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SOLVABILITY AND ASYMPTOTICS OF SOLUTIONS OF
CRACK-TYPE BOUNDARY-CONTACT PROBLEMS OF THE
COUPLE-STRESS ELASTICITY

O. CHKADUA

Abstract. Spatial boundary value problems of statics of couple-stress elas-
ticity for anisotropic homogeneous media (with contact on a part of the
boundary) with an open crack are studied supposing that one medium has a
smooth boundary and the other one has an open crack.

Using the method of the potential theory and the theory of pseudodiffer-
ential equations on manifolds with boundary, the existence and uniqueness
theorems are proved in Besov and Bessel-potential spaces. The smoothness
and a complete asymptotics of solutions near the contact boundaries and
near crack edge are studied.

Properties of exponents of the first terms of the asymptotic expansion
of solutions are established. Classes of isotropic, transversally-isotropic and
anisotropic bodies are found, where oscillation vanishes.
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INTRODUCTION

The paper is dedicated to the study of solvability and asymptotics of solu-
tions of spatial crack type boundary-contact problems of statics of couple-stress
elasticity for anisotropic homogeneous media with contact on a part of the
boundary.

A vast number of works are devoted to the justification and axiomatiza-
tion of elasticity and couple-stress elasticity. The fundamentals of the theory of
couple-stress elasticity are included in the works by W. Voight [40], E. Cosserat,
F. Cosserat [11], and developed later in the works by E. Aero and E. Kuvshin-
ski [1], G. Grioli [21], R. Mindlin [31], W. Koiter [24], W. Nowacki [34], V.
Kupradze, T. Gegelia, M. Basheleishvili, T. Burchuladze [26], T. Burchuladze
and T. Gegelia [4] and others.

It is well-known that solutions of elliptic boundary value problems in do-
mains with corners, edges and conical points have singularities regardless the
smoothness properties of given data.

Among theoretical investigations the methods suggested and developed by
V. Kondrat’ev [25], V, Maz’ya [27], V, Maz’ya and B. Plamenevsky [28]-[30],
S. Nazarov and B. Plamenevsky [33], M. Dauge [13], P. Grisvard [22] and others
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attracted attention of many scientists. They used the Mellin transform which
allows them to reduce the problem to the investigation of spectral properties of
ordinary differential operators depending on the parameter.

The method of the potential theory and the theory of pseudodifferential equa-
tions used in this paper makes it possible to obtain more precise asymptotic
representations of solutions of the problems posed, which frequently have cru-
cial importance in applications (e.g., in crack extension problems). For the
development of this method see [18], [3], [10], [9] and other papers.

The method of the potential theory was successfully applied to the classical
problems of elasticity and couple-stress elasticity theory by V. Kupradze and
his disciples.

In the present paper we consider the contact of two media, one of which has a
smooth boundary, while the other has a boundary containing a closed cuspidal
edge (the corresponding dihedral angle is equal to 27), i.e., an open crack.

Theorems on the existence and uniqueness of solutions of these boundary-
contact problems are obtained using the potential theory and the general theory
of pseudodifferential equations on a manifold with boundary.

Using the asymptotic expansion of solutions of strongly elliptic pseudodiffe-
rential equations obtained in [10] (see also [18], [3]) and also the asymptotic
expansion of potential-type functions [9], we obtain a complete asymptotic ex-
pansion of solutions of boundary-contact problems near the contact boundaries
and near the crack edge. Here it is worth noticing the effective formulae for
calculating the exponent of the first terms of asymptotic expansion of solu-
tions of these problems by means of the symbol of the corresponding boundary
pseudodifferential equations.

The properties of exponents of the first terms of the asymptotic expansion of
solutions are established. Important classes of isotropic, transversally-isotropic
and anisotropic bodies are found, where oscillation vanishes.

These results are new even for the problems of elasticity.

1. FORMULATION OF THE PROBLEMS

Let D; be a finite domain, D, be a domain that can be both finite or infinite
in the Euclidean space R® with compact boundaries 9D, 0D, (0D, € C*),
and let there exist a surface Sy of the class C*° of dimension two, which divides
the domain D, into two subdomains Dél) and DéQ) with C* boundaries 8D§1)
and 8D§2) (Dél) N D§2) = g, Eél) N 552) = Sp). Then 95, is the boundary of
the surface Sy (0Sy C 9Ds), representing one-dimensional closed cuspidal edge,
where 05 is the crack edge.

Let the domains D; and D, have the contact on the two-dimensional mani-
folds g(()l) and 382) of the class C*°, i.e., 0D1NOD, = g(()l) Ug((f), DiNDy; =@,
SVNSY =@, and $, = 9D, \ (S USY). Then oD = S8V US Y US,,
oD — P LS U,

Suppose that the domains D,, ¢ = 1,2, are filled with anisotropic homoge-
neous elastic materials.
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The basic static equations of couple-stress elasticity for anisotropic homoge-
neous media are written in terms of displacement and rotation components as

(see [5], [19])

MDOUD + FD =0 in D, ¢q=1,2, (1.1)
where U@ = (1@, w @), u@ = (u{? u{?, ugq)) is the displacement vector, w(® =
(W', Wi WY is the rotation vector, F@ = (F?, .. Fi?) is the mass force

applied to D,, and M@ (3,) is the matrix differential operator

1 2
(@) (@)
M@ (d,) = /\34 9(0,) /\4/1 D(0,)
M@ (0,) M (@) (0,)

Y

6x6

l (9) ! (q) —
M(0:) = || M (Ou)llsxs, 1=1,4, ¢=1,2,
1

MD@,) = a0, MD(0,) = b9,0,0, — 21sa. 0,

ijlr
3
M ('q)(ats) - blgijaial + €irja,-31kaz, (1-2)
v 9(0,) = c8,0,0
Mjk‘ ( ) Cz]lk; (A

(a) .
lrzygh"ka + Eirj zrlkal gipjngkaiplr’

gik; is the Levi-Civita symbol, aljl)k, bigl)k, E;ll)k are the elastic constants satisfying
the conditions
(@) (q) (@ _ (a) _
ai?lk allZ@]? Cl;]lk ngma q=12
In (1.2) and in what follows, under the repeated indices we understand the
summation from 1 to 3.

It is assumed that the quadratic forms
”lkfzgflk + QbEﬁk&jmk + ngl)kmmzk, q=12
with respect to variables ;;,7;; are positive-definite, i.e., IM > 0
az(?l)k&jglk‘{abg]q'l)k&jnlk‘}'cl('?z)knij771kZM(gijgij‘Hﬁknlk) for all &j, mix, ¢=1,2. (1.3)
We introduce the differential stress operator
@9 @) (9
N(q)(az,n(z)) — -/\3/ (0:,n(2)) ./Y (0:,n(2))
N@(0.,n(2)) N D(0:,n(2))
! S
N (q)(azan(z)) - || N]k (aZ7n< ))||3><37 l = 1747 q = 1727
2
N (0-m(2)) = afhms(2)0h, - AP (0:0m(2) = B8 (2)0h — ey (2),
o b(q ) L () o (9) 9 — b(q
N ( Z’n(’z>) lk‘z] ( ) Iy N]k( Z7n(z)) - Cz]lknl( ) l l'r’zjgl?"knl<z)

where n(z) = (n1(z), na(z),n3(z)) is the unit normal of the manifold 9D, at a
point z € 9D, (external with respect to D;) and a point z € 9D, (internal with
respect to D).

6x6
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In what follows the stress operators are denoted by
ND = N D9, n(2)), ¢=1,2.

Let M@ (£) be the symbol of the differential operator M (9,) and M @(¢)
be the principal homogeneous symbol of the differential operator M@ (3,).

We introduce the following notation for Besov and Bessel potential spaces
(see [39]):

B, =B, x B, B, =B xDB, H =HxH, H=HxH.

prr Opr P,
(@ .(2)

From the symmetry of the coefficients a;;;;., ¢;;y, and the positive-definiteness

of the quadratic forms (1.3) it follows (see [19]) that the operators M@ (3,),
q = 1,2, are strongly elliptic, formally self-adjoint differential operators and
therefore for any real vector £ € R3 and any complex vector 7 € C8 the relations

Re(M @ (©)n, 1) = (MD(E)n,n) > PLOIE2n)

are valid, where PO(Q) = const > 0 depends only on the elastic constants. Thus

the matrices A (@ (¢) are positive-definite for £ € R3\ {0}.
Taking into account the property of the Levi-Civita symbol

Oi Oir O
Eipj€irk = det | Oy Opr Op (0p is the Kronecker symbol),
dit Ojr Ojk

it is not difficult to observe that

(MD(E)n,n) = (MDEnm), g=1,2.

Then we obtain that the matrices M9 (§), ¢ = 1,2, are positive-definite for
¢ € R\ {0}.

Since
det M D(€) #£0 for & #0.

Let UV € Wy (D), U € W) oe(Ds). Then nt® = rpatd® € WD)
and rU? = r <2L{2) e Wl
D(Z) i=1,2. From the theorem on traces (see [39]) 1t follows that the trace of
the functions U@, r U@, i = 1,2, exists on Dy, 0D, i = 1,2, and {U }jE
BYY (0D)), [ral®)* € BYY 0D, i = 12, pf = p/(p—1). Let ul)
W(D1), U € W}, (D2) be such that MM (9, )UY€ L,(D1), M@ (9,)U? €

Ly comp(D2).  Then {NOYDIE and {N® (ryP)}* i = 1,2, are correctly
defined by the equalities

ZOC(D )), where r; is the restriction operator on

[_ AUV + EO W v da

= j:({/\f Wy (VW) p, for all VO € Wy (D) (1.4)
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and
o M@ rtd®) + BO (rd® vy)]da
Dl
= :F<{N(2)(Tiu(2))}i, {Véi)}i>aD(i), 1=1,2, (1.5)
for all V¥ € WD) (V) € W, (D)),
where

1)
EOU®O, V) = a6 UD)en (V™) + b6 O ()
(1 D
i (V) @) + e UV
here UV = (v, W),
&ij UWY) = 8ju§1) — g;kwi 1s the deformation component,
ni; (U My = O;w; is the bending torsion component.
The quadratic form E® (r;if®?) V2 ) t = 1,2, is defined analogously.
In the case of the infinite domain Ds, for solving equation (1.1) the condition
UP(z) =o(1) for |z| — oo (1.6)

is assumed to be fulfilled at infinity (see [4]).
We can prove (see [4]) that

U (z) = Oz ) for |z] — oo

is valid for any solution of equation (1.1) satisfying (1.6) the relation.

