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A UNIFIED CHARACTERIZATION OF q-OPTIMAL AND
MINIMAL ENTROPY MARTINGALE MEASURES BY

SEMIMARTINGALE BACKWARD EQUATIONS

M. MANIA AND R. TEVZADZE

Abstract. We give a unified characterization of q-optimal martingale mea-
sures for q ∈ [0,∞) in an incomplete market model, where the dynamics of
asset prices are described by a continuous semimartingale. According to this
characterization the variance-optimal, the minimal entropy and the minimal
martingale measures appear as the special cases q = 2, q = 1 and q = 0 re-
spectively. Under assumption that the Reverse Hölder condition is satisfied,
the continuity (in L1 and in entropy) of densities of q-optimal martingale
measures with respect to q is proved.
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1. Introduction and the Main Results

An important tool of Mathematical Finance is to replace the basic proba-
bility measure by an equivalent martingale measure, sometimes also called a
pricing measure. It is well known that prices of contingent claims can usually
be computed as expectations under a suitable martingale measure. The choice
of the pricing measure may depend on the attitude towards risk of investors
or on the criterion relative to which the quality of the hedging strategies is
measured. In this paper we study the q-optimal martingale measures using the
Semimartingale Backward Equations (SBE for short) introduced by Chitashvili
[3].

The q-optimal martingale measure is a measure with the minimal Lq-norm
among all signed martingale measures. The q-optimal martingale measures (for
q > 1) were introduced by Grandits and Krawczyk [16] in relation to the closed-
ness in Lp of a space of stochastic integrals. On the one hand, the q-optimal mar-
tingale measure is a generalization of the variance-optimal martingale measure
introduced by Schweizer [37], which corresponds to the case q = 2. Schweizer
[38] showed that if the quadratic criterion is used to measure the hedging error,
then the price of a contingent claim (the mean-variance hedging price) is the
mathematical expectation of this claim with respect to the variance-optimal
martingale measure. The variance optimal martingale measure also plays a
crucial role in determining the mean-variance hedging strategy (see, e.g., [33],
[6], [14], [20]).

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



290 M. MANIA AND R. TEVZADZE

On the other hand, it was shown by Grandits [18] (in the finite discrete time
case) and by Grandits and Rheinländer [17] (for the continuous process X)
that if the reverse Hölder condition is satisfied, then the densities of q-optimal
martingale measures converge as q ↓ 1 in L1 (and in entropy) to the density of
the minimal entropy martingale measure. The problem of finding the minimal
entropy martingale measure is dual to the problem of maximizing the expected
exponential utility from terminal wealth (see [7], [34]). Note also that the q-
optimal martingale measures for q < 1 (in particular, for q = 1/2 it defines
the Hellinger distance martingale measure) are also closely related to the utility
maximization problem (see [15], [35]).

The aim of this paper is to give a unified characterization of q-optimal mar-
tingale measures for q ∈ [0,∞) in an incomplete semimartingale market model.
We express the densities of q-optimal martingale measures in terms of a solution
of the corresponding semimartingale backward equation, where the index q ap-
pears as a parameter. According to this characterization the variance-optimal,
the minimal entropy and the minimal martingale measures appear as the spe-
cial cases q = 2, q = 1 and q = 0, respectively. Besides, the above mentioned
convergence result of Grandits and Rheinländer [17] naturally follows from the
continuity properties of solutions of SBEs with respect to q. We show that the
same convergence is valid if q → 1, and if q ↓ 0, then the densities of the q-
optimal martingale measures converge to the density of the minimal martingale
measure. Moreover, we prove that the rate of convergence in entropy distance is
|q−1|, although we require an additional condition of continuity of the filtration,
not imposed in [17].

To formulate the main statements of this paper, let us give some basic defi-
nitions and assumptions.

Let X = (Xt, t ∈ [0, T ]) be an Rd-valued semimartingale defined on a filtered
probability space (Ω,F , F = (Ft, t ∈ [0, T ]), P ) satisfying the usual conditions,
where F = FT and T is a finite time horizon. The process X may be interpreted
to model the dynamics of the discounted prices of some traded assets.

Denote by Me the set of equivalent martingale measures of X, i.e., set of
measures Q equivalent to P and such that X is a local martingale under Q.
Let Zt(Q) be the density process of Q relative to the basic measure P . For
any Q ∈ Me, denote by MQ a P -local martingale such that ZQ = E(MQ) =
(Et(M

Q), t ∈ [0, T ]), where E(M) is the Doleans-Dade exponential of M .
Let

Me
q = {Q ∈Me : EZq

T (Q) < ∞},
Me

1 = {Q ∈Me : EZT (Q) ln ZT (Q) < ∞}.

Assume that

A) X is a continuous semimartingale,

B) Me
q 6= ∅ if q ≥ 1, and Me 6= ∅ if q < 1.
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Then it is well known that X satisfies the structure condition (SC), i.e., X
admits the decomposition

Xt = X0 +

∫ t

0

d〈M〉sλs + Mt a.s. for all t ∈ [0, T ], (1.1)

where M is a continuous local martingale and λ is a predictable Rd-valued pro-

cess. If the local martingale Ẑt = Et(−λ ·M), t ∈ [0, T ]) is a strictly positive

martingale, then dP̂/dP = ẐT defines an equivalent probability measure called
the minimal martingale measure for X (see [12]). In general (since X is con-
tinuous), any element of Me is given by the density Z(Q) which is expressed
as an exponential martingale of the form E(−λ · M + N), where N is a local
martingale strongly orthogonal to M . Here we use the notation λ ·M for the
stochastic integral with respect to M .

Let us consider the following optimization problems:

min
Q∈Me

q

EEq
T (MQ), q > 1, (1.2)

max
Q∈Me

EEq
T (MQ), 0 < q < 1, (1.3)

min
Q∈Me

q

EQ ln ET (MQ), q = 1. (1.4)

Provided that conditions A) and B) are satisfied, these optimization problems
admit a unique solution in the class of equivalent martingale measures (see [5],
[16], [27] for q = 2, q > 1, q < 1, respectively, and [31], [13] for the case q = 1).
Therefore we may define the q-optimal martingale measures for q > 1 and
q < 1 and the minimal entropy martingale measure as solutions of optimization
problems (1.2), (1.3) and (1.4), respectively.

The main statement of this paper (Theorem 3.1), for simplicity formulated
here (and proved in section 3) in the one-dimensional case, gives a necessary
and sufficient condition for a martingale measure to be q-optimal.

