for u ∈ [P∗,∞).

Therefore (2.26) gives ‖x(n−1)‖ ≤ P∗. Now (2.17) leads to (2.24) with V̂ =
max{P∗, LP∗}. ¤

2.2. Problem (1.3), (1.4). Let us choose positive constants ε and r and define
the set

B(r, ε) =
{
x ∈ ACn−1(J) : x fulfils (1.4) and (2.28)

}
, (2.27)

where

(−1)n−px(n)(t) ≥ ε(T − t)r for a.e. t ∈ J. (2.28)

Section 2.2 is devoted to the study of the set B(r, ε). The properties of B(r, ε)
obtained here (Lemmas 2.5–2.7) will be used in the proof of Theorem 4.3.

Lemma 2.5. There exists c > 0 such that the inequalities

x(i)(t) ≥ ctr+n−i for 0 ≤ i ≤ p− 1,

(−1)i−px(i)(t) ≥ c(T − t)r+n−i for p ≤ i ≤ n− 1
(2.29)

are true for t ∈ J and each x ∈ B(r, ε).

Proof. Let us put

c =
ε

(r + 1)(r + 2) . . . (r + n)
.

Then, using (1.4) and integrating (2.28), we get step by step that (2.29) holds
on J for p ≤ i ≤ n− 1 and that

x(p−1)(t) ≥ c(T r+n−p+1 − (T − t)r+n−p+1) for t ∈ J. (2.30)
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Put r + n− p + 1 = ν and consider the function ϕ(t) = T ν − (T − t)ν − tν on J .
Since ν > 2, ϕ(0) = ϕ(T ) = 0 and ϕ is concave on J , we have ϕ > 0 on (0, T )
and thus

T r+n−p+1 − (T − t)r+n−p+1 > tr+n−p+1

holds on (0, T ), which together with (2.30) yields

x(p−1)(t) ≥ ctr+n−p+1 for t ∈ J. (2.31)

Now, using (1.4) again and integrating (2.31), we successively obtain (2.29) for
0 ≤ i ≤ p− 1 and t ∈ J . ¤

Lemma 2.6. Let αi ∈ (0, 1), φ∗, hi ∈ L1(J), qi ∈ L∞(J), 0 ≤ i ≤ n − 1.
Further, suppose that ωi : R+ → R+ are nonincreasing and fulfil (1.11). Then
there exists r∗ > 0 such that for each function x ∈ B(r, ε) satisfying

(−1)n−px(n)(t) ≤ φ∗(t) +
n−1∑
i=0

qi(t)ωi(|x(i)(t)|) +
n−1∑
i=0

hi(t)|x(i)(t)|αi (2.32)

for a.e. t ∈ J , the estimate

‖x(n−1)‖ < r∗ (2.33)

is valid.

Proof. Having a function x ∈ B(r, ε) which satisfies (2.32), we put ‖x(n−1)‖ = ρ.
Then we integrate the inequality

|x(n−1)(t)| ≤ ρ for t ∈ J,

and due to (1.4), we successively get

‖x(i)‖ ≤ ρT n−i−1, 0 ≤ i ≤ n− 2. (2.34)

Further, we integrate (2.32) on [t, T ] ⊂ J and in view of (2.34) we see that the
inequality

ρ ≤ ‖φ∗‖L +
n−1∑
i=0

‖qi‖∞
T∫

0

ωi(|x(i)(t)|) dt +
n−1∑
i=0

‖hi‖L(ρT n−i−1)αi (2.35)

holds. In order to find r∗ fulfilling (2.33) we need to estimate the integrals

T∫

0

ωi(|x(i)(t)|) dt, 0 ≤ i ≤ n− 1.

To this end we distinguish two cases.
Case (α). Let 0 ≤ i ≤ p − 1. Then, by Lemma 2.5, there exists c > 0 such

that
T∫

0

ωi(|x(i)(t)|) dt ≤
T∫

0

ωi(ct
r+n−i) dt =

T∫

0

ωi((cis)
r+n−i) ds,



178 IRENA RACHŮNKOVÁ AND SVATOSLAV STANĚK

where cr+n−i
i = c. Therefore, having in mind Remark 1.4, we conclude that

T∫

0

ωi

(|x(i)(t)|) dt ≤ Ci, (2.36)

with

Ci =
1

ci

ciT∫

0

ωi(t
r+n−i) dt ∈ R+. (2.37)

Case (β). Let p ≤ i ≤ n− 1. Then by virtue of Lemma 2.5 and (2.37) we get

T∫

0

ωi

(|x(i)(t)|) dt ≤
T∫

0

ωi(c(T − t)r+n−i) dt =

T∫

0

ωi(ct
r+n−i) dt = Ci,

i.e., (2.36) holds for p ≤ i ≤ n− 1 as well.
After inserting (2.36) into (2.35), we obtain

ρ ≤ ‖φ∗‖L +
n−1∑
i=0

‖qi‖∞Ci +
n−1∑
i=0

‖hi‖L(ρT n−i−1)αi . (2.38)

Now, suppose that r∗ fulfilling (2.33) does not exist. Then we can find a se-
quence of functions {xm} such that xm ∈ B(r, ε) satisfy (2.32) for m ∈ N and

lim
m→∞

‖x(n−1)
m ‖ = ∞.

