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SOLVABILITY AND ASYMPTOTICS OF SOLUTIONS OF
CRACK-TYPE BOUNDARY-CONTACT PROBLEMS OF THE

COUPLE-STRESS ELASTICITY

O. CHKADUA

Abstract. Spatial boundary value problems of statics of couple-stress elas-
ticity for anisotropic homogeneous media (with contact on a part of the
boundary) with an open crack are studied supposing that one medium has a
smooth boundary and the other one has an open crack.

Using the method of the potential theory and the theory of pseudodiffer-
ential equations on manifolds with boundary, the existence and uniqueness
theorems are proved in Besov and Bessel-potential spaces. The smoothness
and a complete asymptotics of solutions near the contact boundaries and
near crack edge are studied.

Properties of exponents of the first terms of the asymptotic expansion
of solutions are established. Classes of isotropic, transversally-isotropic and
anisotropic bodies are found, where oscillation vanishes.
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Introduction

The paper is dedicated to the study of solvability and asymptotics of solu-
tions of spatial crack type boundary-contact problems of statics of couple-stress
elasticity for anisotropic homogeneous media with contact on a part of the
boundary.

A vast number of works are devoted to the justification and axiomatiza-
tion of elasticity and couple-stress elasticity. The fundamentals of the theory of
couple-stress elasticity are included in the works by W. Voight [40], E. Cosserat,
F. Cosserat [11], and developed later in the works by E. Aero and E. Kuvshin-
ski [1], G. Grioli [21], R. Mindlin [31], W. Koiter [24], W. Nowacki [34], V.
Kupradze, T. Gegelia, M. Basheleishvili, T. Burchuladze [26], T. Burchuladze
and T. Gegelia [4] and others.

It is well-known that solutions of elliptic boundary value problems in do-
mains with corners, edges and conical points have singularities regardless the
smoothness properties of given data.

Among theoretical investigations the methods suggested and developed by
V. Kondrat’ev [25], V, Maz’ya [27], V, Maz’ya and B. Plamenevsky [28]–[30],
S. Nazarov and B. Plamenevsky [33], M. Dauge [13], P. Grisvard [22] and others
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attracted attention of many scientists. They used the Mellin transform which
allows them to reduce the problem to the investigation of spectral properties of
ordinary differential operators depending on the parameter.

The method of the potential theory and the theory of pseudodifferential equa-
tions used in this paper makes it possible to obtain more precise asymptotic
representations of solutions of the problems posed, which frequently have cru-
cial importance in applications (e.g., in crack extension problems). For the
development of this method see [18], [3], [10], [9] and other papers.

The method of the potential theory was successfully applied to the classical
problems of elasticity and couple-stress elasticity theory by V. Kupradze and
his disciples.

In the present paper we consider the contact of two media, one of which has a
smooth boundary, while the other has a boundary containing a closed cuspidal
edge (the corresponding dihedral angle is equal to 2π), i.e., an open crack.

Theorems on the existence and uniqueness of solutions of these boundary-
contact problems are obtained using the potential theory and the general theory
of pseudodifferential equations on a manifold with boundary.

Using the asymptotic expansion of solutions of strongly elliptic pseudodiffe-
rential equations obtained in [10] (see also [18], [3]) and also the asymptotic
expansion of potential-type functions [9], we obtain a complete asymptotic ex-
pansion of solutions of boundary-contact problems near the contact boundaries
and near the crack edge. Here it is worth noticing the effective formulae for
calculating the exponent of the first terms of asymptotic expansion of solu-
tions of these problems by means of the symbol of the corresponding boundary
pseudodifferential equations.

The properties of exponents of the first terms of the asymptotic expansion of
solutions are established. Important classes of isotropic, transversally-isotropic
and anisotropic bodies are found, where oscillation vanishes.

These results are new even for the problems of elasticity.

1. Formulation of the Problems

Let D1 be a finite domain, D2 be a domain that can be both finite or infinite
in the Euclidean space R3 with compact boundaries ∂D1, ∂D2 (∂D1 ∈ C∞),
and let there exist a surface S0 of the class C∞ of dimension two, which divides

the domain D2 into two subdomains D
(1)
2 and D

(2)
2 with C∞ boundaries ∂D

(1)
2

and ∂D
(2)
2 (D

(1)
2 ∩ D

(2)
2 = ∅, D

(1)
2 ∩ D

(2)
2 = S0). Then ∂S0 is the boundary of

the surface S0 (∂S0 ⊂ ∂D2), representing one-dimensional closed cuspidal edge,
where ∂S0 is the crack edge.