We show that the martingale measure Q∗(q) is q-optimal if and only if
dQ∗(q) = ET (MQ∗(q))dP , where

MQ∗(q) = −λ ·M +
1

Y−(q)
· L(q),

and the triple (Y (q), ψ(q), L(q)), where Y (q) is a strictly positive special semi-
martingale, ψ(q) is a predictable M -integrable process and L(q) is a local mar-
tingale orthogonal to M , is a unique solution of the semimartingale backward
equation

Yt = Y0 +
q

2

∫ t

0

(λsYs− + ψs)
2

Ys−
d〈M〉s +

∫ t

0

ψsdMs + Lt, YT = 1 (1.5)

in a certain class (see Definition 3.1) of semimartingales.
In Section 4 we study the dependence of solutions of SBE (1.5) on the pa-

rameter q and additionally assume that:
C) the filtration F is continuous,
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B∗) there exists a martingale measure Q that satisfies the Reverse Hölder
inequality for some q0 > 1.

In Theorem 4.2 we prove that for any 0 ≤ q ≤ q0, 0 ≤ q′ ≤ q0

‖MQ∗(q) −MQ∗(q′)‖BMO2 ≤ const |q − q′| 12 . (1.6)

According to Theorem 3.2 of Kazamaki [22], the mapping ϕ : M → E(M)−1
of BMO2 into H1 is continuous. Therefore, in particular,(1.6) implies that

‖E(MQ∗(q))− E(MQ(E))‖H1 → 0 as q → 1, (1.7)

‖E(MQ∗(q))− E(−λ ·M)‖H1 → 0 as q ↓ 0, (1.8)

where Q(E) = Q∗(1) is the minimal entropy martingale measure and E(−λ ·M)
is the density process of the minimal martingale measure. The convergence
(1.7)) was proved by Grandits and Rheinländer [17] in the case q ↓ 1 and then
by Santacroce [36] for the case q ↑ 1.

Moreover, it follows from Theorem 4.3 that

I(Q∗(q), Q∗(q′)) ≤ const |q − q′|, (1.9)

where I(Q,R) is the relative entropy, or the Kullback–Leibler distance, of the
probability measure Q with respect to the measure R and is defined as

I(Q,R) = ER dQ

dR
ln

dQ

dR
.

In particular, (1.9) implies the convergence of q-optimal martingale measures
(as q ↓ 1) in entropy to the minimal entropy martingale measure, which was
proved by Grandits and Rheinländer [17] without assumption C).

Backward stochastic differential equations (BSDE) have been introduced by
Bismut [1] for the linear case as equations for the adjoint process in the sto-
chastic maximum principle. A nonlinear BSDE (with Bellman generator) was
first considered by Chitashvili [3]. He derived the semimartingale BSDE (or
SBE), which can be considered as a stochastic version of the Bellman equation
for a stochastic control problem, and proved the existence and uniqueness of a
solution (see also [4]). The theory of BSDEs driven by the Brownian motion
was developed by Pardoux and Peng [32] for more general generators. They ob-
tained the well-posedness results for generators satisfying the uniform Lipschitz
condition. The results of Pardoux and Peng were generalized by Kobylansky
[23] for generators with quadratic growth.

BSDEs appear in numerous problems of Mathematical Finance (see, e.g.,
[11]). In several works BSDEs and the dynamic programming approach were
also used to determine different martingale measures. By Laurent and Pham
[24] the dynamic programming approach was used to determine the variance-
optimal martingale measure in the case of Brownian filtration. Rouge and El
Karoui [11] derived a BSDE related to the minimal entropy martingale measure
for diffusion models and used the above-mentioned result of Kobylansky to show
the existence of a solution. The dynamic programming method was also applied
in [26], [27], [28] to determine the q-optimal and minimal entropy martingale
measures in the semimartingale setting. In [27] the density of the q-optimal
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martingale measure was expressed in terms of an SBE derived for the value
process

Ṽt(q) = ess inf
Q∈Me

q

E(Eq
tT (MQ) | Ft), q > 1,

corresponding to the problem (1.2). As shown in Proposition 2.3, the solution

Y (q) of (1.5) is related to Ṽ (q) by the equality

Yt(q) = (Ṽt(q))
1

1−q .

As compared with the SBE derived in [27] for Ṽ (q), equation (1.5) has the
following advantages:

1) equation (1.5), unlike the equation for Ṽ (q), in the case q = 1 determines
the minimal entropy martingale measure and
2) equation (1.5) is of the same form with and without the assumption of the

continuity of the filtration, whereas the equation for Ṽ (q) becomes much more
complicated (there appear additional jump terms in the generator, see, e.g.,
[29]) when the filtration is not continuous.

It was shown in [30] that the value function for the mean-variance hedg-
ing problem is a quadratic trinomial and a system of SBEs for its coefficients
was derived. It was proved that the first coefficient of this trinomial coincides

with Ṽ (2)−1 and satisfies equation (1.5) for q = 2, which is simpler than the

equation for Ṽ (2). This fact was more explicitly pointed out by Bobrovnytska
and Schweizer [2], who gave a description of the variance optimal martingale
measure using equation (1.5) for q = 2.

After finishing this paper (during the reviewing process), we received a copy
of the paper by Hobson [19] who also studied q-optimal martingale measures
using BSDEs driven by the brownian motion, called in [19] the fundamental
representation equation. In a general diffusion market model, assuming that
a solution of representation equation exists, this solution is used to charac-
terize the q-optimal martingale measure, with the minimal entropy martingale
measure arising when q = 1. Note that one can derive the fundamental repre-
sentation equation from equation (1.5) using the Itô formula for lnY (q) and the
boundary condition. Therefore Theorem 3.1 implies the existence of a solution
of the representation equation of [19] for the models considered in that paper.
It should be mentioned that in [19] the representation equation was explicitly
solved in the case of Markovian stochastic volatility models with correlation.

For all unexplained notations concerning the martingale theory used below
we refer the reader to [21], [8] and [25]. About BMO-martingales and the reverse
Hölder conditions see [9] and [22].

2. Basic Optimization Problems and Auxiliary Results

In this section we introduce the basic optimization problems and study some
properties of the corresponding value processes.

Instead of condition B) we shall sometimes use a stronger condition:
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B*) there exists a martingale measure Q that satisfies the reverse Hölder
Rq(P ) inequality if q > 1, and the reverse Hölder RL ln L(P ) inequality if q = 1,
i.e., there is a constant C such that

E(Eq
τ,T (MQ) | Fτ ) ≤ C if q > 1,

E(Eτ,T (MQ) ln Eτ,T (MQ) | Fτ ) ≤ C if q = 1

for any stopping time τ .
Here and in the sequel we use the notation

Eτ,T (N) =
ET (N)

Eτ (N)
= ET (N −N.∧τ )

for a semimartingale N and

〈N〉τ,T = 〈N〉T − 〈N〉τ
for a local martingale N for which the predictable characteristic 〈N〉 exists.