Let us consider the model problems M; and M.

We will study the solvability and asymptotics of solutions 4@ e I/Vp1 (D), q=
1,2, (UP € W) ,,.(Dy) with condition (1.6) at infinity) the following boundary-
contact problems of couple-stress elasticity:

Problem M;:
( MDO)UD =0 in D, ¢=1,2,
T, {UDI = on 9,
To INO (U = gy on SV,
T (NP (U D)} = o on 557,
T {UDY =g {ritd D} = f; on 5§,
| T AINOUDY — 1o N (rU )} = hy on s i=1,2,

where
o1 € Bl/p/(SH) P2 € B_l/p(sz ))7 Y3 € B_l/p(5(2))
fie B (SS), hi € By/P(SY), i=1,2, 1<p<oo, p=p/lp—1).

If D, is a finite domain, then we have the following wedge-type problem:
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Wedge-type Problem M,:

( MDD (O )UD =0 in D,, ¢=1,2,
T ANDUDYT = on S,
e {N @ (U} = o on SV,
T (N (D)} = 5 on 557,
T {UOF = mp frdd B} = on Sy,
Mgt {N(l)u(l)}+ gl {N(2) (Tiu(2))}+ =h; on S(()i)> 1 =1,2,

where
01 EBYY(S1), w2 € B (SY), s e B (S,
f,EB_l/p(Sé)), hi G]B%l/p(S( ), i=1,2, 1<p<o0.

2. FUNDAMENTAL SOLUTIONS AND POTENTIALS

Consider the fundamental matrix-functions

HD (z) = Folw ( j:/ (M@ (¢, ZT)) m”‘”’dT) qg=1,2,
Ly

w_»

where the sign refers to the case x3 > 0 and the sign “4” to the case
x3 < 0; x = (11,22, 73), ' = (21, 29), & = (&1, &2); fﬁi denotes integration over
the contour £*, where £, (£_) has the positive orientation and covers all roots
of the polynomial det M@ (i¢’, i) with respect to 7 in the upper (resp. lower)
7-half-plane. F~! is the inverse Fourier transform.

The simple-layer potentials are of the form

VO (g)(x) = | HY (@ —y)a(y)d,S, ¢ Dy,

0Dy

Vi) = [ HOw—m)d,S. agonf
D2

VO (gs)(x) = H (2 - y)gs(y)d,S, =z ¢ D

oD§?

For these potentials the theorems below are valid.

Theorem 2.1. Let 1 < p < oo, 1 < r < co. Then the operators V¥ i =
1,2,3, admit extensions to the operators which are continuous in the following
spaces:

v . IB%;’T(E)DI) _ Bs+1+1/p(D ) ( ;p(aDl) R H;—f—l-i—l/p(Dl))’
v . IB%;’T(E?DS ) — IB%S““/ ( ) (B;p(aDél)) - Hs+1+1/p<D(1)))7
ve . ]B%;’r(aDg) S+1+1/p< ) (B;p(ﬁDf)) _)HerlJrl/P(D(Q)))

p r,loc p,loc
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Theorem 2.2. Let 1 < p <00, 1 <r < o0, e >0, g1 €B,,7(0D,),
g2 € B 1+<(ODYY), g5 € B, 1+<(DSY). Then
{VW(g1)(2)}* = HY(z = y)or(y)d,S, =€ dDy,

0Dy

V0g) () = | HOGE=y)g)d,s, =€ oDy,
D,

O = [ W=, = oDy
D,

Theorem 2.3. Let 1 < p < 0o, g1 € Bpp/"(9D1), go € Bpp/P(ODY), g5 €
B,/ "(ODS). Then
1

{/\f(l)V(l)(gl)(z)}jE = :Fi g1(2)
+ N(l)(aZ’n(Z))H(l)(z _y)gl(y)dysv Zean
oD,
1
{N®V®@g@”i:i§@@)
+ ( )N(Z)(az, n(2))H? (2 — y)ga(y)d,S, =€ aDél),
aD{!
1
[NOVO) (g5)(2)} = 5 93(2)
+ )N(Q)(ﬁz, n(2))H?(z —y)gs(y)d,S, z € oD,
oD

Let us introduce the following notation:

VE@)E) = | HOGE=yaw)d,S. =€ oDy,

VE(g2)(2) = o MG 0e)d,S, 2 € oDy,

VA = | HOGE e, = eoDy,
Vi) = | NO@ RO~ )i(w)d,S, = € 0D,
V) = | NO@ DR~ )ea(u)dyS, = € 0D,
V) = | NO @R~ )os()d,S, = € oD,

Theorem 2.4. Let 1 < p < oo, 1 < r < oo. Then the operators V@l,

\% (()i), 1 =1,2,3, admit extensions to the operators which are continuous in the
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following spaces:
VO S (09Q)) — HETH(0)
(B,.(04) — BH'(0%%)), i=1,2,3,
v H(09) — HI(09)
(B, (0%) — B;, (%)), i=1,2,3,
here Ql = D17 QQ = Dél), Qg = DéQ)

3. UNIQUENESS, EXISTENCE AND SMOOTHNESS THEOREMS FOR
PROBLEM M;

From the ellipticity of the differential operator M®(9,) it follows that any
generalized solution of the equation

MPDOUP =0 in D,
is an analytic function in Dy (see [17]). Then we see that the equalities

{rUPY — {r U P}t =0 on Sy, (3.1

(N (U + INP (rd D)} =0 on Sy '
are valid on Sj.

Let us study the uniqueness of a solution of the boundary-contact problem
M, in the classes W3 (Dy), ¢ = 1,2 (W3, (D2) with condition (1.6) at infinity).

Lemma 3.1. A solution of the boundary-contact problem M; is unique in the
classes Wy (Dy), ¢ = 1,2 (W3,,.(D2) and satisfying condition (1.6) at infinity).

Proof. Let U9, g = 1,2, be a solution of the homogeneous problem M.
We write the Green formulae (see (1.4), (1.5)) in the domains D, Dél), D§2)
for the vector-functions UM, rit @, rUd? as

/ EOUY uM)dz = ((INOUDYAUDY op,
o (3.2)

/(_) ED U ridPdr= —{N® (rd ) {rd P} i=1,2.
Dy

oD

Taking into account the boundary and boundary-contact conditions, the
Green formulas (3.2) can be rewritten as

/ E(l)(u(l),u(l))dw — ({/\/(1)?/1(1)}+, {Z’{(l)}+>sgl>us(§2>’

= (3.3)

/ (V)E(Q)(n-l/{@), ridd P de = — (N (rU ) {rd P} i=1,2.
Dy’

SIUSENE

Since equalities (3.1) are fulfilled for the function U®, we have
N (U (@Y )g, = —(IND D)} @Y g, (34)
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Summing now the Green formulas (3.3) and taking into account (3.4), we
obtain

/ EOUY YD )dx + / E®D (U, riU?)dx
D,

D{Y

+ / o E® (rU @ rod P )dx = 0. (3.5)
D

From equality (3.5) and the positive—deﬁniteness of forms (1.3) we have

8ju§ awkwk =0,
dw® =0, ¢=1,2.
Therefore
wl® = [a(l) X ] + b, @ =q@ =12
and
U — ([a(q) X ] + b(q)7a(q))’ g=1,2,

where a(@ and b9, ¢ = 1,2, are arbitrary three-dimensional constant vectors.
By virtue of the contact conditions it is clear that

a® — 0@ and D — 5@
Since {UM}*+ =0 on S, we have
U (x)=0, z€D, q=1,2. l

Any extension 1) € B/¥ » (0D1) of the function ¢; onto the whole boundary
0D; has the form

o = & + o) + 0",
where <I>(()1) is some fixed extension of ¢; and gpél) € IE%;{,? ( ) %1) € Bl/ Y (Sg (2 )).
Any extension ®® € B,,/?(9D") of the function ¢, onto the whole bound-
ary 8D§1) has the form

e :<I>82)+ (2)+¢(()2)7

where ®{” is some fixed extension of s and ¢ € B,/ 2 (S, v € B,4/P(S0).
Any extension @ € B, ,/?(9D) of the function @3 onto the whole bound-
ary 8D§2) has the form

@ = of + Y +¢07

where <I>( ! is some fixed extension of ¢ and gpo €B, 1/”(5(() N, (3) € Byy/"(So).
A solutlon of the boundary-contact problem M1 will be sought for in the
form of the simple-layer potentials

V(2)g2 in Dél),

UM =vWy in Dy, Uu®? =
o ! V®g, in D).



436 O. CHKADUA

Taking into account the boundary and boundary-contact conditions of prob-
lem M; and equality (3.1) we obtain a system of equations with respect to

1 1 2 2 3 3
(gl7927g3a90(() )aw[() )7908 )>¢é )aSO(() )?w(() ))

( V(_?QI - 80(()1) - ¢él) = ‘D(()l) on 0D,
ST+ P P e on o0
S I
—Wsél)V(E%QQ + goél) =f1— 7TS(()1)(I)81) on S(()l),
ﬂsén(—%f—i- {/gl))gl — g062) =hy + g <I>é2) on S(()l), (3.6)
-7 sémV(_?’%gs +ps) = fo—m 5 ol on S,
T (—5T+ Vi) — o) = hy + so® on S5,
75, Vg2 — 15,V g5 = 0 on Sp,

\ (()2) + @D((J:))) = —Wsoq)ém — Wso@é3) on Sp.