Let the domains D1 and D2 have the contact on the two-dimensional mani-
folds S

(1)
0 and S

(2)
0 of the class C∞, i.e., ∂D1∩∂D2 = S

(1)
0 ∪S

(2)
0 , D1∩D2 = ∅,

S
(1)
0 ∩ S

(2)
0 = ∅, and S1 = ∂D1 \ (S

(1)
0 ∪ S

(2)
0 ). Then ∂D

(1)
2 = S

(1)
2 ∪ S

(1)
0 ∪ S0,

∂D
(2)
2 = S

(2)
2 ∪ S

(2)
0 ∪ S0.

Suppose that the domains Dq, q = 1, 2, are filled with anisotropic homoge-
neous elastic materials.
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The basic static equations of couple-stress elasticity for anisotropic homoge-
neous media are written in terms of displacement and rotation components as
(see [5], [19])

M(q)(∂x)U (q) + F (q) = 0 in Dq, q = 1, 2, (1.1)

where U (q) = (u(q), ω(q)), u(q) = (u
(q)
1 , u

(q)
2 , u

(q)
3 ) is the displacement vector, ω(q) =

(ω
(q)
1 , ω

(q)
2 , ω

(q)
3 ) is the rotation vector, F (q) = (F (q)

1 , . . . ,F (q)
6 ) is the mass force

applied to Dq, and M(q)(∂x) is the matrix differential operator

M(q)(∂x) =




1

M (q)(∂x)
2

M (q)(∂x)
3

M (q)(∂x)
4

M (q)(∂x)




6×6

,

l

M (q)(∂x) = ‖ l

M (q)
jk (∂x)‖3×3, l = 1, 4, q = 1, 2,

1

M (q)
jk (∂x) = a

(q)
ijlk∂i∂l,

2

M (q)
jk (∂x) = b

(q)
ijlk∂i∂l − εlrka

(q)
ijlr∂i,

3

M (q)
jk (∂x) = b

(q)
lkij∂i∂l + εirja

(q)
irlk∂l,

4

M (q)
jk (∂x) = c

(q)
ijlk∂i∂l − b

(q)
lrijεlrk∂i + εirjb

(q)
irlk∂l − εipjεlrka

(q)
iplr;

(1.2)

εikj is the Levi-Civita symbol, a
(q)
ijlk, b

(q)
ijlk, c

(q)
ijlk are the elastic constants satisfying

the conditions

a
(q)
ijlk = a

(q)
lkij, c

(q)
ijlk = c

(q)
lkij, q = 1, 2.

In (1.2) and in what follows, under the repeated indices we understand the
summation from 1 to 3.

It is assumed that the quadratic forms

a
(q)
ijlkξijξlk + 2b

(q)
ijlkξijηlk + c

(q)
ijlkηijηlk, q = 1, 2,

with respect to variables ξij, ηij are positive-definite, i.e., ∃M > 0

a
(q)
ijlkξijξlk+2b

(q)
ijlkξijηlk+c

(q)
ijlkηijηlk≥M(ξijξij+ηlkηlk) for all ξij, ηlk, q=1, 2. (1.3)

We introduce the differential stress operator

N (q)(∂z, n(z)) =




1

N (q)(∂z, n(z))
2

N (q)(∂z, n(z))
3

N (q)(∂z, n(z))
4

N (q)(∂z, n(z))




6×6

,

l

N (q)(∂z, n(z)) = ‖ l

N (q)
jk (∂z, n(z))‖3×3, l = 1, 4, q = 1, 2,

1

N (q)
jk (∂z, n(z)) = a

(q)
ijlkni(z)∂l,

2

N (q)
jk (∂z, n(z)) = b

(q)
ijlkni(z)∂l − a

(q)
ijlkεlrkni(z),

3

N (q)
jk (∂z, n(z)) = b

(q)
lkijni(z)∂l,

4

N (q)
jk (∂z, n(z)) = c

(q)
ijlkni(z)∂l − b

(q)
lrijεlrkni(z),

where n(z) = (n1(z), n2(z), n3(z)) is the unit normal of the manifold ∂D1 at a
point z ∈ ∂D1 (external with respect to D1) and a point z ∈ ∂D2 (internal with
respect to D2).