Remark 2.1. Condition B*) implies that MQ ∈ BMO2 for MQ = −λ ·M +N ,
where N is a local martingale orthogonal to M (see [22] for q > 1 and [17] for
the case q = 1). Since 〈λ ·M〉τ,t < 〈−λ ·M + N〉τ,t for any τ < t ≤ T , we have
that λ ·M also belongs to BMO and the minimal martingale measure exists.

We recall that a uniformly integrable martingale M = (Mt, t ∈ [0, T ]) belongs
to the class BMO2 if and only if M is of bounded jumps and for a constant C

E1/2(〈M〉τ,T | Fτ ) ≤ C, P -a.s.

for every stopping time τ . The smallest constant with this property (or +∞ if
it does not exist) is called the BMO2 norm of M and is denoted by ‖M‖BMO2 .

Let H1 be the space of martingales N with ‖N‖H1 = supt≤T |Nt| < ∞. Note
that H1 is the dual space of BMO2 (see [8]).

Denote by Πp the class of predictable X-integrable processes such that

EEp
T (π ·X) < ∞ for p < ∞, (2.1)

Ee(π·X)T < ∞ for p = ±∞. (2.2)

Remark 2.2. For all π ∈ Πp the strategy π̃ = πE(π ·X) belongs to the class
H2 of [35] since 1 + π̃ ·X = E(π ·X) is a Q-supermartingale for all Q ∈Me, as
a positive Q-local martingale.

We consider the following optimization problems:

min
π∈Πp

EEp
T (π ·X), p > 1,

min
π∈Πp

Ee(π·X)T , p = ±∞,

max
π∈Πp

EEp
T (π ·X), 0 < p < 1,

min
π∈Πp

EEp
T (π ·X), p < 0.

(2.3)
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and

min
Q∈Me

q

EEq
T (MQ), q > 1,

min
Q∈Me

q

EQ ln ET (MQ), q = 1,

min
Q∈Me

EEq
T (MQ), q < 0,

max
Q∈Me

EEq
T (MQ), 0 ≤ q < 1.

(2.4)

Throughout the paper we assume that q = p
p−1

.

It is well known that if condition B) is satisfied, then each of these optimiza-
tion problems admits a unique solution.

Let Q∗ be a q-optimal martingale measure and let π∗ be the optimal strategy
for problem (2.3). It follows from [15],[35] (see also [16], [13], [17]) that

Ep−1
T (π∗ ·X) = cET (MQ∗) for p < ∞, (2.5)

e(π∗·X)T = cET (MQ∗) for p = ±∞. (2.6)

Moreover, E(π∗ ·X)(π∗ ·X if p = ±∞) is a martingale with respect to Q∗.
Thus the q-optimal martingale measure MQ∗ and the optimal strategy π∗ of

the corresponding dual problem are related by the equality

Ep
T (π∗ ·X) = cqEq

T (MQ∗).

Now let us define the value processes

Vt(p) =





ess inf
π∈Πp

E(Ep
tT (π ·X)|Ft), p > 1,

ess inf
π∈Πp

E(exp(
∫ T

t
πsdXs)|Ft), p = ±∞

ess inf
π∈Πp

E(Ep
tT (π ·X)|Ft), p < 0,

ess sup
π∈Πp

E(Ep
tT (π ·X)|Ft), 0 < p < 1,

(2.7)

and

Ṽt(q) =





ess inf
Q∈Me

q

E(Eq
tT (MQ)|Ft), q > 1,

ess inf
Q∈Me

q

E(EtT (MQ) ln EtT (MQ)|Ft), q = 1

ess sup
Q∈Me

E(Eq
tT (MQ)|Ft), 0 ≤ q < 1,

ess inf
Q∈Me

q

E(Eq
tT (MQ)|Ft), q < 0,

(2.8)

corresponding to problems (2.3) and (2.4), respectively.
The optimality principle for the problem (2.3) can be proved in a standard

manner (see, e.g., [10], [24]) and takes the following form.
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Proposition 2.1. There exists an RCLL semimartingale, denoted as before
by Vt(p), such that for each t ∈ [0, T ]

Vt(p) =





ess inf
π∈Πp

E(Ep
tT (π ·X)|Ft) a.s. for p > 1 or p < 0,

ess inf
π∈Π∞

E(e(π·X)T−(π·X)t |Ft) a.s. for p = ±∞.

Vt(p) is the largest RCLL process equal to 1 at time T such that the process
Vt(p)Ep

t (π ·X) (the process Vt(p)e(π·X)t if p = ±∞) is a submartingale for every
π ∈ Πp.

Moreover, π∗ is optimal if and only if Vt(p)Ep
t (π∗ · X) (Vt(p)e(π·X)t for p =

±∞) is a martingale.

Proposition 2.2. For all t ∈ [0, T ] the value process Vt(p) is an increasing
function of p on [−∞, 1) and [1,∞] separately. Moreover, if p > 1 and p′ < 0,
then Vt(p) ≤ Vt(p

′) a.s. for all t ∈ [0, T ].

Proof. Let p, p′ be such that p > p′ > 1 or 0 > p > p′. It is sufficient to
consider the case p′ − p + 1 > 0. Applying successively the optimality of π∗(p),
representation (2.5), the Bayes formula, the Hölder inequality and the fact that
E(π∗(p) ·X) is a martingale with respect to Q∗(p), we get

Vt(p
′) = E[Ep′

tT (π∗(p′) ·X)/Ft] ≤ E[Ep′
tT (π∗(p) ·X)/Ft]

= E[Ep−1
tT (π∗(p) ·X)Ep′−p+1

tT (π∗(p) ·X)/Ft]

=
cEt(M

Q∗)

Ep−1
t (π∗(p) ·X)

EQ∗ [Ep′−p+1
tT (π∗(p) ·X)/Ft]

≤ cEt(M
Q∗)

Ep−1
t (π∗(p) ·X)

=
E(Ep−1

T (π∗(p) ·X)/Ft)

Ep−1
t (π∗(p) ·X)

= Vt(p).

If p = ∞, then

Vt(p
′) ≤ E[Ep′

tT (π ·X)/Ft] ≤ E[ep′(π·X)T−p′(π·X)t/Ft]

for all π ∈ Πp′ and hence V (p′) ≤ V (∞). Similarly, V (−∞) ≤ V (p) for p < 0.
Now suppose that 0 < p′ < p < 1. By the Hölder inequality and by the

optimality of π∗(p) we have

Vt(p
′) ≤ E[Ep

tT (π∗(p′) ·X)/Ft]
p′
p ≤ E[Ep

tT (π∗(p) ·X)/Ft]
p′
p = Vt(p)

p′
p .