If we put ‖x(n−1)
m ‖ = ρm, then ρm satisfy (2.38) for m ∈ N, which yields

1 ≤ 1

ρm

(
A +

n−1∑
i=0

Biρ
αi
m

)
, (2.39)

where

A = ‖φ∗‖L +
n−1∑
i=0

‖qi‖∞Ci, Bi = (T n−i−1)αi‖hi‖L for 0 ≤ i ≤ n− 1.

Since αi ∈ (0, 1) for 0 ≤ i ≤ n− 1, inequality (2.39) implies

1 ≤ lim
m→∞

1

ρm

(
A +

n−1∑
i=0

Biρ
αi
m

)
= 0,

a contradiction. Therefore a positive constant r∗ satisfying (2.33) must exist.
¤

Lemma 2.7. Suppose that ωi : R+ → R+, 0 ≤ i ≤ n− 1, are nonincreasing
and fulfil (1.11). Then for each η > 0 there exists δ > 0 such that the condition

|t2 − t1| < δ =⇒
∣∣∣∣

t2∫

t1

ωi

(|x(i)(t)|) dt

∣∣∣∣ < η (2.40)
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holds for all t1, t2 ∈ J , x ∈ B(r, ε), 0 ≤ i ≤ n− 1.

Proof. Let us choose t1, t2 ∈ J and x ∈ B(r, ε). Similarly to the proof of
Lemma 2.6 we consider two cases.

Case (α). Let 0 ≤ i ≤ p− 1. Then by Lemma 2.5 there is a positive constant
c such that if we put cr+n−i

i = c, we have

∣∣∣∣
t2∫

t1

ωi

(|x(i)(t)|) dt

∣∣∣∣ ≤
∣∣∣∣

t2∫

t1

ωi(ct
r+n−i) dt

∣∣∣∣ =

∣∣∣∣
t2∫

t1

ωi(cis)
r+n−ids

∣∣∣∣.

Therefore we conclude that

∣∣∣∣
t2∫

t1

ωi

(|x(i)(t)|) dt

∣∣∣∣ ≤
1

ci

∣∣∣∣
cit2∫

cit1

ωi(t
r+n−i)) dt

∣∣∣∣. (2.41)

Case (β). Let p ≤ i ≤ n− 1. Then Lemma 2.5 yields

∣∣∣∣
t2∫

t1

ωi

(|x(i)(t)|) dt

∣∣∣∣ ≤
∣∣∣∣

t2∫

t1

ωi(c(T − t)r+n−i) dt

∣∣∣∣ =

∣∣∣∣
T−t2∫

T−t1

ωi(ct
r+n−i) dt

∣∣∣∣,

and so
∣∣∣∣

t2∫

t1

ωi

(|x(i)(t)|) dt

∣∣∣∣ ≤
1

ci

∣∣∣∣
ci(T−t2)∫

ci(T−t1)

ωi(t
r+n−i)) dt

∣∣∣∣ (2.42)

with ci given by Case (α).
Now, let us choose arbitrary η > 0 and i ∈ {0, . . . , p− 1}, j ∈ {p, . . . , n− 1}.

Then, according to Remark 1.4, there exists δ > 0 such that

|t2 − t1| < δ =⇒ 1

ci

∣∣∣∣
cit2∫

cit1

ωi(t
r+n−i) dt

∣∣∣∣ < η,

|t2 − t1| < δ =⇒ 1

cj

∣∣∣∣
cj(T−t2)∫

cj(T−t1)

ωj(t
r+n−j) dt

∣∣∣∣ < η

is valid for all t1, t2 ∈ J . So inequalities (2.41) and (2.42) imply that (2.40) is
true for all t1, t2 ∈ J , x ∈ B(r, ε), 0 ≤ i ≤ n− 1. ¤

3. Auxiliary Regular BVPs

The aim of this section is to prove the existence of solutions to the auxiliary
regular BVPs corresponding to singular problems (1.1), (1.2) and (1.3), (1.4).
Constructions of regular BVPs are based on a priori estimates obtained in Sec-
tion 2. The existence of their solutions will be proved by means of the Nonlinear
Fredholm Alternative.
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3.1. Problem (1.1), (1.2). For any positive constant S and each m ∈ N,
define %m,S ∈ C0(R), τS ∈ C0(R) and fm,S ∈ Car(J × Rn) by

%m,S(u) =





1

m
for |u| < 1

m
,

|u| for
1

m
≤ |u| ≤ S + 1,

S + 1 for |u| > S + 1,

τS(u) =

{
u for |u| ≤ S + 1,

(S + 1) sgn u for |u| > S + 1

and

fm,S(t, x0, . . . , xn−2, xn−1)

=





f
(
t, %m,S(x0), . . . , %m,S(xn−2), τS(xn−1)

)

for (t, x0, . . . , xn−2, xn−1) ∈ J×Rn−1×
((

−∞,− 1

m

] ⋃ [ 1

m
,∞

))

m

2

[
fm,S

(
t, x0, . . . , xn−2,

1

m

)(
xn−1 +

1

m

)
+

+fm,S

(
t, x0, . . . , xn−2,− 1

m

))(
1
m
− xn−1

)]

for (t, x0, . . . , xn−2, xn−1) ∈ J × Rn−1 ×
(
− 1

m
,

1

m

)
.