430 O. CHKADUA

In what follows the stress operators are denoted by

N (q) = N (q)(∂z, n(z)), q = 1, 2.

Let M(q)(ξ) be the symbol of the differential operator M(q)(∂x) and
◦
M (q)(ξ)

be the principal homogeneous symbol of the differential operator M(q)(∂x).
We introduce the following notation for Besov and Bessel potential spaces

(see [39]):

Bs
p,r = Bs

p,r ×Bs
p,r, B̃s

p,r = B̃s
p,r × B̃s

p,r, Hs
p = Hs

p ×Hs
p , H̃s

p = H̃s
p × H̃s

p .

From the symmetry of the coefficients a
(q)
ijlk, c

(q)
ijlk and the positive-definiteness

of the quadratic forms (1.3) it follows (see [19]) that the operators M(q)(∂x),
q = 1, 2, are strongly elliptic, formally self-adjoint differential operators and
therefore for any real vector ξ ∈ R3 and any complex vector η ∈ C6 the relations

Re(
◦
M (q)(ξ)η, η) = (

◦
M (q)(ξ)η, η) ≥ P

(q)
0 |ξ|2|η|2

are valid, where P
(q)
0 = const > 0 depends only on the elastic constants. Thus

the matrices
◦
M (q)(ξ) are positive-definite for ξ ∈ R3 \ {0}.

Taking into account the property of the Levi-Civita symbol

εipjεlrk = det




δil δir δik

δpl δpr δpk

δjl δjr δjk


 (δpl is the Kronecker symbol),

it is not difficult to observe that

(M(q)(ξ)η, η) = (
◦
M (q)(ξ)η, η), q = 1, 2.

Then we obtain that the matrices M(q)(ξ), q = 1, 2, are positive-definite for
ξ ∈ R3 \ {0}.

Since

detM(q)(ξ) 6= 0 for ξ 6= 0.

Let U (1) ∈ W 1
p (D1), U (2) ∈ W 1

p,loc(D2). Then r1U (2) = r
D

(1)
2
U (2) ∈ W 1

p (D
(1)
2 )

and r2U (2) = r
D

(2)
2
U (2) ∈ W 1

p,loc(D
(2)
2 ), where ri is the restriction operator on

D
(i)
2 , i = 1, 2. From the theorem on traces (see [39]) it follows that the trace of

the functions U (i), riU (2), i = 1, 2, exists on ∂D1, ∂D
(i)
2 , i = 1, 2, and {U (1)}± ∈

B1/p′
p,p (∂D1), {riU (2)}± ∈ B1/p′

p,p (∂D
(i)
2 ), i = 1, 2, p′ = p/(p − 1). Let U (1) ∈

W 1
p (D1), U (2) ∈ W 1

p,loc(D2) be such thatM(1)(∂x)U (1) ∈ Lp(D1), M(2)(∂x)U (2) ∈
Lp,comp(D2). Then {N (1)U (1)}± and {N (2)(riU (2))}±, i = 1, 2, are correctly
defined by the equalities

∫

D1

[V(1)M(1)(∂x)U (1) + E(1)(U (1),V(1))
]
dx

= ±〈{N (1)U (1)}±, {V(1)}±〉∂D1 for all V(1) ∈ W 1
p′(D1) (1.4)
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and ∫

D
(i)
2

[V(i)
2 M(2)(∂x)(riU (2)) + E(2)(riU (2),V(i)

2 )
]
dx

= ∓〈{N (2)(riU (2))}±, {V(i)
2 }±〉∂D

(i)
2

, i = 1, 2, (1.5)

for all V(1)
2 ∈ W 1

p′(D
(1)
2 ) (V(2)

2 ∈ W 1
p,comp(D

(2)
2 )),

where

E(1)(U (1),V(1)) = a
(1)
ijlkξij(U (1))ξlk(V(1)

) + b
(1)
ijlkξij(U (1))ηlk(V(1)

)

+ b
(1)
ijlkξij(V(1)

)ηlk(U (1)) + c
(1)
ijlkηij(U (1))ηlk(V(1)

);

here U (1) = (u(1), ω(1)),

ξij(U (1)) = ∂ju
(1)
i − εijkωk is the deformation component,

ηij(U (1)) = ∂jωi is the bending torsion component.