Since Vt(p) ≥ 1, we get Vt(p
′) ≤ Vt(p) a.s.

If p > 0 > p′, then Vt(p) ≥ 1 ≥ Vt(p
′).

Assume now that p > 1 and p′ < 0 and denote r = max{p,−p′}. Thus
p′ ≥ −r > 0, and taking into account that V is increasing on [−∞, 1) and
(1,∞], respectively, we have

Vt(p
′) ≥ Vt(−r) = E[E−r

tT (π∗(−r) ·X)/Ft]

= E[Er
tT (−π∗(−r) ·X)er<π∗(−r)·X>tT /Ft]

≥ E[Er
tT (−π∗(−r) ·X)/Ft] ≥ E[Er

tT (π∗(r) ·X)/Ft]

= Vt(r) ≥ Vt(p). ¤
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Corollary 2.1. Y (q) = V ( q
q−1

) is a decreasing function on (−∞,∞).

Proposition 2.3. The value processes defined by (2.7) and (2.8) are related
by

V (p) = Ṽ (q)1−p for q 6= 1

and

V (∞) = e−
eV (1) for q = 1.

Moreover,

V (p)Ep−1(π∗ ·X) = cE(MQ∗) for q 6= 1,

V (∞)e(π∗·X) = cE(MQ∗) for q = 1.

Proof. Let us first consider the case q 6= 1. Using the optimality of Q∗ = Q∗(q),
the Bayes rule and representation (2.5), we have

Ṽt(q) =
1

Eq
t (MQ∗)

E[Eq
T (MQ∗)/Ft] =

1

Eq−1
t (MQ∗)

EQ∗ [Eq−1
T (MQ∗)/Ft]

= c̄
E(ET (π∗ ·X)/Ft)

Eq−1
t (MQ∗)

= c̄
Et(π

∗ ·X)

Eq−1
t (MQ∗)

.

Therefore, taking into account c = c̄1−p and p = q
q−1

, we obtain

Ṽt(q)
p−1 = c−1 Ep−1

t (π∗ ·X)

Et(MQ∗)

and

Ṽt(q)
1−p = c

Et(M
Q∗)

Ep−1
t (π∗ ·X)

= cc−1 E[Ep−1
T (π∗ ·X)/Ft]

Ep−1
t (π∗ ·X)

= E[Ep−1
tT (π∗ ·X)/Ft].

On the other hand, using similar arguments we obtain

Vt(p) = E[Ep
tT (π∗ ·X)/Ft] =

E[Ep−1
T (π∗ ·X)ET (π∗ ·X)/Ft]

Ep
t (π∗ ·X)

= c
E[ET (MQ∗)ET (π∗ ·X)/Ft]

Ep
t (π∗ ·X)

= c
EQ∗ [ET (π∗ ·X)/Ft]Et(M

Q∗)

Ep
t (π∗ ·X)

= c
Et(M

Q∗)

Ep−1
t (π∗ ·X)

=
E[Ep−1

T (π∗ ·X)/Ft]

Ep−1
t (π∗ ·X)

= E[Ep−1
tT (π∗ ·X)/Ft]. (2.9)

Therefore Ṽt(q)
1−p = E[Ep

t,T (π∗ · X)/Ft] = Vt(p). Besides, we have Vt(p) =

c Et(MQ∗ )
Ep−1

t (π∗·X)
.

Now let us consider the case q = 1. Since

Ṽt(1) = EQ∗(ln EtT (MQ∗)/Ft) = EQ∗(ln ET (MQ∗)/Ft)− ln Et(M
Q∗),

from representation (2.6) we have

Ṽt(1) = c +

∫ t

0

π∗sdXs − ln E(ec+
R T
0 π∗sdXs/Ft).
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Therefore

exp(−Vt(∞)) = e−
R t
0 π∗sdXsE

(
e
R T
0 π∗sdXs/Ft

)
= E(e

R T
t π∗sdXs/Ft) = V (∞).

Moreover, (2.6) also implies

Vt(∞) = E[e(π∗·X)T /Ft]e
−(π∗·X)t = cEt(M

Q∗)e−(π∗·X)t . ¤
Remark 2.3. Equality (2.9) implies that the optimal strategy π∗ satisfies

E[Ep
tT (π∗ ·X)/Ft] = E[Ep−1

tT (π∗ ·X)/Ft].

Note that this fact in discrete time and in the case q = 2 was observed by
Schweizer [38].

Lemma 2.1. Let there exists a martingale measure that satisfies the reverse
Hölder Rq0(P ) inequality for some q0 > 1 and let Y (q) = V ( q

q−1
). Then there

is a constant c > 0 such that

inf
0≤q≤q0

Yt(q) ≥ c for all t ∈ [0, T ] a.s. (2.10)

Proof. The Rq0(P ) inequality implies that

1 ≤ Ṽt(q0) ≤ C,

where C is a constant from the Rq0(P ) condition.
By Proposition 2.3 we have

Y (q) = V

(
q

q − 1

)
= Ṽ (q)

1
1−q .

Therefore

Yt(q0) ≥ C
1

1−q0 . (2.11)

Since by Corollary of Proposition 2.2 Yt(q) ≥ Yt(q0) for any q ≤ q0, inequality
(2.10) follows from (2.11). ¤

3. A Semimartingale Backward Equation for the Value Process

In this section we derive a SBE for V (p) and write the expression for the
optimal strategy π∗. Then, using relations (2.5) and (2.6) we construct the
corresponding optimal martingale measures.

We say that the process B strongly dominates the process A and write A ≺ B
if the difference B − A ∈ A+

loc, i.e., is a locally integrable increasing process.
Let (AQ, Q ∈ Q) be a family of processes of finite variations, zero at time zero.
Denote by ess inf

Q∈Q
(AQ) the largest process of finite variation, zero at time zero,

which is strongly dominated by the process (AQ
t , t ∈ [0, T ]) for every Q ∈ Q,

i.e., this is an “ess inf” of the family (AQ, Q ∈ Q) relative to the partial order ≺.
Now we give the definition of the class of processes for which the uniqueness

of the solution of the considered SBE will be proved.

Definition 1. We say that Y belongs to the class Dp if Y Ep(π ·X) ∈ D for
every π ∈ Πp.
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Recall that the process X belongs to the class D if the family of random
variables XτI(τ≤T ) for all stopping times τ is uniformly integrable.