Then we have under assumption (H1) that

ε tr ≤ fm,S(t, x0, . . . , xn−1) for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ Rn (3.1)

and under assumption (H2) or (H3) that

fm,S(t, x0, . . . , xn−1) ≤ φ̂(t) +
n−1∑
i=0

qi(t)ωi(|xi|) +
n−1∑
i=0

hi(t)|xi|αi (3.2)

for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ Rn
0 , where

φ̂(t) = φ(t) +
n−1∑
i=1

qi(t)ωi(1) +
n−1∑
i=1

hi(t) (3.3)

since ωj(%m,S(u)) ≤ ωj(1) + ωj(|u|), ωn−1(|τS(u)|) ≤ ωn−1(1) + ωn−1(|u|),
(%m,S(u))αj ≤ 1 + |u|αi , |τS(u)|αn−1 ≤ 1 + |u|αn−1 for u ∈ R and 0 ≤ j ≤ n− 2.

3.1.1. Problem (1.1), (1.2) with min{β, δ} = 0. Let assumptions (H1) and (H2)

be satisfied and let M̂ be the positive constant given by Lemma 2.2 with φ̂
defined by (3.3). Consider the auxiliary family of regular differential equations

−x(n)(t) = fm,cM(t, x(t), . . . , x(n−1)(t)) (3.4)

depending on m ∈ N.

Lemma 3.1. Let assumptions (H1) and (H2) be satisfied. Then, for each
m ∈ N, BVP (3.4), (1.2) has a solution xm ∈ A(r, ε) and

‖x(i)
m ‖ ≤ M̂ for 0 ≤ i ≤ n− 1. (3.5)
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Proof. Fix m ∈ N and set

gm(t) = sup
{
fm,cM(t, x0, . . . , xn−1) : (x0, . . . , xn−1) ∈ Rn

}

= sup
{

f(t, x0, . . . , xn−1) :
1

m
≤ xi ≤ M̂ + 1 for

0 ≤ i ≤ n− 2,
1

m
≤ |xn−1| ≤ M̂ + 1

}
.

Since f ∈ Car(J ×D) we see that gm ∈ L1(J). Using the fact that the problem
−x(n)(t) = 0, (1.2) has only the trivial solution, the Nonlinear Fredholm Alter-
native guarantees the existence of a solution xm of BVP (3.4), (1.2). Besides,

(3.1) and (3.2) with S = M̂ give

εtr ≤ −x(n)
m (t) ≤ φ̂(t) +

n−1∑
i=0

qi(t)ωi(|x(i)
m (t)|) +

n−1∑
i=0

hi(t)|x(i)
m (t)|αi

for a.e. t ∈ J . Therefore xm ∈ A(r, ε) and ‖x(i)
m ‖ ≤ M̂ for 0 ≤ i ≤ n − 1 by

Lemmas 2.1 and 2.2. ¤

Lemma 3.2. Let assumptions (H1) and (H2) be satisfied and let xm be a
solution of BVP (3.4), (1.2), m ∈ N. Then the sequence

{
fm,cM(t, xm(t), . . . , x(n−1)

m (t))
} ⊂ L1(J) (3.6)

is uniformly absolutely continuous on J .

Proof. By Lemmas 2.1 and 3.1 we have (for m ∈ N)

x(n−1)
m (t) ≥ ε

r + 1
(ξm − t)r+1 for t ∈ [0, ξm],

x(n−1)
m (t) < − ε

r + 1
(t− ξm)r+1 for t ∈ (ξm, T ],

(3.7)

where ξm ∈ (0, T ) is the unique zero of x
(n−1)
m ,

x(n−2)
m (t) ≥





At for t ∈
[
0,

T

2

]

A(T − t) for t ∈
(T

2
, T

] (3.8)

and

x(j)
m (t) ≥ A

4(n− j − 1)!
tn−j−1 for t ∈ J, 0 ≤ j ≤ n− 3, (3.9)

where A is defined by (2.5). Moreover, by Lemma 3.1,

‖x(j)
m ‖ ≤ M̂ for m ∈ N, 0 ≤ j ≤ n− 1. (3.10)