The quadratic form E(2)(riU (2),V(i)
2 ), i = 1, 2, is defined analogously.

In the case of the infinite domain D2, for solving equation (1.1) the condition

U (2)(x) = o(1) for |x| → ∞ (1.6)

is assumed to be fulfilled at infinity (see [4]).
We can prove (see [4]) that

∂µU (2)(x) = O(|x|−1−|µ|) for |x| → ∞
is valid for any solution of equation (1.1) satisfying (1.6) the relation.

Let us consider the model problems M1 and M2.
We will study the solvability and asymptotics of solutions U (q) ∈ W 1

p (Dq), q =

1, 2, (U (2) ∈ W 1
p,loc(D2) with condition (1.6) at infinity) the following boundary-

contact problems of couple-stress elasticity:

Problem M1:



M(q)(∂x)U (q) = 0 in Dq, q = 1, 2,

πS1{U (1)}+ = ϕ1 on S1,

π
S

(1)
2
{N (2)(r1U (2))}+ = ϕ2 on S

(1)
2 ,

π
S

(2)
2
{N (2)(r2U (2))}+ = ϕ3 on S

(2)
2 ,

π
S

(i)
0
{U (1)}+ − π

S
(i)
0
{riU (2)}+ = fi on S

(i)
0 ,

π
S

(i)
0
{N (1)U (1)}+ − π

S
(i)
0
{N (2)(riU (2))}+ = hi on S

(i)
0 , i = 1, 2,

where

ϕ1 ∈ B1/p′
p,p (S1), ϕ2 ∈ B−1/p

p,p (S
(1)
2 ), ϕ3 ∈ B−1/p

p,p (S
(2)
2 ),

fi ∈ B1/p′
p,p (S

(i)
0 ), hi ∈ B−1/p

p,p (S
(i)
0 ), i = 1, 2, 1 < p < ∞, p′ = p/(p− 1).

If D2 is a finite domain, then we have the following wedge-type problem:
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Wedge-type Problem M2:




M(q)(∂x)U (q) = 0 in Dq, q = 1, 2,

πS1{N (1)U (1)}+ = ϕ1 on S1,

π
S

(1)
2
{N (2)(r1U (2))}+ = ϕ2 on S

(1)
2 ,

π
S

(2)
2
{N (2)(r2U (2))}+ = ϕ3 on S

(2)
2 ,

π
S

(i)
0
{U (1)}+ − π

S
(i)
0
{riU (2)}+ = fi on S

(i)
0 ,

π
S

(i)
0
{N (1)U (1)}+ − π

S
(i)
0
{N (2)(riU (2))}+ = hi on S

(i)
0 , i = 1, 2,

where

ϕ1 ∈ B1/p′
p,p (S1), ϕ2 ∈ B1/p′

p,p (S
(1)
2 ), ϕ3 ∈ B1/p′

p,p (S
(2)
2 ),

fi ∈ B−1/p
p,p (S

(i)
0 ), hi ∈ B1/p′

p,p (S
(i)
0 ), i = 1, 2, 1 < p < ∞.

2. Fundamental Solutions and Potentials

Consider the fundamental matrix-functions

H(q)(x) = F−1
ξ′→x′

(
±

∫

L±

(M(q)(iξ′, iτ)
)−1

e−iτx3dτ

)
, q = 1, 2,

where the sign “−” refers to the case x3 > 0 and the sign “+” to the case
x3 < 0; x = (x1, x2, x3), x′ = (x1, x2), ξ′ = (ξ1, ξ2);

∫
L± denotes integration over

the contour L±, where L+ (L−) has the positive orientation and covers all roots
of the polynomial detM(q)(iξ′, iτ) with respect to τ in the upper (resp. lower)
τ -half-plane. F−1 is the inverse Fourier transform.

The simple-layer potentials are of the form

V(1)(g1)(x) =

∫

∂D1

H(1)(x− y)g1(y)dyS, x /∈ ∂D1,

V(2)(g2)(x) =

∫

∂D
(1)
2

H(2)(x− y)g2(y)dyS, x /∈ ∂D
(1)
2 ,

V(3)(g3)(x) =

∫

∂D
(2)
2

H(2)(x− y)g3(y)dyS, x /∈ ∂D
(2)
2 .