Remark 3.1. The value process V (p) for p > 1 or p < 0 belongs to the class
Dp since V (p)Ep(π ·X) is a positive submartingale for any π ∈ Πp.

Remark 3.2. Suppose that there exists a martingale measure that satisfies
the reverse Hölder inequality Rq(P ). Then by Theorem 4.1 of Grandits and
Krawchouk [16] E supt≤T Ep

t (π · X) ≤ CEEp
T (π · X) and the process Ep

t (π · X)
belongs to the class D for every π ∈ Πp. Therefore, any bounded positive
process Y belongs to the class Dp if the Rq(P ) condition is satisfied.

Since X is continuous, the process Ep
t (π ·X) is locally bounded for any p ∈ R

and Proposition 2.1 implies that the process V (p) is a special semimartingale
with respect to the measure P with the canonical decomposition

Vt(p) = mt(p) + At(p), m (p) ∈ Mloc, A(p) ∈ Aloc. (3.1)

Let

mt(p) =

∫ t

0

ϕs(p)dMs + mt(p), 〈m(p),M〉 = 0, (3.2)

be the Galtchouk–Kunita–Watanabe decomposition of m (p) with respect to M .

Theorem 3.1. Let conditions A) and B) be satisfied. Let q ∈ [0,∞) and
p = q

q−1
. Then

a) the value process V (p) is a solution of the semimartingale backward equa-
tion

Yt(q) = Y0(q) +
q

2

∫ t

0

Ys−(q)

(
λs +

ψs(q)

Ys−(q)

)′
d〈M〉s

(
λs +

ψs(q)

Ys−(q)

)

+

∫ t

0

ψs(q)dMs + Lt(q), t < T, (3.3)

with the boundary condition
YT (q) = 1. (3.4)

This solution is unique in the class of positive semimartingales from Dp.
Moreover, the martingale measure Q∗ is q-optimal if and only if

MQ∗ = −λ ·M +
1

Y−(q)
· L(q) (3.5)

and the strategy π∗ is optimal if and only if

π∗ =

{
(1− q)(λ + ψ(q)

Y−(q)
) for q 6= 1

−λ− ψ(q)
Y−(q)

for q = 1

for Y (q) ∈ Dp.
b) If, in addition, condition B∗) is satisfied, then the value process V (p) is

the unique solution of the semimartingale backward equation (3.3), (3.4) in the
class of semimartingales Y satisfying the two-sided inequality

c ≤ Yt(q) ≤ C for all t ∈ [0, T ] a.s. (3.6)
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for some positive constants c < C.

Proof. For simplicity, we consider the case d = 1. In the multidimensional case
the proof is similar.

Existence. Let us show that Y (q) = V (p) satisfies (3.3), (3.4). Suppose that
1 < p < ∞ or −∞ < p < 0 (i.e., we first consider the case q 6= 1). By the Itô
formula we have

Ep
t (π ·X) = 1 + p

∫ t

0

Ep
s (π ·X)

[
πsdXs +

p− 1

2
π2

sd〈M〉s
]
.

Using (3.1), (3.2) and the Itô formula for the product, we obtain

Vt(p)Ep
t (π ·X) = V0(p) +

∫ t

0

Ep
s (π ·X)

[
dAs(p) + pVs−(p)πsλsd〈M〉s

+ pϕs(p)πsd〈M〉s +
p(p− 1)

2
π2

sVs−(p)d〈M〉s
]

+ martingale.

By the optimality principle (since the optimal strategy for the problem (2.3)
exists) we get

At(p) = −ess inf
π∈Πp

∫ t

0

[
p(Vs−(p)λs + ϕs(p))πs +

p(p− 1)

2
π2

sVs−(p)

]
d〈M〉s

and

At(p) = −
∫ t

0

[
p(Vs−(p)λs + ϕs(p))π∗s +

p(p− 1)

2
π∗2s Vs−(p)

]
d〈M〉s (3.7)

if and only if π∗ is optimal.
It is evident that there exists a sequence of stopping times τn, with τn ↑ T ,

such that

Vτn∧t−(p) ≥ 1

n
,

∫ τn∧t

0

λ2
sd〈M〉s ≤ n,

∫ τn∧t

0

ϕ2
sd〈M〉s ≤ n.

Then the strategy πn = (1− q)(λ+ ϕ(p)
V−(p)

)1[0,τn] belongs to the class Πp for every

n ≥ 1 and

ess inf
π∈Πp

∣∣∣∣πs + (q − 1)

(
λs +

ϕs(p)

Vs−(p)

)∣∣∣∣
2

Vs−(p)

≤ 2(p− 1)2 |λsVs−(p) + ϕs(p))|2
Vs−(p)

1(τn≤s) → 0, as n →∞.

Therefore

At(p) =
q

2

∫ t

0

|λsVs−(p) + ϕs(p))|2
Vs−(p)

d〈M〉s (3.8)

and (3.1)–(3.2) imply that Vt(p) satisfies (3.3), (3.4). Moreover, comparing (3.7)
and (3.8), we have

p

2(p− 1)V (p)

(
(p− 1)π∗V (p) + λV (p) + ϕ(p)

)2
= 0 µ〈M〉-a.e.
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and hence π∗ = (1− q)(λ + ϕ(p)
V−(p)

).

For p = ±∞, V (p)e(π·X) admits a decomposition

Vt(p)e(π·X)t = V0(p) +

∫ t

0

Vs−(p)e(π·X)s

(
λsπs + πs

ϕs

Vs−
+

1

2
π2

s

)
d〈M〉s

+

∫ t

0

e(π·X)sdAs(p) + martingale.

Thus, in a similar manner one can obtain

At(p) = −ess inf
π∈Πp

∫ t

0

[(
Vs−(p)λs + ϕs(p)

)
πs +

1

2
π2

sVs−(p)

]
d〈M〉s

=
1

2

∫ t

0

Vs−

(
λs +

ϕs

Vs−

)2

d〈M〉s

and π∗ = −λ− ϕ
V−

.

Uniqueness. Suppose that Y =Y (q) is a strictly positive solution of (3.3),(3.4)
and Y ∈ Dp. Since Y satisfies equation (3.3) and Y Ep(π ·X) ∈ D for all π ∈ Πp,
by the Itô formula we obtain

YtEp
t (π ·X) = Y0 +

p(p− 1)

2

∫ t

0

Ys−

∣∣∣∣πs +
1

p− 1

(
λs +

ψs

Ys−

)∣∣∣∣
2

d〈M〉s
+local martingale. (3.9)

Hence YtEp
t (π · X) is a P -submartingale and Yt ≤ E[Ep

tT (π · X)/Ft] for every
π ∈ Πp. Therefore

Yt ≤ Vt(p). (3.10)

On the other hand, (3.9) implies that Y Ep(π0 ·X) is a positive P -local mar-
tingale for π0 = (1− q)(λ + ψ

Y−
). Thus it is a supermartingale and

Yt ≥ E[Ep
t,T (π0 ·X)/Ft].