Since

0 ≤ fm,cM(t, xm(t), . . . , x(n−1)
m (t)) ≤ φ̂(t) +

n−1∑
i=0

qi(t)ωi

(|x(i)
m (t)|) +

n−1∑
i=0

hi(t)M̂
αi
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for a.e. t ∈ J and each m ∈ N by (3.2), we see from the properties of the
functions φ, qi and hi, 0 ≤ i ≤ n− 1, given in (H2) that to prove the assertion
of our lemma it suffices to show that the sequences

{
ωi

(|x(i)
m (t)|)}, 0 ≤ i ≤ n− 1,

are uniformly absolutely continuous on J .
Let 0 ≤ i ≤ n− 3. Then

ωi

(|x(i)
m (t)|) ≤ ωi

( A

4(n− i− 1)!
tn−i−1

)
, t ∈ (0, T ], m ∈ N,

which follows from (3.9) since ωi is nonincreasing on R+. Moreover, (1.9) im-
plies that the functions ωi(

A
4(n−i−1)!

tn−i−1) belong to the class L1(J). Hence

{ωi(|x(i)
m (t)|)} is uniformly absolutely continuous on J for 0 ≤ i ≤ n− 3.

Analogously, (3.8) gives

ωn−2

(|x(n−2)
m (t)|) ≤ ωn−2(ϕ(t)), t ∈ (0, T ), m ∈ N,

where

ϕ(t) =





At for t ∈
[
0,

T

2

]
,

A(T − t) for t ∈
(T

2
, T

]
.

Since ωn−2(ϕ(t)) ∈ L1(J) which follows from the assumption
V∫
0

ωn−2(t) dt < ∞
for each V ∈ R+ (see Remark 1.4), the sequence {ωn−2(|x(n−2)

m (t)|)} is uniformly
absolutely continuous on J .

It remains to verify the uniform absolute continuity on J of the sequence

{ωn−1(|x(n−1)
m (t)|)}. Let {(aj, bj)}j∈J be a sequence of a mutually disjoint inter-

vals (aj, bj) ⊂ J . Set

J1
m =

{
j : j ∈ J, (aj, bj) ⊂ (0, ξm)

}
, J2

m = {j : j ∈ J, (aj, bj) ⊂ (ξm, T )
}

for m ∈ N and set κ = r+1
√

ε/(r + 1). Then for j ∈ J1
m and k ∈ J2

m we have (see
(3.7))

bj∫

aj

ωn−1

(|x(n−1)
m (t)|) dt≤

bj∫

aj

ωn−1

((
κ(ξm − t)

)r+1)
dt=

1

κ

κ(ξm−aj)∫

κ(ξm−bj)

ωn−1(t
r+1) dt,

bk∫

ak

ωn−1

(|x(n−1)
m (t)|) dt≤

bk∫

ak

ωn−1

((
κ(t− ξm)

)r+1)
dt=

1

κ

κ(bk−ξm)∫

κ(ak−ξm)

ωn−1(t
r+1) dt.



STURM–LIOUVILLE AND FOCAL HIGHER ORDER BVPs 183

If {j0} = J \ (J1
m ∪ J2

m), that is aj0 < ξm < bj0 , then

bj0∫

aj0

ωn−1

(|x(n−1)
m (t)|) dt

≤
ξm∫

aj0

ωn−1

((
κ(ξm − t))r+1

)
dt +

bj0∫

ξm

ωn−1

((
κ(t− ξm))r+1

)
dt

=
1

κ

[ κ(ξm−aj0
)∫

0

ωn−1(t
r+1) dt +

κ(bj0
−ξm)∫

0

ωn−1(t
r+1) dt

]
.

Hence

∑

j∈J

bj∫

aj

ωn−1

(|x(n−1)
m (t)|) dt

≤ 1

κ

[ ∑

j∈J1m

κ(ξm−aj)∫

κ(ξm−bj)

ωn−1(t
r+1) dt +

∑

j∈J2m

κ(bj−ξm)∫

κ(aj−ξm)

ωn−1(t
r+1) dt + E

]
,

where

E =





0 if J = J1
m ∪ J2

m
κ(ξm−aj0

)∫

0

ωn−1(t
r+1) dt +

κ(bj0
−ξm)∫

0

ωn−1(t
r+1) dt if {j0} = J \ (J1

m ∪ J2
m)

.

Since
∑

j∈J1m

[
κ(ξm − aj)− κ(ξm − bj)

]
+

∑

j∈J2m

[
κ(bj − ξm)− κ(aj − ξm)

]
+ c

= κ
∑

j∈J
(bj − aj),

where

c =

{
0 if J = J1

m ∪ J2
m

κ(bj0 − aj0) if {j0} = J \ (J1
m ∪ J2

m)
,

we se that

∑

j∈J

bj∫

aj

ωn−1

(|x(n−1)
m (t)|) dt ≤

∫

M1

ωn−1(t
r+1) dt +

∫

M2

ωn−1(t
r+1) dt
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where µ(Mi) ≤ κ
∑
j∈J

(bj−aj) for i = 1, 2. Hence {ωn−1(|x(n−1)
m (t)|)} is uniformly

absolutely continuous on J , which follows from the fact that
κT∫
0

ωn−1(t
r+1) dt<∞

by (H2) and Remark 1.4. ¤

3.1.2. Problem (1.1), (1.2) with min{β, δ} > 0. Let assumptions (H1) and (H3)

be satisfied and V̂ be the positive constant given in Lemma 2.4 with φ̂ defined
by (3.3). Consider the family of regular differential equations

−x(n)(t) = fm,bV
(
t, x(t), . . . , x(n−1)(t)

)
(3.11)

depending on m ∈ N.