It is almost obvious that system (3.6) has a solution if and only if the com-
patibility conditions on 95

30y € B, L ODY), @f e B L(ODS)) : ms, @) s, @5 € B (So) (3.7)

hold for ¢y € B, (SSY), 3 € B, (S5), ms, @5 + 75, @5 € B, (So), 1 <
r<oo,l<p<oo,1/p—1/2<s<1/p+1/2.

Note that these conditions hold automatically when 1/p —1/2 <s < 1/p or
1/p<s<1/p+1/2 (see [39]).

Denote by A the operator corresponding to system (3.6) and acting in the
spaces

1 2 1 2
A My =i (B3, —53)

where

(1) ~ ~
Hy=Hy"'(0Dy) & Hy ' (0D5") & Hy ' (9D5Y) & H3(S§") @ Hy(S5”)

SHH(SY) @ HE(So) @ HEH(SSY) @ H37Y(So),

(2)
H; =H,(0D)) ® Hy ' (0D,") @ Hy ™ (0D,”) @ Hy(Sy) @ Hy ™' (S5”)

SH(SSY) @ HE1(S$) @ HE(So) @ H3™Y(So),

(1) ~ ~
B, =B;,'(0D)) ©B;, (0D5") © B}, (9Dy”) @ B}, (S;”) © B}, (S5”)

oB;,'(5y") @ By, (S0) @ By, (57) @ B}, (S0),

(2)
B, =B:,(0D:) & B, (9D) @ B, (0DY) @ BS,.(S5") @ B, L(S5")

®B:,.(S57) ® B, 1(SSY) @ B3, (So) @ B, (So);
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the symbol & denotes a direct sum of the spaces.
Consider the composition of the operators

Do A,
where D is the invertible operator of the form
D = diag{Z, -V?, -V® ... T}sixs.
Consider now the operator
Auy=Ty+Do A, M=23, ...,
where
Tor = diag{0, (=VEDM (=VE)M 0, .. 0}sar5-

Since the operator A, differs from the operator D o A in a compact operator,
it is sufficient to investigate the operator A,; acting in the spaces

M, ©, O
Av o Hy =M, (B, —Bj,)s

where

(3)
Hj = H3(0D1) ® Hy(0D{")  Hy(0D{Y) & Hy(S(") & Hy~ (5

SH3(SP) @ HEH(SP) @ H3(Sp) @ HEL(So),

3)
B, =B;.(0D:) ©B;,(0Dy") @ B; (0Dy”) @ B}, (S5”) © By, (")

®B:,.(S57) @B 1(SSY) @ B2, (So) @ B, (So).

Now consider the system of equations that corresponds to the operator Ay,
given by

(v — Y — gV = w on dD;,
(VI =V GT+ V) 3+VEF +VE G =0 on DL,
(VM VAT v )5+ VD + VOGP =0 on 9DP,
—WSSI)V(_Z%:&Q +o = on SV,

| 7TS(()1>(—%I+ \*/'(()1))51 — 582) = Gy on Sél), (3.8)
—7TS(()2)V(_3%§3 + {/;(()1) = on SéQ),

oo (—5T+ via -3 = R on S§7,
WSOV(_QEQ — WSOV(_?’%:&S = E on Sy,

L 1;(()2) + 7%3) = Fy on Sy,

where

) e Hy(OD,) (B, (0Dy)), w§) e H3(0D") (B;,(aDSY)),
v e Hs(0DS) (B;,.(0DY)),
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G e H(S5") (B;,(S0"). Ga e H'(S5") (B;,'(S5").
F e Hy(S) (B (S57), Fe € Hy7'(S5”) (By(S5”)),
FE; € H;(So) (IBZ,T<SO>)7 FEs € Hf)_l(S()) (B;;l(SO))
The YDO —V(_lz is positive and the operators —V@l(%l%— X*f(()i)), i=2,3, are
nonnegative, i.e.,

(V8¢ )ap, >0 forall p € Hy*(ADy), ¢ #0,
1 ~
<_v< ><21+ vy >¢ ¢> L >0 forall e H,*(0DL)
2

and
@) (1 * (3) —1/2 )
< - V,1(§Z+ v )¢,¢>8D£2) >0 forall ¢ e H,Y*@D?),

the equality being fulfilled only when ¢ = ([a x x| + b, a), where a and b are
arbitrary three-dimensional constant vectors.

The proof of these inequalities follows from the Green formulae (see [32]).
Then the YDOs

BY) = (V)M _ V”( T+ v ) i=23,

2
are positive operators, i.e.,
(B, 0)yp > 0 for all ¢ € B *(0D), o #0,
<B§\?/})¢, ¢>8D§2> >0 forall v € Hz_l/Z(aDém)’ v #0.

Hence the ¥YDOs V(f} and Bg\?, i = 2,3, are invertible (which is proved as in
[32], [7]). The first, second and third equations of system (3.8) imply

51=<V92> 1B+ (VO 4 (v el
5= —B)) VI - B + B, i =2,3.

After substituting g1, g2, g3 into the remaining equations of system (3.8), we
obtain a system of equations whose corresponding operator has the form

7TS(1)A(ZL', D) 0 0
0
P = O 7TS(()2)B(.T, D) 0 +T_ooa
0 0 T5,C(7, D) / 45 a6
where
7T561>V(_2% (Bg\?)*lV(_Q{ A
A(ZE,D) - I 11' - (1) V(l) -1 ’
- 7TS(()1>(_§ + Vo ) (V)
wsémVQ(Bg?)—lv(j”} T
B(z, D) = ! Wy yWy—1 |’
—I 7TS(()2)( §I+ VO )(Vfl)
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— 0 —

2) 11 (2 17 (2 3) (3 173
_ (s VEBRD)VE mg VOBV
C(z,D) =
A 7z
and 7_., is the operator of order —oo.
Further, after the localization, the operators A(x, D) and B(x, D) are reduced
by means of lifting to the strongly elliptic ¥DOs of order 1, while the operator
C(z, D) is reduced to positive-definite WDO.

Indeed, let A(z’, D") and B(z/, D’) be ¥DOs with the symbols o4 (2/,¢’) and

os(2', &) (& = (&,&)) “frozen” at the points and written in terms of some
local coordinate system of the manifolds Sél) and Séz), respectively.
Denote
L. 0 L. 0
R(z', D) = < 0 7 ) oA(z',D') o ( 0+ I>
and

Q' D) = ( b §>OB<;U',D/>O ( b g)

where L, = diagA,, L_ = diagm, A_¢ are 6 x 6 matrix operators, AL is a DO
operator with the symbol AL (¢') = & +£i £i|&|, mo denotes the operator of
restriction onto R%, and ¢ is an extension operator.

The operators
L. O
0 7

are invertible in the respective spaces (see [39]).
The principal homogeneous symbols of the ¥DOs R(z’, D) and Q(a’, D') are
written as

o (ZL‘, g/): (fn—l—i|§//|)0N2(x/75/)(§n_1+i|€//’) (571 1—2|f”‘) .
o —(&no1 + €T () ) ()

o (x/ 6/): (gnfl_l-‘fllpo'Ng(gj”5’)<£n71+i|€//’) (fn 1—2’&“”‘) .
- (s )T e )

where on, (7, &), on, (7', &) and on, (2, ') are the principal homogeneous sym-

bols of the ¥DOs
1 *
Ni = (—5Z+ Vi) v N = VEBE)VE, Ny = vE®BE) VY,

respectively, written in terms of a given local coordinate system, and Z is the
identity matrix.
Let )\gz), k=1,...,12, be the eigenvalues of the matrix

(JR(I1,0,+1))_10R(x1,0, —1), = € 35((]1),

[ on,(21,0,-1) —Z
UR($1,O7_1) - ( T UNl(l’l:O;_l) ’

where
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_ 0N2($170’+1) I
UR<x1,07+1) - ( -7 0N1($170a+1) ’

and let )\g), k=1,...,12, be the eigenvalues of the matrix

(Uq(x1,0,+1))_10Q(:U1,0,—1), T € 85'(()2),

where

UQ(J]l,O,—]_) p— < O-N3(x170,—1) -7 ) |

I O-Nl(x1707_1)
(o, (21,0,+1) z
UQ<:E1;07+1) - < —I O—Nl(xlao7+1>

Introduce the notation

1 ; 1 ;
R = su ‘—ar A ( , 0g= su ‘—ar A9 (g ,
R 19512 o g AR (71) Q 1§j52 o g Q( 1)

z1€05" z1€05?

0= max(éR, 5Q)

Using the general theory of pseudodifferential operators (WDOs) (see [35],
[36], the following propositions are valid.

Lemma 3.2. Let 1 <p<oo, 1 <r<oo,1/p—1/2+5<s<1/p+1/2—0.
Then the operators

R(«, D) : H3(R2)®HI(RY) — HY(R2) @ HE L (R?)
(B;,.(®) © B, (R}) — B}, (R}) © B, (RY)),
Q. D) : HY(RY) @ H(RY) — HZ '(RY) @ HY'(RY)
(B;,.(R}) & B;,(RY) — By (RY) @ B, (R))
are Fredholm.

Note that the YDOs R(z’, D’) and Q(z’, D’) are Fredholm in the anisotropic
Bessel potential spaces with weight

B () T () — M4 (RE) @ B H(RY)

forall p € Rand £k =0,1,... (see [10]).
Since the operators o) Ny, WS(DNQ, 7TS(2)N1 and 7TS(2)N2 are positive-definite,
0 0 0 0

we obtain a strong Garding inequality for the operators A(z, D) and B(x, D)
(see [6, Lemma 3.3]). Hence, using the results obtained in [2], [23], we have

Lemma 3.3. Let 1 <p<oo, 1 <r<oo,1/p—1/2+5<s<1/p+1/2-9.
Then the operators

g Az, D) H(S5Y) @ H(S5Y) — H(SMY) @ 3 (S5Y)
(B;,'(55") @B}, (55") — By, (S5") @ By, (57))
Tga Az, D) H'(S5) @ H(SSY) — HE(SY) @ HE(S5Y)
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Ns— 2 NS 2 S 2 S— 2
(B:1(S5?) @ Bs,.(S5) — B3, (S57) @ B, (S5))
are invertible.