Taking t = 0 in the latter inequality, from (3.10) we obtain

EEp
T (π0 ·X) ≤ Y0 ≤ V0(p) < ∞

and, hence, π0 ∈ Πp. Therefore Yt ≥ Vt(p) and from (3.10) we obtain Y (q) =
V (p). By the uniqueness of the Doob–Meyer decomposition

L(q) = m(p) and ψ(q) = ϕ(p).

For p = ±∞ the proof of the uniqueness is similar.
Let us show now that the q-optimal martingale measure admits representation

(3.5).
From Proposition 2.3 (for 1 < p < ∞ or −∞ < p < 0) we have Vt(p)Ep−1

t (π∗ ·
X) = cEt(M

Q∗) and after equalizing the orthogonal martingale parts, we obtain
Ep−1

t− (π∗ · X)dmt(p) = cEt−(MQ∗)dN∗
t , where MQ∗ = −λ · M + N∗. Thus

N∗
t =

∫ t

0
1

Vs−(p)
dms(p) and MQ∗ = −λ ·M + 1

V−(p)
·m(p).
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Hence, the processes MQ∗ and −λ ·M + 1
V−(p)

·m(p) are indistinguishable and

ET (MQ∗) = ET

(
− λ ·M +

1

V−(p)
·m(p)

)
∈Me

q. (3.11)

For p = ±∞, similarly to the case p < ∞, we again get e(π∗·X)tdmt =
cEt(M

Q∗)dN∗
t and also

N∗
t = c

∫ t

0

Es(M
Q∗)e−(π∗·X)sdms =

∫ t

0

1

Vs−(∞)
dms(∞).

Conversely, let a measure Q̃ be of the form (3.5), where Y (q) is a solution of
(3.3), (3.4) from the class Dp. Then by the uniqueness of a solution we have
Y (q) = V (p), L(q) = m(p) and hence

E
(
− λ ·M +

1

Y−(q)
· L(q)

)
= E

(
− λ ·M +

1

V−(p)
·m(p)

)

Therefore, by (3.11) Q̃ is q-optimal.

b) If condition A∗) is satisfied, then 1 ≤ Ṽ (q) ≤ C. Thus C
1

1−p ≤ V (p) ≤ 1.
On the other hand, by Remark 3.2 all bounded positive semimartingales belong
to the class Dp and hence V (p) is a unique solution in this class. ¤

Remark 3.3. If q = 0, then p = 0 and the class Dp = D0 coincides with the
class D. Since for q = 0 any solution Y of (3.3) is a local martingale and any
local martingale from the class D is a martingale, we have that any solution Y
of (3.3), (3.4) from D equals to 1 for all t ∈ [0, T ] (as a martingale with YT = 1).
Therefore L(0) = 0 and by (3.5) MQ∗(0) = −λ ·M .

Remark 3.4. The existence and uniqueness of a solution of (3.3)–(3.4) in case
q = 2 follows from Theorem 3.2 of [29]. For the case q = 2 by Bobrovnytska
and Schweizer [2] proved the well-posedness of (3.3), (3.4) and representation
3.5 for the variance-optimal martingale measure, under general filtration. In [2]
the uniqueness of a solution was proved for a class of processes (Y (2), ψ(2), L(2))
such that

1

Y (2)
E2(MQ) ∈ D for all Q ∈Me

2 and (3.12)

E
(
− λ ·M +

1

Y−(2)
· L̃(2)

)
∈M2(P ). (3.13)

The same class was used in [26] to show the uniqueness of a solution of a SBE

derived for Ṽ (2) = 1
V (2)

under an additional condition of the continuity of the

filtration. Although the class D2 (from Definition 3.1) as well, as the class
of processes satisfying (3.12)–(3.13), include the class of processes satisfying
the two-sided inequality (3.6), they are not comparable. Therefore the union
of these classes (which needs a better description) should enlarge the class of
uniqueness.
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4. Connection of the Minimal Entropy and Q-Optimal
Martingale Measures

In this section we study the dependence of solutions of the SBE (3.3) on
the parameter q assuming that the filtration F is continuous. We show that if
condition B∗) for some q0 > 1 is satisfied, then the solution process Y (q), the
BMO2-norm’s square of the martingale part of Y (q) and the entropy distance
satisfy the uniform Lipschitz condition with respect to q, which implies the
convergence of the densities of q-optimal martingale measures to the densities
of the minimal entropy and minimal martingale measures as q → 1 and q ↓ 0,
respectively.

Hereafter we suppose that condition C) is satisfied, i.e, we assume that any
local martingale is continuous.

Let us first prove some auxiliary statements.

Lemma 4.1. For all q ∈ [0,∞) the martingale part L̂(q) = ψ(q) ·M + L(q)
of any solution Y (q) ∈ D of the equation (3.3), (3.4) belongs to the class BMO2

and
‖L̂(q)‖BMO2 ≤ 1, for all q ∈ [0,∞). (4.1)

Proof. If Y (q) ∈ D then (Yt(q), t ∈ [0, T ]) is a submartingale and

Yt(q) ≤ E(YT (q)/Ft) = 1. (4.2)

Using the Itô formula for Y 2
T (q)−Y 2

τ (q) and the boundary condition YT (q) = 1,
we have

〈L̂(q)〉T − 〈L̂(q)〉τ + 2

∫ T

τ

Ys(q)ψs(q)dMs + 2

∫ T

τ

Ys(q)dLs(q)

+q

∫ T

τ

(λsYs(q) + ψs(q))
2d〈M〉s = 1− Y 2

τ (q) (4.3)

for any stopping time τ . Without loss of generality we may assume that L(q)
and ψ ·M are square integrable martingales, otherwise one can use localization
arguments. Therefore, if we take conditional expectations in (4.3) we obtain

E(〈L̂(q)〉T − 〈L̂(q)〉τ |Fτ ) + qE

( ∫ T

τ

(λsYs(q) + ψs(q))
2d〈M〉s/Fτ

)
≤ 1 (4.4)

for any stopping time τ , which implies that L̂ belongs to the space BMO2 and
the estimate (4.1) also holds. ¤