Lemma 3.3. Let assumptions (H1) and (H3) be satisfied. Then, for each
m ∈ N, BVP (3.11), (1.2) has a solution xm ∈ A(r, ε) and

‖x(i)
m ‖ ≤ V̂ for 0 ≤ i ≤ n− 1. (3.12)

Proof. Fix m ∈ N. To prove the existence of a solution xm of BVP (3.11), (1.2)
we can argue as in the proof of Lemma 3.1. The fact that xm ∈ A(r, ε) and xm

satisfies (3.12) now follows from Lemmas 2.3 and 2.4. ¤
Lemma 3.4. Let assumptions (H1) and (H3) be satisfied and let xm be a

solution of BVP (3.11), (1.2), m ∈ N. Then the sequence
{
fm,bV

(
t, xm(t), . . . , x(n−1)

m (t)
)} ⊂ L1(J)

is uniformly absolutely continuous on J .

Proof. By Lemma 2.3 the inequalities (3.7) are satisfied for each m ∈ N, where
ξm is the unique zero of x(n−1) and (for m ∈ N)

x(n−2)
m (t) ≥ B for t ∈ J, (3.13)

x(j)
m (t) ≥ B

(n− j − 2)!
tn−j−2 for t ∈ J, 0 ≤ j ≤ n− 3, (3.14)

where B is the positive constant defined by (2.21). Moreover, by Lemma 2.4,

‖x(j)
m ‖ ≤ V̂ for m ∈ N, 0 ≤ j ≤ n− 1. (3.15)

From the inequalities (for a.e. t ∈ J and each m ∈ N)

0 ≤ fm,bV
(
t, xm(t), . . . , x(n−1)

m (t)
) ≤ φ̂(t) +

n−1∑
i=0

qi(t)ωi

(|x(i)
m (t)|) +

n−1∑
i=0

hi(t)V̂
αi

which follow from (3.2) and (3.15), from the properties of the function φ, qj and
hj, 0 ≤ j ≤ n − 1, given in (H3) and finally from (3.13), we see that to prove
our lemma it suffices to verify that the sequences{

ωn−1

(|x(n−1)
m (t)|)} (3.16)

and {
ωj

(|x(j)
m (t)|)}, 0 ≤ j ≤ n− 3, (3.17)
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are uniformly absolutely continuous on J . The uniform absolute continuity on J
of sequence (3.16) was proved in the proof of Lemma 3.2 and for sequences (3.17)

this fact follows immediately from the inequalities (see (3.14)) ωj(|x(j)
m (t)|) ≤

ωj(
B

(n−j−2)!
tn−j−2) for t ∈ (0, T ] and m ∈ N since (1.10) and Remark 1.4 imply

that ωj(
B

(n−j−2)!
tn−j−2) ∈ L1(J) for 0 ≤ j ≤ n− 3. ¤

3.2. Problem (1.3), (1.4). We present an existence principle for (p, n − p)
right focal BVPs which are regular. Assume that (H4) and (H5) are satisfied.
Put

φ∗(t) = φ(t) +
n−1∑
i=0

qi(t)ωi(1) +
n−1∑
i=0

hi(t) for a.e. t ∈ J.

Then φ∗ ∈ L1(J) and, by Lemma 2.6, a positive constant r∗ satisfying (2.33)
can be found. For m ∈ N, 0 ≤ i ≤ n− 1, x ∈ R, put

ρi = 1 + r∗T n−i−1 (3.18)

and

σi

( 1

m
, x

)
=





1

m
sgn x for |x| < 1

m
,

x for
1

m
≤ |x| ≤ ρi,

ρi sgn x for ρi < |x|.
Extend f onto J × Rn

0 as an even function in each its phase variable xi, 0 ≤
i ≤ n − 1, and for a.e. t ∈ J and for all (x0, . . . , xn−1) ∈ Rn define auxiliary
functions

fm(t, x0, . . . , xn−1) = f
(
t, σ0

( 1

m
,x0

)
, . . . , σn−1

( 1

m
,xn−1

))
. (3.19)

In such a way we get the family of differential equations

(−1)n−px(n)(t) = fm

(
t, x(t), . . . , x(n−1)(t)

)
(3.20)

depending on the parameter m ∈ N. Now, we will study BVPs (3.20), (1.4).