For these potentials the theorems below are valid.

Theorem 2.1. Let 1 < p < ∞, 1 ≤ r ≤ ∞. Then the operators V(i), i =
1, 2, 3, admit extensions to the operators which are continuous in the following
spaces:

V(1) : Bs
p,r(∂D1) → Bs+1+1/p

p,r (D1)
(
Bs

p,p(∂D1) → Hs+1+1/p
p (D1)

)
,

V(2) : Bs
p,r(∂D

(1)
2 ) → Bs+1+1/p

p,r (D
(1)
2 )

(
Bs

p,p(∂D
(1)
2 ) → Hs+1+1/p

p (D
(1)
2 )

)
,

V(3) : Bs
p,r(∂D

(2)
2 ) → Bs+1+1/p

p,r,loc (D
(2)
2 )

(
Bs

p,p(∂D
(2)
2 ) → Hs+1+1/p

p,loc (D
(2)
2 )

)
.
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Theorem 2.2. Let 1 < p < ∞, 1 ≤ r ≤ ∞, ε > 0, g1 ∈ B−1+ε
p,r (∂D1),

g2 ∈ B−1+ε
p,r (∂D

(1)
2 ), g3 ∈ B−1+ε

p,r (∂D
(2)
2 ). Then

{V(1)(g1)(z)}± =

∫

∂D1

H(1)(z − y)g1(y)dyS, z ∈ ∂D1,

{V(2)(g2)(z)}± =

∫

∂D
(1)
2

H(2)(z − y)g2(y)dyS, z ∈ ∂D
(1)
2 ,

{V(3)(g3)(z)}± =

∫

∂D
(2)
2

H(2)(z − y)g3(y)dyS, z ∈ ∂D
(2)
2 .

Theorem 2.3. Let 1 < p < ∞, g1 ∈ B−1/p
p,p (∂D1), g2 ∈ B−1/p

p,p (∂D
(1)
2 ), g3 ∈

B−1/p
p,p (∂D

(2)
2 ). Then

{N (1)V(1)(g1)(z)
}±

= ∓1

2
g1(z)

+

∫

∂D1

N (1)(∂z, n(z))H(1)(z − y)g1(y)dyS, z∈∂D1,

{N (2)V(2)(g2)(z)
}±

= ±1

2
g2(z)

+

∫

∂D
(1)
2

N (2)(∂z, n(z))H(2)(z − y)g2(y)dyS, z ∈ ∂D
(1)
2 ,

{N (2)V(3)(g3)(z)
}±

= ±1

2
g3(z)

+

∫

∂D
(2)
2

N (2)(∂z, n(z))H(2)(z − y)g3(y)dyS, z ∈ ∂D
(2)
2 .

Let us introduce the following notation:

V(1)
−1(g1)(z) =

∫

∂D1

H(1)(z − y)g1(y)dyS, z ∈ ∂D1,

V(2)
−1(g2)(z) =

∫

∂D
(1)
2

H(2)(z − y)g2(y)dyS, z ∈ ∂D
(1)
2 ,

V(3)
−1(g3)(z) =

∫

∂D
(2)
2

H(2)(z − y)g3(y)dyS, z ∈ ∂D
(2)
2 ,

∗
V (1)

0 (g1)(z) =

∫

∂D1

N (1)(∂z, n(z))H(1)(z − y)g1(y)dyS, z ∈ ∂D1,

∗
V (2)

0 (g2)(z) =

∫

∂D
(1)
2

N (2)(∂z, n(z))H(2)(z − y)g2(y)dyS, z ∈ ∂D
(1)
2 ,

∗
V (3)

0 (g3)(z) =

∫

∂D
(2)
2

N (2)(∂z, n(z))H(2)(z − y)g3(y)dyS, z ∈ ∂D
(2)
2 .