Let us consider the operator C(x, D). The corresponding system

) =
%0 FEy
w5, C(x, D =
So ( ) ( 80(()3) > ( Fy )
is reduced to pseudodifferential equation on the open manifold Sy

71-S()]-w‘{/;(()g) = El7 TZ(()Q) - _TZ(()3) + E27

where N = Ny + Ni.
The ¥DO 7g,N is positive-definite and the following proposition holds for it.

Lemma 3.4. Let1 <p<oo,1 <r<oo,1/p—1/2+5<s<1/p+1/2—06.
Then the ¥ DOs

ms,N 1 H'(Sp) — H3(Sp)
(B; (S0) — B;,,(S0))
and
75, Cla, D) = HH(Sp) @ HE(So) — HE(So) @ HE(So)
(B, (So) @ B;, (S0) — B, (S0) © B;, (S0))
are invertible.

Note that the DO 7g,N is invertible in anisotropic Bessel potential spaces
with weight H* ™% — HY*(50) (see [10]).
Lemmas 3.3 and 3.4 imply the validity of the following proposition.

Lemma 3.5. Let 1 <p<oo,1 <r<oo, 1/p—1/2+5<s<1/p+1/2-34.
Then the operator

Hy'(So) @ Hy(S5")  H(SY) @ M (S(")

@D @D
P HY(SY) @ H(SY) — Hs(S5) @ Hs (S5
H>~(So) @ H3~1(.Sp) H(So) @ H(:So)
Byl (5") @B, (s5Y) B, (S) @B l(S)
B (SO @B, (S5Y) — B, (S57) @ B:, 1 (S5Y)
B3 (So) & B3 (So) B, (So) ® B3, (So)

18 1nvertible.
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Theorem 3.6. Let1l <p<oo,1<r<oo,1/p—1/240 <s<1/p+1/2-9,
M =2,3,.... Then the operator

OGN (1) (3)
Ay : H)—H, (B, —B3,)

15 invertible.
Lemma 2.1 and Theorem 3.6 imply that the following proposition is valid.

Theorem 3.7. Let 1 <p<oo,1 <r<oo, 1/p—1/24+5<s<1/p+1/2-9.
Then the operator

1s 1nvertible.

If we take s = 1/p’ in the condition for the operator A to be invertible (see
Theorem 3.7), we conclude that p must satisfy the equality

395 “PS1795

Theorem 3.7 and the above reasoning imply the validity of the solution exis-
tence and uniqueness for problem M;.

Theorem 3.8. Let4/(3—260) < p < 4/(1+25) and the compatibility condition
(3.7) be fulfilled for s =1 —1/p. Then the boundary-contact problem M; has
a unique solution in the classes W, (Dy), q = 1,2, (W, ,.(D2) with condition
(1.6) at infinity), which is given by the formulae

Vg, in DSV,
UV =vgy in D1, U = VO in Dy,
75, V%02 = w5, Vg5 on Sy,
where g4, ¢ = 1,2,3, are obtained from system (3.6).
Theorems 2.1, 3.7 and the embedding theorems (see [39]) imply

Theorem 3.9. Let 4/(3 —2§) <p <4/(14+20), 1 <t<o00,1<r< o0,
1/r—1/240 < s < 1/r+1/2—4, the compatibility condition (3.7) with t instead
of p be fulfilled, UD € Wy (D,), ¢=1,2, U3 ¢ W) 1oe(D2) with condition (1.6)
at infinity) be a solution of the boundary-contact problem M. Then:

if o1 € B, (S1), w2 € BLU(SYY), 5 € BIN(SEY), fi € By(Sy), hi €
B, (SS)), i = 1,2, we have U@ € Hy™/"(D,), q = 1 2, (U e Hjij/T(Dz)),-

if o1 € BL(S), ¢2 € BL(SY), w5 € BLN(SY), fi € BL(S))), i €
B, S, i = 1,2, we have U@ € IB%SH/T(DQ), ¢=1,2, (UP ¢ ]B%SH/T(DQ)).

r,t,loc
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4. ASYMPTOTICS OF SOLUTIONS

Now we will write the asymptotics of solutions of the boundary-contact prob-
lem M;. The boundary and contact data are assumed to be sufficiently smooth,
ie.,

Q1 € HS«OO’S+2M+1)’OO(51), = H(oo,s+2M),oo(s§1))7 = H(oo,s+2M),oo(s§2))’
fz‘ c ]I_Hq(n<3~o,s+2M—‘r1),oo(S(()i))7 h c H 00,5+2M), (S( )) i = 17 2;

here the numbers r and s satisfy the conditions of Theorem 3.9.

Let mq,...,mo, be algebraic multiplicities of the eigenvalues Ai, ..., Ay,
S my =12, where \; =AY, j = 1,...,2¢.

We introduce the notation

bR(QL’l) = (UR((El, O, —Fl))ilOR([El, O, —1)
Let
bor (1) = K~ (z1)br(21)K(21), =1 € 9SS,

be a quasi-diagonal form, where K is some nondegenerate matrix function
det/C(z1) # 0, and K € C™ (see [20]).

The asymptotics of solutions to a strongly elliptic pseudodifferential equation

(see [10, Theorem 2.1]) implies the asymptotics of solutions of the pseudodif-
ferential equation

R(2',D')x = F, F € HE Moo (R2) x HESsHM)eo(R2 )

r,comp r,comp
written in terms of some local coordinate system of the manifold S(l)
Thus we obtain an asymptotic expansion of the solution y = (Xl; Xa2) '

« 1 _
M, @,6) = K(a)ayT2OBY (= o loga ) K (21)co(w1)

o 2mi
+ Z K(x1) xé/i+A TR, (21, log Toy) + X1 (21, T4 ), (4.1)
for all sufficiently small x5 | > 0, x,,., e H M) ee (R2) % HSm M) o0 (R2);
BY (t) is defined in [10]; the 12 x 12 matrix function By(21,t) is a polynomial
of order vy = k(2mo — 1) +mg — 1, mg = max{my, ..., ma} with respect to the

variable ¢t with 12-dimensional vector coefficients which depend on the variable
z1 and

A(z1) = (Ai(21), Ag(z1));

here
A _ 5(J') §(J) 50) 5(1) = 1.9
i(1) (\1 (z1),...,0; (xl)a---a\g (21), .., 07" (21)), ’ 4
mi-times me-times
1 )
o (11) = o— arg Me(w1) — 5= [Ai(a)),
2T 2T

1 i
5;(3)(1‘1) = “or arg Ap(z1) — %l)\k(iﬁﬂ, kE=1,.../
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Without loss of generality suppose that the matrix ngr (t) has the form
B, (t) = diag{B;, (t), B,, (1)};

apr

here ngr (t) is the upper triangular block-diagonal 6 x 6-matrix-function defined
in [9].
Hence for the functions y; and y, we can write an asymptotic expansion.

Indeed, let
o Ku(zr) Kia(z)
IC(xl) o ( ’CQI(*II) K:22<5(31) 12x12

K an)eo(an) = (e (1), e (20)) T (42)
where KC;;(z1), 4, = 1,2, are 6 X 6-matrices, c(()i), 1 = 1,2, are six-dimensional
vector functions. Then

and

Aj(x 1 i
i(T1,22.4) ZIC” x1) $§/42_+ a 1)ng<— %logx2,+>c(())(:v1)

2 M
A (x i i .
D KT B (w1 log v 1) + Xy (21, 224), 1= 1,2, (4.3)
=1 k=1

where y\ 1 € H s (R2) and B (xl, t) is a polynomial of order v, =

k(2mo — 1) +mo — 1 with respect to the variable ¢ with six-dimensional vector
coefficients which depend on the variable z;.

We can also obtain an analogous asymptotic expansion of the solution y =
(X1, X2) of the strongly elliptic equation

Q(xlv Dl)% = ﬁ, ﬁ c H(OO’S+M)’OO(R2 ) X H(Oo s+M),00 (Ri)

T,C0Mp T,COMp

in terms of some local coordinate system on the manifold SO % Indeed, we have

~ 1/24A;(x 1
Xi(T1,22,4) = ZICM(I’ )$2/++ o ngr < - %10%952 +)b( )(xl)

where S{E\i/j)ﬂ € ﬁﬁ?g;§M+1)7“(Ri), ﬁj, j = 1,2, are defined as A;, j = 1,2, by
means of the eigenvalues Ag), k=1,...,12, of the matrix bq.
Let us consider the pseudodifferential equation

WSON'(Z((F) = El and {/;(()2) == —QZ(()?)) + EQ,
where

N =v3(BE) v + v (BE)vE.
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The following equalities hold for the principal homogeneous symbols of the

operators V(_Z)l and {/((f), 1=2,3:
avﬁ(:c’,gf) = oy (z', &) for o' € S,
1ol !¢l ! Q (45)
a\72>(a:,£):—a\73>(x,£) for 2’ € Sy.
0

In view of equality (4.5) we can write the symbol on(2/,&) of the ¥YDO
operator N as follows:

N Oy
+ [(EI — Oy (o, 5’)) (U—v@) («, 5,))_1] -

Since the symbol o - e (2', &) is an odd matrix function with respect to &', while

-1

the symbol O'_V(_Qi( f ) is an even matrix function, one can easily ascertain that
the symbol on(2’, ') is even with respect to the variable ¢’ i.e

on(2', =€) = on(2,€), 2’ €8y,
and all eigenvalues of the matrix

(O'N(l'l,o, —{—1))_10'1\1(1’1,0, —1) = I, X € 850,

are trivial A\J) =1, j=1,...,6.
Applying the result on strongly elliptic pseudodifferential equations (see [10,
Theorem 2.1]), we obtain, in terms of some local coordinate system, the follow-

ing result on asymptotic expansion of the functions z/J(()i), 1=2,3:

1/1(())(9017$2,+) =(-1) e o(@1)w, 1+/2+Z 1/2+ )+¢§\4)+1($1,$2,+)7 (4.6)

where cg, d,(;) € C§°(R), and the remainder ’(/)AZ_H € HﬁofofnJ;MH) (R3),i=2,3,
M € N. As we can see from (4.6), due to the properties of the symbol on(2’, ')
(see [12]) there are no logarithms in the entire asymptotic expansion.