Lemma 4.2. Let there exist a martingale measure that satisfies the Reverse
Hölder Rq(P ) inequality for some q0 > 1 and for any 0 ≤ q ≤ q0 let Y (q) be a
bounded positive solution of (3.3), (3.4). Then for any 0 ≤ q ≤ q0, 0 ≤ q′ ≤ q0

|Yt(q)− Yt(q
′)| ≤ const |q − q′|. (4.5)

Proof. By Theorem 3.1b we have Y (q) = V ( q
q−1

) and Proposition 3.3 with

Rq(P ) condition imply that

Yt(q) ≥ C
1

1−q for all t ∈ [0, T ] a.s. (4.6)
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Moreover, it follows from Lemma 2.1 that

inf
0≤q≤q0

Yt(q) ≥ c for all t ∈ [0, T ] a.s. (4.7)

for a constant c > 0.
If the triple (Y (q), ψ(q), L(q)) is a solution of (3.3), then using the Itô formula

for ln Yt(q) we have (Ȳ (q), ψ̄(q), L̄(q)), where Ȳ (q) = ln Y (q), ψ̄(q) = ψ(q)
Y (q)

,

L̄(q) = 1
Y
· L(q), satisfies the SBE

Ȳt(q) = Ȳ0(q) +

∫ t

0

(
q

2
λ2

s + qλsψ̄s(q) +
q − 1

2
ψ̄2

s(q)

)
d〈M〉s

− 1

2
〈L̄(q)〉t +

∫ t

0

ψ̄s(q)dMs + L̄t(q), t < T, (4.8)

with the boundary condition

ȲT = 0. (4.9)

Taking the difference of two equations (4.8) for q and q′ we have

Ȳt(q)− Ȳt(q
′) = Ȳ0(q)− Ȳ0(q

′) +
q − q′

2

∫ t

0

(λs + ψ̄s(q))
2d〈M〉s

+

∫ t

0

(ψ̄s(q)− ψ̄s(q
′))

(
q′ − 1

2
ψ̄s(q) +

q′ − 1

2
ψ̄s(q

′) + q′λs

)
d〈M〉s

−1

2
〈L̄(q)〉t +

1

2
〈L̄(q′)〉t +

∫ t

0

(ψ̄s(q)− ψ̄s(q
′))dMs + L̄t(q)− L̄t(q

′). (4.10)

For any q, q′ ∈ [0, q0] let us define the measure Q = Q(q, q′) by dQ =
ET (N(q, q′))dP , where

N = N(q, q′) =

(
q′ − 1

2
ψ̄(q) +

q′ − 1

2
ψ̄(q′) + q′λ

)
·M +

1

2

(
L̄(q) + L̄(q′)

)
.

Lemma 4.1 and inequality (4.6) imply that N = N(q, q′) is a BMO2-martingale
hence for any q, q′ ∈ [0, q0], Q = Q(q, q′) is a probability measure equivalent
to P .

Denote by N̄ the martingale part of Ȳ (q)− Ȳ (q′), i.e.,

N̄ = N̄(q, q′) = (ψ̄s(q)− ψ̄s(q
′)) ·M + L̄(q)− L̄(q′).

Therefore by the Girsanov theorem,

Ȳ (q)− Ȳ (q′)− q − q′

2
(λ− ψ̄(q))2 · 〈M〉 = N̄ − 〈N̄ , N〉

is a local martingale with respect to the measure Q. Moreover, since N̄ also
belongs to the class BMO2 (again by (4.6) and Lemma 4.1), according to Propo-
sition 11 of [9]

N̄ − 〈N̄ ,N〉 ∈ BMO2(Q)

for any fixed q and q′ from [0, q0].
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Thus, using the martingale property and the boundary condition ȲT (q) = 0,
we obtain

Ȳ (q)− Ȳ (q′) = −q − q′

2
EQ

( ∫ T

t

(λs − ψ̄s(q))
2d〈M〉s/Ft

)
,

or
Y (q)

Y (q′)
= e

q′−q
2

EQ
( R T

t (λs−ψ̄s(q))2d<M>s/Ft

)
. (4.11)

Note that, this implies that q ≥ q′ ⇒ Yt(q) ≤ Yt(q
′) for any q, q′ ∈ [0, q0], which

gives the proof of Proposition 2.2 and its Corollary as a consequence of a special
comparison assertion for SBEs.

Let us show that

EQ(q,q′)
( ∫ T

t

(λs − ψ̄s(q))
2d〈M〉s/Ft

)
≤ const, (4.12)

where the constant does not depend on q and q′.
Since λ·M ∈ BMO2 (see Remark 2.1 ), inequality (4.7) and Lemma 4.1 imply

that the BMO2 norms of N(q, q′) and (λ − ψ̄(q)) ·M are uniformly bounded
for q, q′ ≤ q0

sup
0≤q,q′≤q0

‖N(q, q′)‖BMO2 < ∞, (4.13)

sup
0≤q,q′≤q0

‖(λ− ψ̄(q)) ·M‖BMO2 < ∞. (4.14)

According to Theorem 3.1 of Kazamaki [22], (4.13) implies that

sup
0≤q,q′≤q0

E(Eα
t,T (N(q, q′))/Ft) < const (4.15)

for some α > 1. Taking n so that n
n−1

≤ α and using the conditional Hölder
inequality, we have

EQ(q,q′)
( ∫ T

t

(λs − ψ̄s(q))
2d〈M〉s/Ft

)

≤ E
n−1

n (E
n

n−1

t,T (N(q, q′))/Ft)E
1
n (〈(λ− ψ̄(q)) ·M〉nt,T /Ft). (4.16)

On the other hand, it follows from the energy inequality (see [22, p. 28]) that

E(〈(λ− ψ̄(q)) ·M〉nt,T /Ft) ≤ n!‖(λ− ψ̄(q)) ·M‖2n
BMO2

.

Therefore from (4.14), (4.15) and (4.16) we conclude that the estimate (4.12)
holds.

Thus it follows from (4.11) and (4.12) that

1 ≤ Y (q)

Y (q′)
≤ econst (q′−q) if q′ ≥ q,

1 ≥ Y (q)

Y (q′)
≥ econst (q′−q) if q′ ≤ q.

(4.17)

Since Yt(q) is uniformly bounded from below by a positive constant and de-
creasing with respect to q, we obtain from (4.17)

|Yt(q)− Yt(q
′)| ≤ const |q − q′|.
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¤

Lemma 4.3. Let there exist a martingale measure that satisfies the Reverse
Hölder Rq(P ) inequality for some q0 > 1 and for any 0 ≤ q ≤ q0 let Y (q) be a
bounded positive solution of (3.3), (3.4). Then for any 0 ≤ q ≤ q0, 1 < q′ ≤ q0

‖L(q)− L(q′)‖BMO2 ≤ const |q − q′| 12 , (4.18)

where L(q) is the martingale part of Y (q).