Lemma 3.5. Let assumptions (H4) and (H5) be satisfied, let B(r, ε) be given
by (2.27) and r∗ be from Lemma 2.6. Let fm, m ∈ N, be defined by (3.19).
Then, for each m ∈ N, BVP (3.20), (1.4) has a solution um ∈ B(r, ε) such that

‖un−1
m ‖ < r∗. (3.21)

Proof. Fix an arbitrary m ∈ N. (H4) and (3.19) yield fm ∈ Car(J ×Rn). Now,
put

gm(t) = sup

{∣∣f(t, x0, . . . , xn−1)
∣∣ :

1

m
≤ |xi| ≤ ρi, 0 ≤ i ≤ n− 1

}
,

where ρi, 0 ≤ i ≤ n − 1, are given by (3.18). We see that gm ∈ L1(J) and
|fm(t, x0, . . . , xn−1)| ≤ gm(t) for a.e. t ∈ J and all (x0, . . . , xn−1) ∈ Rn. Since
the problem (−1)n−px(n)(t) = 0, (1.4) has only a trivial solution, the Nonlinear
Fredholm Alternative implies that (3.20), (1.4) has a solution um.
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Further, by virtue of (H4) and (H5), we see that for a.e. t ∈ J and all
(x0, . . . , xn−1) ∈ Rn the inequalities

ε(T − t)r ≤ fm(t, x0, . . . , xn−1), (3.22)

fm(t, x0, . . . , xn−1) ≤ φ∗(t) +
n−1∑
i=0

qi(t)ωi(|xi|) +
n−1∑
i=0

hi(t)|xi|αi (3.23)

are true. Note that inequality (3.23) follows from the relations
∣∣∣σi

( 1

m
,xi

)∣∣∣
αi ≤

( 1

m

)αi

+ |xi|αi ≤ 1 + |xi|αi ,

and

ωi

(∣∣∣σi

( 1

m
, xi

)∣∣∣
)
≤ ωi(ρi) + ωi(|xi|) ≤ ωi(1) + ωi(|xi|)

which are valid for 0 ≤ i ≤ n − 1. In view of (3.22) we have um ∈ B(r, ε) and
therefore using (3.23) and Lemma 2.6, we get (3.21). ¤

4. Main Results, Examples

4.1. Sturm–Liouville boundary value problems.

Theorem 4.1. Let assumptions (H1) and (H2) be satisfied and let
min{β, δ} = 0 in (1.2). Then BVP (1.1), (1.2) has a solution.

Proof. By Lemma 3.1 there is a solution xm of BVP (3.4), (1.2) for each m ∈ N.
Consider the sequence {xm}. Then inequalities (3.7)–(3.10) are satisfied by

Lemmas 2.1 and 3.1, where ξm ∈ (0, T ) denotes the unique zero of x
(n−1)
m , A is

given by (2.5) and M̂ is a positive constant. Moreover,
{
fm,cM

(
t, xm(t), . . . , x(n−1)

m (t)
)}

is uniformly absolutely continuous on J by Lemma 3.2, which implies that

{x(n−1)
m (t)} is equicontinuous on J . Without loss of generality we can assume

that {xm} is convergent in Cn−1(J) and {ξm} is convergent in R. Let lim
m→∞

xm =

x, lim
m→∞

ξm = ξ. Then x satisfies the boundary conditions (1.2) and from (3.7)–

(3.9) we deduce that

x(n−1)(t) ≥ ε

r + 1
(ξ − t)r+1 for t ∈ [0, ξ],

x(n−1)(t) ≤ − ε

r + 1
(ξ − t)r+1 for t ∈ (ξ, T ],

(4.1)

x(n−2)(t) ≥





At for t ∈
[
0,

T

2

]
,

A(T − t) for t ∈
(T

2
, T

]

and

x(j)(t) ≥ A

4(n− j − 1)!
tn−j−1, t ∈ J, 0 ≤ j ≤ n− 3.
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From the construction of the auxiliary functions fm,cM ∈ Car(J × Rn) it fol-

lows that there exists of a set U ⊂ J , µ(U) = 0, such that fm,cM(t, ·, . . . , ·) is

continuous on Rn for t ∈ J \ U and m ∈ N. Hence

lim
m→∞

fm,cM
(
t, xm(t), . . . , x(n−1)

m (t)
)

= f
(
t, x(t), . . . , x(n−1)(t)

)

for t ∈ J \ (U ∪ {0, ξ, T}). Now the Vitali’s convergence theorem gives

f
(
t, x(t), . . . , x(n−1)(t)

) ∈ L1(J)

and

lim
m→∞

t∫

0

fm,cM
(
s, xm(s), . . . , x(n−1)

m (s)
)
ds =

t∫

0

f
(
s, x(s), . . . , x(n−1)(s)

)
ds, t ∈ J.

Taking the limit as m →∞ in the equalities

x(n−1)
m (t) = x(n−1)

m (0) +

t∫

0

fm,cM(s, xm(s), . . . , x(n−1)
m (s)) ds, t ∈ J, m ∈ N,

we obtain

x(n−1)(t) = x(n−1)(0) +

t∫

0

f
(
s, x(s), . . . , x(n−1)(s)

)
ds, t ∈ J.