Let g = (g1, 92, 93, 25 05 057, 057, 082, 65Y) be a solution of system (3.6),
i.e.,

Ag =2,
where
¢ = ((I)él)7 (I)(()2)7 (I)((Jg)7 fl - 71'5(()1)(1)81), ha + 7'('5,(()1)(1)82)7 f2 - ﬂ-SéQ)(I)(()I)’
hy + 742 @7, 0, —(75,®85” + 75, 95”)).
Then
DoAg =V, (4.7)
here

v = (0, VAR, -Vl i — 7o by + w0 @, fo — w0,
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ho + g2 (ID(()?’), 0, —(ms, CID(()Q) + s, @63))).
Now adding the expression
Tonprg = diag{0, —(VE)2MH_(yE)2MHL g 0lg
to both parts of system (4.7), we obtain the equality
Aoprarg =0, (4.8)
where
B = (00 V0 — (Vg VD — (Vg £~ g
hi + wsél>cbg2’, fo =7y o hy + T 0.0, — (5,02 + 7rgo<I)(3))).

Thus (—Ljrlgo((f), go(()l)) satisfies, in some local coordinate system of the mani-

fold Sél), the pseudodifferential equation

R(z/, D) ( ig ) = F,

and (—LZ ¢((]3), goél)) satisfies, in some local coordinate system of the manifold
S(()Q), the pseudodifferential equation

Q. D) ( % ) _F

Xo

where
F= (L Fr, Fz)
=f —7TS(1)(I) 2 — Tgv V (B2M+1) 1V (I)
_WS(DV( )(BS‘ZH) 1y (2 w(Q) - ()V@%(Bgﬁngl)_l(V(_%)QM“gg,
Ey=hy + 7TS(1)(I>( S(l < _’Z_|_ VO )(Vgi)—l@él)
1 «
e (- )
and

ﬁ = (L ﬁl? ﬁZ)
f2 - 7TS(2)<I>( ) —+ 71'5(2)V (B2M+1) 1V(3 (I)
_7TS(()2>V(_1)(BéJ\)J+1) (V(_i)2M+1¢(()) e S (B§M+1) 1(V(_%)2M+1g3,

_ 1 -
Fy=ho+ 71'5(()2)(1)(()3) — 7TSC()2) ( — §I—|— VO )(V(_lz) 1@81)

1 *
g ( Lt Vé”) (VO el

here
Fy e HEMo(RY),  F € Higa?>°(R2), i=1,2.

T,cOmp T,cOmp
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Further, we have that (w((f), (()3) ) is a solution of the system

c v 0
ms,C(x, D = .
i ( ) ¢63) ( _(WSO(I)(()Q) + 71-~90(I>(()3)) )

This system can be reduced to a pseudodifferential equation with the positive-
definite operator

WSONw(()g) = E17 82) = —wé3) (WSO(I)( ) + ﬂ-So(I)(g));

where
2 3) 1 (3) 3
N = V(%(ng\)/ﬁ—l) 1V() V( (BéM—H) lv(i

and
By = —wSOV”)(Bé%V,H) VAR - m V(B (VE) g
2 2 — 2 2 3
+ 75, VA (B 1) TV o wSOVEMBé)M) WO (15, B + s, @5);

here
Ey € Hi b2 (RY).

r,comp
Hence we can obtain asymptotlc expansmns (4 3), (4.4) and (4.6) for the func-
tions —L +1<,0(()2) , go(()2), Lt ((]3), 900 ) and wo : ((]2), respectively.

We now define g1, go and g3 by the first three equations of system (4.8)

g1 = (VI el + < Nt + (V) e, (4.9)
9= —(B5, ) VYY) — (BY,, ) Vg
+ (B 2M+1) 1q>(l + G, =23, (4.10)

where
Gi= (BY) ) (-V)MHlg, =23,
G2 e Hgdoo,s-l—QM),OO(aDél)), G3 c Hgoo,s—l—QM),oo(aDéQ)).

Using expansions (4.9) and (4.10), we obtain the following representation,
i.e., the solutions of the boundary-contact problem M; are expressed by the
potential-type functions

u(l) — V(1)<ng)—lgp(()1) +V(1)( (U)—l,(p(()l) + le (411)
rU® = —VOBY,.) Ve - V(B, MH) VO + Ry, (412)
rod® = VO BY )TV —vE(BS, )TVEGY + Ry, (4.13)

where
R € (JM“(_l), Ry € (JM“( DY), Rse CM+1(_(2)),
suppgy’ € 5, Suppwo c S, suppgl c S
smppwO c So, suppgoo Cg( Suppz/zo CSO.

Thus, taking into account (4.11), (4 12) (4.13), using the asymptotic expan-
sions of the functions —L+1g0(()2),<p0 , =L} L'y, oV and wég), ) (see (4.3),
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(4.4), (4.6)), the asymptotic expansion of potential-type functions (see [9, The-
orems 2.2 and 2.3]) we derive the following asymptotic expansions of the solu-
tions of the considered boundary-contact problem M; in terms of some local
coordinate systems of curves 65(()1), 8582), 05):

a) the asymptotic expansion near the contact boundary 8881)

u(q) ($17 T, 1'3) - (u(Q)a w(q)>('r17 T, Ig)

2 ns—1
IR RTPIICAEEE
f=+1 j=1 s=1
x By ( - % log Ziqe)ﬂ A0 (1)
M2 M+2-1

+ Z Z l‘ gndSlmm fEl,ﬁ)( (Q))1/2+A (x1)+k+pBS(k)mpj(xhlog Zé%)}

k,1=0 p+m=0
k+1+p+m#£0

2
+Z/{J(\;II)Jrl<x17$27$3) for M > — —min{[s —1],0}, ¢=1,2, (4.14)

with the coefficients dgjzn( +1), g%, dglmm( +1) € C3°(R) and the remainder

ul(\?l—i-l € CYMTHRY), ¢ = 1,2, where the signs “4+” and “” refer to the cases
g =1 and g = 2, respectively. Here
20 = (1w + 257D, 2D = (1) [y — 257,

—m < Argzs 41 <m, Ts11 € CP(R),

{TS il} °, are all different roots of the polynomial det M (@ J(TE (21,0)) 71
(0, +1 , 7)) of multiplicity ns, s =1,..., 4, in the complex lower half-plane (n
and ¢y depend on q). BY

Skmp](ail, t) is a polynomial of order vy, = v, +p+m
¢

(v = k(2mo — 1) +mg — 1, mg = max{my,...,my}, Y, m; = 6) with respect
=1

]7
to the variable ¢ with vector coefficients which depend on the variable .
We write the following relation between the leading (first) coefficients of the
asymptotic expansions (4.14) and (4.3) (see [9, Theorem 2.3]):

1 L (s _
d) (21, +1) = 5-0¢(21,0) VO (@1, 0, +1)0 b (21,0, +1)Ka; (21),
-1
4 (21, =1) = ———G(21,0) V), (21,0, =)o} (21,0, 1)
sjm\ 1y o {4 —1,m\*1s Y Vgi 1, Y,

X ICZ] (x )eiﬂ'(fl/QfAj(Il))

?

-1 m-+1
digm(xh +1) = %g{(%a 0) V 1 m(l’l, 0,4+1)o Ve (21,0, +1)K:1j<x1)7
™ 2I+
) (= 2 (s) .
ds]m(xlv _1) = Tg{(xb O) V—l,m('rlv 0, _1)0%1_1_\*/(()2) (.Tl, 0, _1)
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% Klj(wl)eiw(—1/2—Aj(x1))’
1=12 s=1,....0y, m=0,...,ns—1;
here Gy is the square root from the Gram determinant of the diffeomorphism s
and
Z‘m—l—l dns—l—m
ml(ns — 1 —m)! drns—1-m (
-1

€7(_8%7m(ml,0,ﬂ:1) = )

T T, :I:l)ns

q=1,2.

x [ MO(T (21,0))71(0,£1,7))] @)

The coefficients c(q)( 1) in (4.14) are defined as follows:
1
(1) = (@) By, (5 + Ayan) ) el (),

1 7=12 m=0,...,ns — 1,
Cgi?b(l’l) = Cij<.CL’1)Ba;T <§ + Aj(Il))C[()l)(l’l),

where
B, (t) = diag{B™(¢), ..., B"")t)},
1 17r(t+1
BTTt:BmT(——,at)< t1 )
(1) o) (Tt + 1)e
B™(t) = ||bg, ()l xm.
1 \p—k(=1)Ptk gr=F int1)
. — T(t+ 1 ) k<p,
by (£) = (2%2) (p—k)! dtr=*F < (t+1e =P
0’ k: >p7
p=0,....m.—1, r=1,... /L
Further,
ajm(21) = diag{a™ (\P),...,a™ (V")) 5=1,2,
3 1 '
)\7(})(:61) =—5° %arg)\r(azl) + i log |Ar(z1)| + m,
3 1 '
Aq(nz)(xl) =3 + %arg/\r(xl) + % log |Aq(z1)| + m,
m=0,1,...,ns — 1;
amr(A’l‘])) = ||a”;€npr ()\7("j)| My XMy )
where
p
—1 p+k 2 - pbmr SJ)
al (A9 = =k (Ar + 1)pit
P (—1)p+kbzz”()\$?)), m=12....n,—1, k<np,
0, k> p;
here \Y) = 1+m+,u 0<Reuq(~ <l,7=12r=1,...,¢, andcél)(xl),