Theorem 2.4. Let 1 < p < ∞, 1 ≤ r ≤ ∞. Then the operators V(i)
−1,∗

V (i)
0 , i = 1, 2, 3, admit extensions to the operators which are continuous in the



434 O. CHKADUA

following spaces:

V(i)
−1 : Hs

p(∂Ωi) → Hs+1
p (∂Ωi)(

Bs
p,r(∂Ωi) → Bs+1

p,r (∂Ωi)
)
, i = 1, 2, 3,

∗
V (i)

0 : Hs
p(∂Ωi) → Hs

p(∂Ωi)(
Bs

p,r(∂Ωi) → Bs
p,r(∂Ωi)

)
, i = 1, 2, 3,

here Ω1 = D1, Ω2 = D
(1)
2 , Ω3 = D

(2)
2 .

3. Uniqueness, Existence and Smoothness Theorems for
Problem M1

From the ellipticity of the differential operator M(2)(∂x) it follows that any
generalized solution of the equation

M(2)(∂x)U (2) = 0 in D2

is an analytic function in D2 (see [17]). Then we see that the equalities
{
{r1U (2)}+ − {r2U (2)}+ = 0 on S0,

{N (2)(r1U (2))}+ + {N (2)(r2U (2))}+ = 0 on S0

(3.1)

are valid on S0.
Let us study the uniqueness of a solution of the boundary-contact problem

M1 in the classes W 1
2 (Dq), q = 1, 2 (W 1

2,loc(D2) with condition (1.6) at infinity).

Lemma 3.1. A solution of the boundary-contact problem M1 is unique in the
classes W 1

2 (Dq), q = 1, 2 (W 1
2,loc(D2) and satisfying condition (1.6) at infinity).

Proof. Let U (q), q = 1, 2, be a solution of the homogeneous problem M1.

We write the Green formulae (see (1.4), (1.5)) in the domains D1, D
(1)
2 , D

(2)
2

for the vector-functions U (1), r1U (2), r2U (2) as∫

D1

E(1)(U (1),U (1))dx = 〈{N (1)U (1)}+, {U (1)}+〉∂D1 ,

∫

D
(i)
2

E(2)(riU (2), riU (2))dx= −〈{N (2)(riU (2))}+, {riU (2)}+〉
∂D

(i)
2

, i=1, 2.
(3.2)

Taking into account the boundary and boundary-contact conditions, the
Green formulas (3.2) can be rewritten as

∫

D1

E(1)(U (1),U (1))dx = 〈{N (1)U (1)}+, {U (1)}+〉
S

(1)
0 ∪S

(2)
0

,

∫

D
(i)
2

E(2)(riU (2), riU (2))dx= −〈{N (2)(riU (2))}+, {riU (2)}+〉
S

(i)
0 ∪S0

, i=1, 2.
(3.3)

Since equalities (3.1) are fulfilled for the function U (2), we have

〈{N (2)(r1U (2))}+, {r1U (2)}+〉S0 = −〈{N (2)(r2U (2))}+, {r2U (2)}+〉S0 . (3.4)
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Summing now the Green formulas (3.3) and taking into account (3.4), we
obtain ∫

D1

E(1)(U (1),U (1))dx +

∫

D
(1)
2

E(2)(r1U (2), r1U (2))dx

+

∫

D
(2)
2

E(2)(r2U (2), r2U (2))dx = 0. (3.5)

From equality (3.5) and the positive-definiteness of forms (1.3) we have
{

∂ju
(q)
i − εijkω

(q)
k = 0,

∂jω
(q)
i = 0, q = 1, 2.

Therefore

u(q) = [a(1) × x] + b(q), ω(q) = a(q), q = 1, 2,

and

U (q) =
(
[a(q) × x] + b(q), a(q)

)
, q = 1, 2,

where a(q) and b(q), q = 1, 2, are arbitrary three-dimensional constant vectors.
By virtue of the contact conditions it is clear that

a(1) = a(2) and b(1) = b(2).

Since {U (1)}+ = 0 on S1, we have

U (q)(x) = 0, x ∈ Dq, q = 1, 2. ¤

Any extension Φ(1) ∈ B1/p′
p,p (∂D1) of the function ϕ1 onto the whole boundary

∂D1 has the form

Φ(1) = Φ
(1)
0 + ϕ

(1)
0 + ψ

(1)
0 ,

where Φ
(1)
0 is some fixed extension of ϕ1 and ϕ

(1)
0 ∈ B̃1/p′

p,p (S
(1)
0 ), ψ

(1)
0 ∈ B̃1/p′

p,p (S
(2)
0 ).