Consequently, x ∈ ACn−1(J) and x satisfies (1.1) a.e. on J . We have proved
that x is a solution of BVP (1.1), (1.2). ¤

Theorem 4.2. Let assumptions (H1) and (H3) be satisfied and let
min{β, δ} > 0 in (1.2). Then BVP (1.1), (1.2) has a solution.

Proof. By Lemma 3.3 there exists a solution xm of BVP (3.11), (1.2) for each
m ∈ N. Consider the sequence {xm}. Then inequalities (3.7) and (3.13)–(3.15)
are satisfied for each m ∈ N, which follows from Lemmas 2.3 and 2.4, where

ξm ∈ (0, T ) is the unique zero of x
(n−1)
m and B, V̂ are positive constants indepen-

dent of xm. Moreover, by Lemma 3.4, the sequence {fm,bV (t, xm, . . . , x
(n−1)
m (t))}

is uniformly absolutely continuous on J , which yields that {x(n−1)
m (t)} is equicon-

tinuous on J . Without loss of generality we can assume that {xm} and {ξm}
are convergent in Cn−1(J) and R, respectively. Let lim

m→∞
xm = x, lim

m→∞
ξm = ξ.

Then x satisfies the boundary conditions (1.2) and from (3.7), (3.13) and (3.14)
we conclude that (4.1) holds and

x(n−2)(t) ≥ B, t ∈ J,

x(j)(t) ≥ B

(n− j − 2)!
tn−j−2, t ∈ J, 0 ≤ j ≤ n− 3.

The next part of the proof is the same as that of the proof of Theorem 4.1 and
therefore it is omitted. ¤
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4.2. Focal boundary value problems. First, we consider the singular
(p, n− p) right focal BVP (1.3), (1.4) with 1 ≤ p ≤ n− 1.

Theorem 4.3. Let assumptions (H4) and (H5) be satisfied. Then there exists
a solution of BVP (1.3), (1.4).

Proof. Define for m ∈ N functions fm by (3.19). According to Lemma 3.5 there
is a positive number r∗ such that for each m ∈ N problem (3.20), (1.4) has a
solution um ∈ B(r, ε) satisfying (3.21). By Lemma 2.5 there exists c > 0 such
that for m ∈ N and t ∈ J we have

u(i)
m (t) ≥ ctr+n−i for 0 ≤ i ≤ p− 1,

(−1)i−pu(i)
m (t) ≥ c(T − t)r+n−i for p ≤ i ≤ n− 1.

(4.2)

Conditions (1.4) and (3.21) yield

‖u(i)
m ‖ < r∗T n−i−1 < ρi, 0 ≤ i ≤ n− 1. (4.3)

Moreover, by virtue of (3.23) we have for 0 ≤ t1 ≤ t2 ≤ T

∣∣u(n−1)
m (t2)− u(n−1)

m (t1)
∣∣ ≤

t2∫

t1

h(t) dt +
n−1∑
i=0

‖qi‖∞
t2∫

t1

ωi(|u(i)
m (t)|) dt, (4.4)

where

h(t) = φ∗(t) +
n−1∑
i=0

ραi
i hi(t), h ∈ L1(J).

Since um ∈ B(r, ε), we can use Lemma 2.7 and conclude that the sequence

{u(n−1)
m } is equicontinuous on J . Estimates (4.3) mean that {um} is bounded

in Cn−1(J). Thus, by the Arzelà–Ascoli theorem, we can choose a subsequence,
which is denoted by {uk} and which converges in Cn−1(J) to a function u ∈
Cn−1(J). Clearly, u satisfies (1.4). Letting k →∞ and using (4.2), we get

u(i)(t) ≥ ctr+n−i for 0 ≤ i ≤ p− 1,

(−1)i−pu(i)(t) ≥ c(T − t)r+n−i for p ≤ i ≤ n− 1.

This yields that

u(i)(t) > 0 on (0, T ] for 0 ≤ i ≤ p− 1,

(−1)i−pu(i)(t) > 0 mboxon [0, T ) for p ≤ i ≤ n− 1.
(4.5)

Finally, let us show that u ∈ ACn−1(J) and that u fulfils (1.3) a.e. on J .
Consider the sequence of equalities

u
(n−1)
k (t) = u

(n−1)
k (0) +

t∫

0

fk

(
s, uk(s), . . . , u

(n−1)
k (s)

)
ds for t ∈ J. (4.6)

Denote the set of all t ∈ J such that f(t, ·, . . . , ·) : X → R is not continuous by
U . Then µ(U) = 0 and, by virtue of (4.5),

lim
k→∞

fk

(
t, uk(t), . . . , u

(n−1)
k (t)

)
= f

(
t, u(t), . . . , u(n−1)(t)

)
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for all t ∈ J \ (U ∪ {0, T}). Further, using (H4), (H5) and (4.2), we see that for
all k ∈ N and a.e. t ∈ J , the inequalities

∣∣fk(t, uk(t), . . . , u
(n−1)
k (t))

∣∣ ≤ g(t)

are satisfied, where

g(t) = φ∗(t) +
n−1∑
i=0

ραi
i hi(t) +

n−1∑
i=0

‖qi‖∞ω∗i (t)

and

ω∗i (t) =

{
ωi(ct

r+n−i) for 0 ≤ i ≤ p− 1,

ωi(c(T − t)r+n−i) for p ≤ i ≤ n− 1.