062) (1) are deﬁned using the ﬁrst coefficients of the asymptotic expansion of

(2)

the functions —L" gpo and go )| respectively (see (4.3)).
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b) the asymptotics of solutions near the contact boundary 85(()2)

U(q)(ml,% x3) = (U(Q),W(q))(fﬁ@%xs)

2 ng—1
Z ZZRe{ Z [ Sj)m(xl’0)(Zi"10))1/2+3j(11)*m

9=%1 j=1 s=1

BSW ( ~ 5 log 2, g)] D D (1)
M+2 M+2-1

D mafd (e 9) (2 “”*’f*pBikinm(xl,logzi?b}
k,1=0 p+m=0
k+1+p+m#0

2
+u1(\;11)4-1(x1,x27$3) for M > — —min{[s —1],0}, ¢=1,2; (4.15)

here Zqu)d = (—=1)%[zs + 237" J)rl] gq)l = (=1)1"[xy — mgTS( 1 The coefficients

dgj)m( +1) are calculated similarly as in a) and the coefficients b are defined
as in a) by using the first coefficients béQ) (¢ = 1,2) of the asymptotic expansion
(4.4).

c) the asymptotics of solutions near the cuspidal edge 05y:

(rid D) (@1, 25, 25) = ry(u®, W) (1, 25, 75)

ns—1 M+1 M+2-1 '
Z ZRG{ Z xézlm adS] 1,0) + Z Z :Bng P 1/2+p+kdi;;gjp($1)}

Y==%1 s=1 k=0 j+p=1
I+k+j+p#1
i 2 : .
—I—lejs/l)ﬂ(xl,xg,xg) for M > — —min{[s],0}, 1 =1,2, (4.16)
r

with the coefficients di (-, j:l),df:lkjp € C§°(R) and the remainder Z/l( M1 €
C’é\/[H(RTf’t), 1 =1,2; here

Zs41=—T2 :ch(%)rl, Ze ,1:1:2—1‘37(2_)1, —m < Argzs 41 <7, Ts11 € C3°(R),
{ Sﬂ} 0, are all different roots of the polynomial det M @ (T (21,0))7"
(0,£1,7)) of multlphclty ng, s = 1,...,4, in the complex lower half-plane.
The coefficients d (xl, +1) have the form (see [9, Theorem 2.3]):

2 B
d‘(s;‘)(xh +1) = Gg(x1,0) V( (xl,O +1) (1,0, +1)C(3)(x1),

\/2)
2

0 ey (s) -
dgj (21, =1) = —iGg(21,0) V 7} ;(21,0, _1>0%z+\’%3>(

: 2
A% (0, +1) = (~17Gg(0,0) V O (21,0, +1)0, !
2

Iy, 07 _1)C(J) (1.1)

2

d%) (21, —1) = (—1)j+1z’g{(:c1, 0)V (_S{j(xly 0, _1)0;1
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s=1,...,0p, 7=0,...,n5—1,
where Gg¢ is the square root from the Gram determinant of the diffeomor-
phism s,
git1 drs—1-3
jlng —1 =) drns—1-J
1

2 Ng
(r— 72"

2 (s)
\Y —17j(‘r17 07 :I:l) =

x (MOIL (1,007 (0,41,7)))

2 7’

T:Ts,:l:l
. jJ 1

(4) — Z_F( P _ _>

(@) o/ \J 5)colz1)

and co(z1) is the first coefficient of the asymptotic expansion in (4.6).

5. INVESTIGATION OF THE PROPERTIES OF EXPONENTS OF THE FIRST
TERMS OF AN ASYMPTOTIC EXPANSION OF SOLUTIONS OF PROBLEM
M, IN THE NEIGHBOUHOODS OF CONTACT BOUNDARIES

We consider the properties of exponents of the first terms of an asymptotic
expansion of solutions of the boundary-contact problem M;j in the neighbour-
hood of the contact boundary 8551). Analogous properties will be valid in the
neighbourhood of the contact boundary 88(()2), too.

For the sake of brevity, by 7,, and d,, (m = 1,...,6) we denote the real

and the imaginary part of the first term exponent of the asymptotic expansions
(4.14), and (4.15), i.e.,

1 1 1
Ym(21) = 9 %arg)‘m@jl) , Om(1) = o log [ A (21)],
m=1,...,6, z, €05,

where A, (z1) = )\%ﬂ) (1) m =1,...,12, are the eigenvalues of the matrix
bR(Il) = (UR(.CEl, O, +1))_10R(.CE1, O, —1)

Theorem 5.1. The real parts v,, m = 1,...,6, of the exponents of the first
terms of the asymptotic expansion of solutions of the boundary-contact problem
M, near the contact boundary 85’51) depend on the elastic constants and also
on the geometry of the contact boundaries and may take any values from the
interval 0,1/2[, i.e.,

(a) if the elastic constants satisfy the limit conditions

2 2 2
az('jl)k bz(‘jl)k Cz('jl)k
— 0, — 0, — 0,
Sy pH) (1)
ijlk ijlk ijlk
then vy, — 1/2 (m=1,...,6);
(b) if for
() (2) (2)
ik, oo, bijlk Cijik oo

— 00
a pd) PACY
ijlk ijlk ijlk



452 O. CHKADUA

the limiting relations
Im(C1, C2)|
1 M+ |Cl‘ +M+ |C2‘ ’ ) _
[€] [ [Syytey

are valid, then v, — 0 and §,, = 0 (m=1,...,6),

where ¢ = ({1, () is the eigenvector of the matriz br, while M, and MJ

- ‘ - + +
are mazximal eigenvalues of the matrices oy, = on,(71,0,+1) and oy, =

oN, (71,0, +1).
Here the limits of the coefficients a”lk, bwlk, E;Il)k: are understood in the uniform

sense with respect to the indices i, j, [, k.
Proof. Multiply the coefficients ag.}k, bgl)k, cgjll)k by a (a > 0), and the coefficients

ag.l)k, bgm z(jQZ)k by 8 (8 > 0); i.e., we consider the differential equations with

the elastic constants ozal(.ﬂ)k, ozb”lk, acgl)k and ﬁag.l)k, 6bgl)k, ﬁcgl)k

(a) Taking into consideration the estimate obtained in [6] we have
1

%arg)\m(x

— 0 2. ¢ (¢>0),

1
1)‘ < —arctg( *>
f
where am{, 37'm; are minimal eigenvalues of the matrices o, and o, re-
spectively.
Consequently, as §/a — 0 we get v, — % (m=1,...,6).
(b) Since
1 1 21m<§1, 42>
— arg A\, (r1) = —arctg
2m 2 (0, C1, C1) + (o, G5 C2)
1 21
+ —arctg—— m (G, C2,> )
2m (o0, C15 C1) + (o, G20 C2)

we obtain the estimate

1 1 e

Gl ¢
—arg \p, ()| > —arctg 5.1
2m (] 2 rete vl 4 ol 51)

Further, since

((on, €15 Co) + (o, C25 G2))? + (2Im(Gy, G2))?
({00, C15 C1) + (o, C2: €2))? + (2Im (G, G2))?

A (1) [* =

we get
< [Am(x1)]? < b, (5.2)
where

(B M [G|* + oM Go]?)? + (2Im{C, (2))*

(B7'mg |Gi? + amy |GP)? + (2Im (G, G2))*
+

here aM;™ and 37'M; are maximal eigenvalues of the matrices oy, and oy,
respectively, while the vectors (; and (5 depend in general on « and (.

b:
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Thus, using the inequalities (5.1) and (5.2) and taking into consideration the
limiting relations 1 and 2 from subsection (b), for 5/a — oo we get v, — 0
and 6,, —» 0 (m=1,...,6). O

Remark 5.2. In the centrally symmetric isotropic case the exponents of the
first terms of the asymptotic expansion of solutions of the boundary-contact
problem M ~; +1d; (j =1,...,6) are calculated explicitly.

Indeed, the differential operator of the couple-stress elasticity theory for a
homogeneous isotropic centrally symmetric medium takes the form (see [26]):

2

1

M D(D,) M D(,)
3 4

M D3,) M 9(9,)

k k

M@D@) = || MP gy k=
1

MP0) = (ig+ )+ (Ag + 11 — 0g) 0,05,

2 3

3
M z(?)(aw) = M z(?)(am> = —2ay Zgijkalm
=1

4
MP@:) = 65 [(va + B)A — dag) + (24 + v — 5)0i0;,
where d;; and ¢;;;, are respectively the Kronecker and the Levi-Civita symbol.

The coefficients Ay, g, o, Vg, Bq, €4, ¢ = 1,2, are the elastic constants satisfying
the conditions

tg >0, 3Xg+2us >0, >0, v,>0, 3g,+21,>0, B;,>0.