Proof. Applying the Itô formula for (YT (q)−YT (q′))2− (Yt(q)−Yt(q
′))2 and the

boundary condition YT (q) = 1, we have

〈L(q)− L(q′)〉tT + 2

∫ T

t

(Ys(q)− Ys(q
′))d(As(q)− As(q

′))

+ 2

∫ T

t

(Ys(q)− Ys(q
′))(ϕs(q)− ϕs(q

′))dMs

+ 2

∫ T

t

(Ys(q)− Ys(q
′))d(Ls(q)− Ls(q

′)) ≤ 0.

Since by Corollary of Proposition 2.2 Y (q) ≥ Y (q′) if q ≤ q′, by taking condi-
tional expectations we obtain (e.g., if q ≥ q′)

E(〈L(q)− L(q′)〉tT /Fτ ) ≤ 2E

( ∫ T

t

(Ys(q
′)− Ys(q))dAs(q)/Ft

)

≤ const (q − q′)E(AT (q)− At(q)/Ft), (4.19)

where the last inequality follows from Lemma 4.2. On the other hand, Lemma
2.1, Lemma 4.1 and the boundedness of Y (q) imply that

E(AT (q)− At(q)/Ft) = E

( ∫ T

t

(λsYs(q) + ψs(q))
2

Ys(q)
d〈M〉s/Ft

)
≤ const,

which (together with (4.19)) results in the estimate (4.18). ¤

Theorem 4.1. Let there exist a martingale measure that satisfies the Reverse
Hölder Rq(P ) inequality for some q0 > 1. Then for any 0 ≤ q ≤ q0, 0 < q′ ≤ q0

‖MQ∗(q) −MQ∗(q′)‖BMO2 ≤ const |q − q′| 12 . (4.20)

Proof. From Theorem 3.1 we have

MQ∗(q) −MQ∗(q′) =
1

Y−(q)
· L(q)− 1

Y−(q′)
· L(q′)
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and

E

(〈 1

Y−(q)
· L(q)− 1

Y−(q′)
· L(q′)

〉
τ,T

/Fτ

)

≤ 2E

(〈( 1

Y−(q)
− 1

Y−(q′)

)
· L(q)

〉
τ,T

/Fτ

)

+ 2E

(〈 1

Y−(q)
· (L(q)− L(q′))

〉
τ,T

/Fτ

)

= 2E

( ∫ T

τ

(Ys−(q)− Ys−(q′))2

Y 2
s−(q)Y 2

s−(q′)
d〈L(q)〉s/Fτ

)

+ 2E

( ∫ T

τ

1

Y 2
s−(q′)

d〈L(q)− L(q′)〉s/Fτ

)
. (4.21)

Since the process Y−(q) is uniformly bounded from bellow by a strictly posi-
tive constant, it follows from Lemma 4.2 that the right-hand side of (4.21) is
estimated by

const ((q − q′)2‖L(q)‖2
BMO2

+ ‖L(q)− L(q′)‖2
BMO2

).

Thus Lemma 4.1 and Lemma 4.3 results in (4.20). ¤
Corollary 4.1. Let there exists a martingale measure that satisfies the Re-

verse Hölder Rq(P ) inequality for some q0 > 1. Then

‖E(MQ∗(q))− E(MQ(E))‖H1 → 0 as q → 1,

‖E(MQ∗(q))− E(−λ ·M)‖H1 → 0 as q ↓ 0,
(4.22)

where Q(E) = Q∗(1) is the minimal entropy martingale measure.

The proof follows from Theorem 4.2 and from Theorem 3.2 of Kazamaki [22].

Theorem 4.2. Let there exists a martingale measure that satisfies the Reverse
Hölder Rq(P ) inequality for some q0 > 1. Then for any 0 ≤ q ≤ q0, 0 < q′ ≤ q0

I(Q∗(q), Q∗(q′)) ≤ const |q − q′|. (4.23)

Proof. By the definition of the entropy distance we have

I
(
Q∗(q), Q∗(q′)

)
= EE(MQ∗(q)) ln

E(MQ∗(q))

E(MQ∗(q′))

= EQ∗(q)
[
M

Q∗(q)
T − 1

2
〈MQ∗(q)〉T −M

Q∗(q′)
T +

1

2
〈MQ∗(q′)〈T

]
.

Since MQ∗(q) ∈ BMO2, by Proposition 11 of [9] the processes

MQ∗(q) − 〈MQ∗(q)〉 and MQ∗(q′) − 〈MQ∗(q),MQ∗(q′)〉
are BMO2-martingales with respect to the measure Q∗(q). Therefore

I
(
Q∗(q), Q∗(q′)

)
=

1

2
EQ∗(q)〈MQ∗(q) −MQ∗(q′)〉T . (4.24)
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Since λ · M ∈ BMO2 (see Remark 2.1), inequality (4.7) and Lemma 4.1
imply that the BMO2 norms of MQ∗(q) are uniformly bounded for q, q′ ≤ q0.
Therefore Theorem 3.1 of Kazamaki [22] implies that

sup
0≤q,q′≤q0

E(Eα
T (MQ∗(q))) < ∞ (4.25)

for some α > 1. Taking n so that n
n−1

≤ α and using (4.25), the Hölder
inequality and the energy inequality (see [22, p. 28]) we have that

EQ∗(q)〈MQ∗(q) −MQ∗(q′)〉T
≤ E

n−1
n E

n
n−1

T (MQ∗(q))E
1
n 〈MQ∗(q) −MQ∗(q′)〉nT

≤ const ‖MQ∗(q) −MQ∗(q′)‖2
BMO2

≤ const |q − q′|, (4.26)

where the last inequality follows from Theorem 4.2.
Therefore from (4.24) and (4.26) it follows that the estimate (4.23) holds. ¤

Corollary 4.2. Let there exists a martingale measure that satisfies the Re-
verse Hölder Rq(P ) inequality for some q0 > 1. Then

lim
q↓1

Q∗(q) = Q(E) in entropy. (4.27)

Remark 4.1. Corollary 4.2 was proved in [17] without assumption of the
continuity of the filtration and under assumption that the Reverse Hölder
RLlnL(P ) inequality is satisfied. As proved in the same paper, the Reverse
Hölder RLlnL(P ) inequality implies that the Reverse Hölder Rq(P ) inequality
for some q0 > 1 is satisfied.
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