Since g ∈ L1(J), we can use the Lebesgue dominated convergence theorem by
which f(t, u(t), . . . , u(n−1)(t)) ∈ L1(J) and letting k →∞ in (4.6) we have that

u(n−1)(t) = u(n−1)(0) +

t∫

0

f
(
s, u(s), . . . , u(n−1)(s)

)
ds for t ∈ J

is valid, i.e., u ∈ ACn−1(J) and u satisfies (1.3) a.e. on J . ¤

Theorem 4.3 together with Remark 1.5 yields the existence result for the
singular (n− p, p) left focal BVP (1.12), (1.13) with 1 ≤ p ≤ n− 1.

Theorem 4.4. Let assumptions (H6) and (H7) be satisfied. Then there exists
a solution of BVP (1.12), (1.13).

For the continuous function f in equations (1.1) and (1.3) we get immedi-
ately from Theorems 4.1 and 4.3 and our previous considerations the following
corollaries. Similar results could be obtained from Theorems 4.2 and 4.4.

Corollary 4.5. Let f ∈ C0(J×D) satisfy assumptions (H1) and (H2) and let
min{β, δ} = 0 in (1.2). Then there exists a solution x of BVP (1.1), (1.2) such
that x ∈ ACn−1(J) ∩ Cn(J \ {0, T, ξ}) and (1.1) holds for each t ∈ J \ {0, T, ξ}
where ξ ∈ (0, T ) is the unique zero of x(n−1) in J .

Corollary 4.6. Let f ∈ C0(J×X) satisfy assumptions (H4) and (H5). Then
BVP (1.3), (1.4) has a solution x such that x ∈ ACn−1(J)∩Cn(J \ {0, T}) and
(1.3) holds for each t ∈ J \ {0, T}.

Example 4.7. Let n ∈ N, n ≥ 2, γ, αi ∈ (0, 1), hi ∈ L1(J) be nonnegative
and βi, ci ∈ R+, 0 ≤ i ≤ n− 1. Consider the differential equation

−x(n)(t) =
( t

T − t

)γ

+
n−1∑
i=0

ci

|x(i)(t)|βi
+

n−1∑
i=0

hi(t)|x(i)(t)|αi . (4.7)

If we set r = γ, ε = T−γ and ωi(z) = z−βi , 0 ≤ i ≤ n − 1, then assumptions
(H1) and (H2) are satisfied for

βn−1 ∈
(
0,

1

1 + γ

)
, βi ∈

(
0,

1

n− i− 1

)
, 0 ≤ i ≤ n− 2, (4.8)
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and assumptions (H1) and (H3) are satisfied for

βn−1 ∈
(
0,

1

1 + γ

)
, βn−2 ∈ R+, βj ∈

(
0,

1

n− j − 2

)
, 0 ≤ j ≤ n− 3. (4.9)

Hence problem (4.7), (1.2) with min{β, δ} = 0 has a solution for βi satisfying
(4.8) by Theorem 4.1 and the solvability of problem (4.7), (1.2) with min{β, δ} >
0 for βi satisfying (4.9) is guaranteed by Theorem 4.2.

Example 4.8. Let n ∈ N, n ≥ 2 and 1 ≤ p ≤ n−1. Consider the differential
equation

(−1)n−px(n)(t) =
(T − t

t

)γ

+
n−1∑
i=0

ci

|x(i)(t)|βi
+

n−1∑
i=0

hi(t)|x(i)(t)|αi , (4.10)

where (for 0 ≤ i ≤ n− 1)

γ, αi ∈ (0, 1), ci ∈ R+, βi ∈
(
0,

1

n + γ − i

)
,

hi ∈ L1(J) is nonnegative.
(4.11)

Then we can see that if we put r = γ, ε = T−γ and ωi(z) = z−βi , 0 ≤ i ≤ n− 1,
assumptions (H4) and (H5) are satisfied. Hence, by Theorem 4.3, problem
(4.10), (1.4) has a solution.

Similarly, having the differential equation

(−1)px(n)(s) =
( s

T − s

)γ

+
n−1∑
i=0

ci

|x(i)(s)|βi
+

n−1∑
i=0

hi(s)|x(i)(s)|αi (4.12)

and assuming (4.11), we can easily check that (H6) and (H7) are fulfilled, which
yields, by Theorem 4.4, that problem (4.12), (1.4) is solvable.
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