The stress operator of couple-stress elasticity is written as

@) v (@
NO@.n(z) = (A 1O AEOmE)
N D(9.,n(2)) N @(0.,n(2)) 6x6
i (@ — AT @ — T4, q=
N (0,,n(z) = H N ij (8zv”(z))||3x3’ k=14, ¢=12,
. 0
/\/E?(@Z,n(z)) = /\qni(z)(’)ﬁr(uq—aq)nj(z)é?ﬂr(uq+aq)5ijm>
3
N D0n(z) = ~20, 3 egpmi(e), N (0.n(z) =0,
k=1
4 0
N D(0.,n(2)) = eqni(2)d; + (vg — B)ni(2)di + (vg + )33 o)

The matrices Uf:}q = on,(71,0,%£1), ¢ = 1,2, have the following expressions

1 1
+ +
+ _ o Ny O + o N 0
ag = g =
N1 O 2 + ’ No 0 2 + )
7N, 6x6 N, 6x6
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where
1 H1 + aq 0 0 9 vy + 51 0 0
o §1 = 0 ay :Flbl , O f&l = 0 Cq :F’Ldl R
0 :l:lbg aq 3%3 0 :l:Zdl C1 3%3
1
0 0
o + Qg
oL = 0 12 Fi b
N = CECERCECH
. a2
0 +i—
‘G- 3-8 /g,
! 0 0
Vo + o
GE = 0 = Fi 2
¥ = -8 Ya-@ |
. Co
0  +i——
‘G-B G-B /.,
here
0 = 2(Ag + 2pq) (g + ) b — 2(pq + aq)Q g=1,2
I M+ +3u, 7T N tag+ 30, T
and
o — 2(gq + 2v,) (g + By) d — 2(v, + ﬁq)Q g=1,2.
! gq+ Bg + 31y P g+ By + 31y’ ’
Hence in the considered case the eigenvalues \; (j = 1,...,12) of the matrix

br(21) = (or(21,0,+1)) or(w1,0,-1)
are calculated in the manner as follows:

Ao — (1 + 1) = (g2 + ag) £ 20/ (1 + 1) (p2 + @)
1,2 — 9
1+ oy 4 g + oo

BEVB2-AC {5 B2 _ AC >0
A3,4:{ 7

A
BEWACCE for B2 — AC <0,

C

BEVBZ_AC for B2 — AC >0
A5 = | _ T
{ BEVACES for B2 — AC <0,

(1 +61) — (o + fa) £ 2Z'\/(l/1 + 51)(va + Ba)
v+ B+ e+ B

By B-8€ for B2— AC >0
ﬁ - )

Biiy 86_B? for B2— AC <0
g )

Arg =

Y

>\9,10 =
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LESVE. i} ”22% for B?— AC >0,

BLVACE® for B2 - AC <0
@ Y

Al1,12 =

where
A = asaq + biby + ag — b% + asby + baay, B = asa; — biby — ag + bg,
C = azaq + biby + a% — b% — asby — byay,
A= cocq + didy + cg - d% + cody + daycq, B = o — didy — cg + d%,
C = o1+ dydy + 2 — 2 — cody — doey.

Hence we obtain

1 1 \/
71:———arctgm, 01 =0,
2 Vit o
:, B? — AC >0,
Vo3 = %—%arctg—vA%TBQ, B? - AC <0, B>0,
%arctgvA%TBQ B? - AC <0, B<O0,
— 5 log BEVEAC B2 AC >0,
023 =
+L log (g) B? — AC <0,
"2 s T
L B2 — AC >0,
V5.6 = %—%arctg 4€-B ., B2~ AC <0, B>0,
%arctg“qg‘fgz, B2— AC <0, B<O0,
5 — L log BEVEAE B2 AC >0,
56 = SO
T log (g) B2~ AC < 0.

Remark 5.3. If B> — AC' # 0 and B2 — AC # 0, then B (t) = T, i.e., the
first terms of the asymptotic expansion of solutions of the boundary-contact
problem M, contain no logarithms near the contact boundary 85(()1), 1=1,2.

Remark 5.4. Note that in the isotropic case we obtain more exact limit
relations (for the elasticity case see [6]):
a) if B> 0, B2— AC > 0 and ps + ay — 0 or p; — oo, then vy — 1/2,
Yo =3 =1/2;
b) if B> 0, B2 — AC < 0 and pu; — oo, then v, — 1/2, m = 1,2, 3;
c)if B> 0, B2— AC < 0 and s + ay — 0, then vy, — 1/2, y93 — 1/4;
d)if B<0and puy +a; — 0 or gy — oo, then v,,, — 0, m =1,2,3;
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e) if |y — po| — 0, |y — an| — 0, then v, — 1/4, m = 1,2, 3,
and _ _ e

a)if B> 0, B> — AC > 0 and v5 + 3 — 0 or v; — oo, then 74 — 1/2,
Be=1/2

b) if B> 0, B> — AC < 0 and v; — oo, then v, — 1/2, m = 4,5, 6;

¢) if§>0, B? — AC < 0 and vy + B — 0, then vy — 1/2, 56 — 1/4;

61) if§<07 vy + fB1 — 0 or vy — o0, then ~,, — 0, m =4,5,6;

¢) if |11 — s — 0, |B1 — fBa| — 0, then v, — 1/4, m = 4,5,6.

It is not difficult to see that if the conditions
B2—AC >0 and B*—AC >0

hold, then the exponent of the first term of the asymptotics of solutions of the
boundary-contact problem M; has the form

11 {\/u2+oe2 W2+52}
v = = — —arctg max ) .
2w Vintar Vi + B

Since v < %, V2,3 = V56 = %, the oscillation of solutions vanishes in some
neighbourhood of the contact boundary and therefore solutions describe the
real physical process.

Note that this class has been found only in the spatial case since in the plane
case it is known that the oscillation does not vanish.

In the general case we have found a class of anisotropic bodies when the oscil-
lation in the asymptotic expansion vanishes and the real parts v; j =1,...,6,
of exponents of the first terms of the asymptotic expansion are calculated by
simpler formulas.

Let o > 0 and 3; > 0, j = 1,...,6, be the eigenvalues of the matrices ‘7;11
and oy, , respectively.

Theorem 5.5. If the conditions

+ .
on, — L

1) rank <6,7=1,...,6;
) (U§2—5JI> ’

2) (V. ¢) #£0,j=1,....6,
are satisfied, where d]) (j=1,...,6) is the common eigenvector of the matrices
af{h and 0;32, which correspond to the eigenvalues o; and 3;, then the oscillation
participanting in the asymptotic expansion of solutions of the boundary-contact
problem My wvanishes, i.e., 0; = 0, j = 1,...,6, and the real parts of the
exponents of the first terms of the asymptotic expansion are calculated by a

simpler formula

1 1 1 .
v = — —arctg——, j=1,...,06.
2 m Q7
Proof. From the condition 1) we obtain the existence of the common eigenvec-
tors (Y, j =1,...,6, for the matrices oy, and oy, ie.,

o (V) = ac?, oh P =8, j=1,....6 (5.3)
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Since o, = oy, and TY, = oy,, we have
G =0l o =08 =16 (5.4)
Further, we look for an eigenvector (V) of the matrix
(or(21,0,4+1)) " or (21,0, 1)
in the form ¢V) = (¢; ]),%CIJ)) We obtain

(O-R(xla 07 +1))_ O-R(xla 07 _1)C(]) = Ajg(])

Taking into consideration the expression of the matrices aR(arl, 0,+1), we get

0N2C1 JQJ) = \joN, Clj) + A7 1 v (5.5)
Cl +'YJUN1§1 ==\ C1 +)\J”YJUN1C1 .

Now, by the scalar multiplication of both equations (5.5) by the vector E(j)
we have

{ (o1 )0 =560 - (o) TR le b o)
<C1 7€1 >+7j<01:11§£])7§1(]> —Aj <§1 7C1 >+)‘J'YJ<UN1§1 aC1 >
Substituting (5.3) and (5.4) into (5.6), we get

B0 = A Z”’> = X0 G AFAE T,

) =) )
(€97 +7,a,(¢Y ,C > N Y+ AT ).

Taking into account the condition 2), i.e., ({fj ) , Zl(j)> # 0, we obtain the following
system of equations with respect to A\; and 7; (7 =1,...,6):

Bi =5 = NiBj + A
1 —+ ”’?jaj = —>\j + )\ﬁjaj.

Further,
N YOFL o B
a;B; i Q;
Clearly,
IAl=1, j=1,...,6.
Hence

5;=0, j=1,....6.
Calculating v; (j =1,...,6), we get

1 1
v; = = — —arctg

1
- j=1...6
2 ™ A /Oéjﬁj O



458 O. CHKADUA

If under the conditions of Theorem 5.5

aifl # ;B forall i#j, i,j=1,....6

then By (t) =Z, i.., the first terms of the asymptotic expansions (4.14), (4.15)
contain no logarithms.

Remark 5.6. Let us assume that in the neighborhood of the boundary the
contact surfaces S (1 and S @) are parallel to the isotropic plane We consider
the case, where the coefficients bmlk = 0 and, instead of amk and c”lk, we have

the elastic constants of transversally-isotropic elastic bodies, i.e., instead of aZ ]lk

we have
ag%)7 aé%)’ ag%), aé%)’ a((iqﬁ)v q=1,2,

and, instead of cmk, we have

Al 4 a=12

which satisfy the following conditions:

agl) — aé%) > 0, aé%) > 0, a(q) > 0, cﬁqf — cé%) > 0, cé%) > 0, cé%) > 0,
(@)y\2
(a}9)? (ci8)?
@y > o 4= 1.2 > e 1= L2
a1 — Ggg €11 — Ce6

It is not difficult to see that in this case the eigenvalues o; and 3;, 7 = 1,...,6,

of the matrices af{I and (TN are calculated explicitly.

Let a\? # a{? and ¢\ £ ¢l? (¢ = 1,2); then the conditions 1)-2) of Theorem
5.5 have the form _
Ci—Dy B 01 Dy B

Dy—Cy By CQ—EQ,

a55 (\/;\/g - a13> a11 a55 <\/g \/7)
a a55 + \/E\/g 5 aé%) + \/@\/@ |
VS (/- @
o ey
(9)

ay’ and a(q) are the roots of the equation (see [26])

where

B

q=1,2,

l\DI»—t

ag({)aé%)aQ + [< (q) _|_a(q)> ag)aé%) (a (‘1)) ]a—l— aéq)aé%) =0, ¢g=1,2,

(V) ()
_ C == ’

B =

q ) q 92
ENENE: EENENE:

and
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() ( (2) (9)
_ 1V 033 \V €11 C35 (\/ Gl /G
D, =3 ,
(a)
oy + VASTRY, o

q=1,2,

where ¢ and ¢ are the roots of the equation
C§1)Cé%)c2 + [(Cg%) + cé5))2 - 051)02(3%) (C(5q5)) }C + cg%)cé; =0, ¢g=1,2

If we assume that agg) = —aé%) and 013) = —cé;, q = 1,2, then the conditions

1)-2) of Theorem 5.5 can be rewritten in a simpler form:

/ ! a / ( /( / (1) / (1)
a11 a:(s3) (155 011 C:(s3 Cé5

2 [ (2 / / ( / (2 /[ (2)
a:(a:a) a§1) a55 C33 051 C 5

Now let us consider the case, where the domains D,, ¢ = 1,2, are filled with
the same material. The following theorem is fulfilled (for analogous results in
the case of elasticity theory see [7], [8]; see also [14]).