Any extension Φ(2) ∈ B−1/p
p,p (∂D

(1)
2 ) of the function ϕ2 onto the whole bound-

ary ∂D
(1)
2 has the form

Φ(2) = Φ
(2)
0 + ϕ

(2)
0 + ψ

(2)
0 ,

where Φ
(2)
0 is some fixed extension of ϕ2 and ϕ

(2)
0 ∈ B̃−1/p

p,p (S
(1)
0 ), ψ

(2)
0 ∈ B̃−1/p

p,p (S0).

Any extension Φ(3) ∈ B−1/p
p,p (∂D

(2)
2 ) of the function ϕ3 onto the whole bound-

ary ∂D
(2)
2 has the form

Φ(3) = Φ
(3)
0 + ϕ

(3)
0 + ψ

(3)
0 ,

where Φ
(3)
0 is some fixed extension of ϕ3 and ϕ

(3)
0 ∈ B̃−1/p

p,p (S
(2)
0 ), ψ

(3)
0 ∈ B̃−1/p

p,p (S0).
A solution of the boundary-contact problem M1 will be sought for in the

form of the simple-layer potentials

U (1) = V(1)g1 in D1, U (2) =

{
V(2)g2 in D

(1)
2 ,

V(3)g3 in D
(2)
2 .
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Taking into account the boundary and boundary-contact conditions of prob-
lem M1 and equality (3.1) we obtain a system of equations with respect to

(g1, g2, g3, ϕ
(1)
0 , ψ

(1)
0 , ϕ

(2)
0 , ψ

(2)
0 , ϕ

(3)
0 , ψ

(3)
0 ):





V(1)
−1g1 − ϕ

(1)
0 − ψ

(1)
0 = Φ

(1)
0 on ∂D1,

(1
2
I+

∗
V (2)

0 )g2 − ϕ
(2)
0 − ψ

(2)
0 = Φ

(2)
0 on ∂D

(1)
2 ,

(1
2
I+

∗
V (3)

0 )g3 − ϕ
(3)
0 − ψ

(3)
0 = Φ

(3)
0 on ∂D

(2)
2 ,

−π
S

(1)
0
V(2)
−1g2 + ϕ

(1)
0 = f1 − π

S
(1)
0

Φ
(1)
0 on S

(1)
0 ,

π
S

(1)
0

(−1
2
I+

∗
V (1)

0 )g1 − ϕ
(2)
0 = h1 + π

S
(1)
0

Φ
(2)
0 on S

(1)
0 ,

−π
S

(2)
0
V(3)
−1g3 + ψ

(1)
0 = f2 − π

S
(2)
0

Φ
(1)
0 on S

(2)
0 ,

π
S

(2)
0

(−1
2
I+

∗
V (1)

0 )g1 − ϕ
(3)
0 = h2 + π

S
(2)
0

Φ
(3)
0 on S

(2)
0 ,

πS0V
(2)
−1g2 − πS0V

(3)
−1g3 = 0 on S0,

ψ
(2)
0 + ψ

(3)
0 = −πS0Φ

(2)
0 − πS0Φ

(3)
0 on S0.

(3.6)

It is almost obvious that system (3.6) has a solution if and only if the com-
patibility conditions on ∂S0

∃Φ(2)
0 ∈ Bs−1

p,r (∂D
(1)
2 ), Φ

(3)
0 ∈ Bs−1

p,r (∂D
(2)
2 ) : πS0Φ

(2)
0 +πS0Φ

(3)
0 ∈ B̃s−1

p,r (S0) (3.7)

hold for ϕ2 ∈ Bs−1
p,r (S

(1)
2 ), ϕ3 ∈ Bs−1

p,r (S
(2)
2 ), πS0Φ

(2)
0 + πS0Φ

(3)
0 ∈ Bs−1

p,r (S0), 1 ≤
r ≤ ∞, 1 < p < ∞, 1/p− 1/2 < s < 1/p + 1/2.

Note that these conditions hold automatically when 1/p− 1/2 < s < 1/p or
1/p < s < 1/p + 1/2 (see [39]).