Theorem 5.7. If the domains D,, ¢ = 1,2, are filled with the same material,
then the asymptotic expansion of solutions of the boundary-contact problem M,

near the contact boundary 85(()1) takes the form

U(Q)<x1 s, xg) = (u(q),w(q))(xl,ll’2ax3)

2 ns—1
-y ZZRe{ z 2| d0 (1, 0) (2000 207 ) (21)

9==£1 j=1 s=1
M+2 M+2-1

30 D0 ahaydl),, (@, (Y TFAEEEBY(n10g2(0) }
k,l1=0 p+m=0
k+l+p+m#0

2
D (2 as ) for M >= —min{ls — 1,1}, ¢=1,2,  (5.7)
r

with the coefficients d9) (-, +1), 9 9

s sjm ’ ]m’ slmpj<'?
Uy e CYHYRY), ¢ =1,2,

zg‘ﬁl — (—1)q(x2+x37§21), zgqll = (—1)‘1+1(x2—x373(?,)1), - < Arg ﬂ <.

+1) € C°(R) and the remainder

In this case the parameters A; are calculated by

Aj(r) = (89 (@), ...,09(x1)), j=1,2

where

1 1 7
0 (1) = == log ulen)l, 07 (1) = 5 = 5= log Pwla)l, k=1,....6.

Proof. When the domains D,, ¢ = 1,2, are filled with the same material, we
can show, like in [7], that the eigenvalues A (z1), k = 1,...,12, of the matrix

(UR(xl, 0, +1))710R(x1, 0,-1), a9 € 65&1),
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are calculated by means of the eigenvalues Gy (x1), k = 1,2, 3, of the matrix Ty s
0
ie.,
1-— Qﬁk<l’1>
1 + 25}C (I‘l) ’

—i L’M(“), if k=7,...,12,
1+26k—6($1)

where —1/2 < B, < 1/2, k=1,...,6.
Hence the exponent of the first term of the asymptotic expansion of solutions
has the form

if k=1,...,6,

1 1 7
—F - ——log|A k=1,...,6.
Note that in this case the asymptotic expansion has step equal to one half

(see [8]).
The same asymptotic expansion can also be obtained near the contact bound-
(2)
ary 095,

6. SOLVABILITY AND ASYMPTOTICS OF SOLUTIONS OF
THE BOUNDARY-CONTACT WEDGE-TYPE PROBLEM M,

We will formulate theorems of the uniqueness and existence of solutions of
problem M.
Assume that the following compatibility conditions are fulfilled on the curves

a5, 05 05,
30y, i=1,2,3, o B H9D)), of e B LODY), o e B (9D,

hy — 7TS(1)<I>(1) + Ws(l)cl)éQ) BS 1(S(()1 )

hy = Ty ol 4+ T Y € B (S5Y) (6.1)
s, @) + s, B € B (Sp)
hold for 1 € B3, 1 (Dy), w2 € B, (DY), ¢3 € B, 1 (9DS), 1 < p < oo,
1<r<oo, 1l/p—1/2<s<1/p+1/2.
Here CID(()Z), i = 1,2, 3, are some fixed extensions of the functions ¢;, 7 = 1,2, 3,

on 0Dy, 8Dé1), 8D§2), respectively.

Theorem 6.1. Let 4/3 < p < 4 and the compatibility conditions (6.1) be

fulfilled on 8561), 8562) 0Sy for s =1—1/p. Then the boundary-contact wedge-
type problem My has solutions of the classes Wpl(Dq), q = 1,2, if and only if
the condition

/Slgpl([a><z]—|—b,a)ds—/sél)302([axz]+b,a)ds—/2)gpg([axz]—l—b,a)ds

83

+/ hy(Ja x z]+b,a)ds+/ hao(la x 2] +b,a)ds =0
58 5@

0
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1s fulfilled, where a and b are arbitrary three-dimensional constant vectors.
Solutions of the boundary-contact problem My are given by the potential-type
functions

UL =y eyt
U = YO
rod® = VO (v

with R, € CMH(Dl

1

(@é),@o ) (¢0 790(
Ny = Nyi§) = Nyipi? = ¥
{ S(l 1¥P0 " = ¥, {ng” 2y = Vo, {WSO 3Py = Vs,
N U LA B e

respectively. Here

YBY ) el + VOB e + R, (6.2)
YBGL) e <2>+v<< Y B ) W + Ry, (6.3)
B L) + VEVEN B, )T + Ry, (6.4)

, Ry EC’M“(D(U) R; € C’M“(Dg)), while the functions
)) and (¢0 : ((]3)) are solutions of the systems

"
"
"
:

1 _ 2 _
N, = (Bgl\)ﬁrl) b (Bgz\)@d) 1;
2= (Boyri1) (Bonrs1)
N3 = —(Byi) ™" = (Bi) ™!
3 2M+1 oM+1)
where
1 1 1 * 1)y —
B = (V)2 4 (= 5T+ v ) (v
i i 1 * (G i)\ .
Bl = (VM (ST VPV i=2

The operators N, j = 1,2, 3, are positive-definite WDOs.

Let
Any(r) = (85 (@0), . 60 (@), 00 (@), 60 (@),
ma- tTmes ml—times
3 (@) = 10g|/\ @), =123, k=1,...(
(generally speaking, my and ¢ depend on j),
where /\1(\'8, j=1,2, k=1,...,¢, are the eigenvalues of the matrix

b, (21) = (UNj (371,07+1)_10Nj(171707 —1)
6
of multiplicity mg, k = 1,...,¢, > my = 6; here my, k = 1,...,¢, and /¢
=1

depend on 7, and the eigenvalues of the matrix bn, = [ are trivial, )\1(\];; =1,
kE=1,...,6.

Note that the boundary data of the problem M, are assumed to be suf-
ficiently smooth, i.e., o, € H{ST2M).e 2(S1), p2 € Hgoo’SHM)’OO(SS)), o3 €
H(OO S+2M (5(2)) fl G HOOS+2M+1) (S(gl)) h,z e H,E’OO,S+2M),OO(S(()’L)) Z _ 1 2
- 5 <s < = - + 5

T
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Recalling that solutions of the problem M, are represented by potential-type
functions (see (6.2), (6.3), (6.4)) and using the asymptotic expansion of such
functions (see [9, Theorems 2.2 and 2.3]), we obtain the following asymptotic
expansions of problem Mj in terms of some local coordinate systems of curves

as\M, 88, 85y:
a) Asymptotic expansion near the contact boundaries 8Séj ), jg=12:

u(q) (I17 :L'Q I'?)) — (u(q)7 w(q)>(x17 xQ, l’g)

ZZRe{mZ_l [ )(561,9)( (q)) ]+ZA(x1):|C(j)(xl)

J9==+1 s=1

M+1 M+2-1 | LA (2 tp ik
—5+iA(x1)+p+
Y3 e 0)2 B o0 )

1,k=0 p+j=1
k+l+p+j#1

2
Z/{J(\j)—‘rl(xla T2, :L‘3) for M > . min{[s]’ 0}7 1= 1’ 2’ (65)

with U](Vq[H € C’MH(Ri) q=1,2. Here A = An;, j = 1,2, and

Al = (1w o], A% = (1) e - w;_%}, —7 < Argzg <.
The first coefficients dg»)(, +1), c¥) are calculated as in(4.14) (see [9]).
b) Asymptotic expansions near the cuspidal edge 05, (see (4.16)):

TU(Q)(m,xz r3) = T‘(U(Q)M(Z))@l T2, T3)

ns—1 M+1 M+2-1
Z ZRe{ Z% ﬁgjdsj (1,0) + Z Z rhrlz 2+p+kdilk]p(x )}

I9==41 s=1 1,k=0 j+p=1
I+k+j+p#1
i 2 . .
+Z/{](\4)+1(371,1’2,.CE3) for M > — —min{[s],0}, i=1,2, (6.6)
r
with U](\?H € Céwﬂ(@i), i =1,2. Here
Zs 41 = —T9 — T3, ﬁzl, Zs_1 = —Tg — T3T, 5@_)1, —m < Argz, 4 < .

The coefficients dsj (z1,+£1) are calculated as in (4.16).

Remark 6.2. Note that if we consider the boundary-contact problem M, for
the nonhomogeneous equations

MDONUD + FD =0 in D, ¢q=1,2,
and use the boundary and boundary-contact data
01 =0, ¢2=0, ¢3=0, fi=h =0, i=12,

then the compatibility conditions (6.1) are fulfilled automatically on 8581),
(2)
a5y, 05.
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Remark 6.3. It is easy to see that if the matrices b, j = 1,2, are unitary
(0N, = b;ﬁ_), then the oscillation in the asymptotic expansion (42) vanishes, i.e.,
A;=0,7=1,2.

In the case of transversally isotropic bodies we obtain the following necessary
and sufficient conditions under which the oscillation vanishes:

By 4C\D,—B? B, 4C\D, - B?

— = y _— = T == =_. 6.7
B2 402D2 - B% B2 4CQD2 - B22 ( )

For the centrally symmetric isotropic case condition (6.7) tales the form
AL+ —ar = Ag + o — g, (6.8)

g1+ — =2+ v — Pa.

Condition (6.8) written in terms of the Poisson constants was found in [16],
when investigating the asymptotic properties of solutions of boundary positive-

definite pseudodifferential equations of crack-type problems of elasticity (see
also [38]).
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