Denote by A the operator corresponding to system (3.6) and acting in the
spaces

A :
(1)

H s
p →

(2)

H s
p

( (1)

B s
p,r →

(2)

B s
p,r

)
,

where
(1)

H s
p = Hs−1

p (∂D1)⊕Hs−1
p (∂D

(1)
2 )⊕Hs−1

p (∂D
(2)
2 )⊕ H̃s

p(S
(1)
0 )⊕ H̃s

p(S
(2)
0 )

⊕H̃s−1
p (S

(1)
0 )⊕ H̃s−1

p (S0)⊕ H̃s−1
p (S

(2)
0 )⊕ H̃s−1

p (S0),

(2)

H s
p = Hs

p(∂D1)⊕Hs−1
p (∂D

(1)
2 )⊕Hs−1

p (∂D
(2)
2 )⊕Hs

p(S
(1)
0 )⊕Hs−1

p (S
(1)
0 )

⊕Hs
p(S

(2)
0 )⊕Hs−1

p (S
(2)
0 )⊕Hs

p(S0)⊕Hs−1
p (S0),

(1)

B s
p,r = Bs−1

p,r (∂D1)⊕ Bs−1
p,r (∂D

(1)
2 )⊕ Bs−1

p,r (∂D
(2)
2 )⊕ B̃s

p,r(S
(1)
0 )⊕ B̃s

p,r(S
(2)
0 )

⊕B̃s−1
p,r (S

(1)
0 )⊕ B̃s−1

p,r (S0)⊕ B̃s−1
p,r (S

(2)
0 )⊕ B̃s−1

p,r (S0),

(2)

B s
p,r = Bs

p,r(∂D1)⊕ Bs−1
p,r (∂D

(1)
2 )⊕ Bs−1

p,r (∂D
(2)
2 )⊕ Bs

p,r(S
(1)
0 )⊕ Bs−1

p,r (S
(1)
0 )

⊕Bs
p,r(S

(2)
0 )⊕ Bs−1

p,r (S
(2)
0 )⊕ Bs

p,r(S0)⊕ Bs−1
p,r (S0);
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the symbol ⊕ denotes a direct sum of the spaces.
Consider the composition of the operators

D ◦ A,

where D is the invertible operator of the form

D = diag{I,−V(2)
−1,−V(3)

−1, I, . . . , I}54×54.

Consider now the operator

AM = TM +D ◦ A, M = 2, 3, . . . ,

where
TM = diag{0, (−V(2)

−1)
M , (−V(3)

−1)
M , 0, . . . , 0}54×54.

Since the operator AM differs from the operator D ◦ A in a compact operator,
it is sufficient to investigate the operator AM acting in the spaces

AM :
(1)

H s
p →

(3)

H s
p

( (1)

B s
p,r →

(3)

B s
p,r

)
,

where
(3)

H s
p = Hs

p(∂D1)⊕Hs
p(∂D

(1)
2 )⊕Hs

p(∂D
(2)
2 )⊕Hs

p(S
(1)
0 )⊕Hs−1

p (S
(1)
0 )

⊕Hs
p(S

(2)
0 )⊕Hs−1

p (S
(2)
0 )⊕Hs

p(S0)⊕Hs−1
p (S0),

(3)

B s
p,r = Bs

p,r(∂D1)⊕ Bs
p,r(∂D

(1)
2 )⊕ Bs

p,r(∂D
(2)
2 )⊕ Bs

p,r(S
(1)
0 )⊕ Bs−1

p,r (S
(1)
0 )

⊕Bs
p,r(S

(2)
0 )⊕ Bs−1

p,r (S
(2)
0 )⊕ Bs

p,r(S0)⊕ Bs−1
p,r (S0).

Now consider the system of equations that corresponds to the operator AM

given by



V(1)
−1g̃1 − ϕ̃

(1)
0 − ψ̃

(1)
0 = Ψ

(1)
0 on ∂D1,

[(−V(2)
−1)

M−V(2)
−1(

1
2
I+

∗
V (2)

0 )]g̃2+V(2)
−1ϕ̃

(2)
0 +V(2)

−1ψ̃
(2)
0 =Ψ

(2)
0 on ∂D

(1)
2 ,

(−V(3)
−1)

M−V(3)
−1(

1
2
I+

∗
V (3)

0 )g̃3+V(3)
−1ϕ̃

(3)
0 +V(3)

−1ψ̃
(3)
0 =Ψ

(3)
0 on ∂D

(2)
2 ,

−π
S

(1)
0
V(2)
−1g̃2 + ϕ̃

(1)
0 = G1 on S

(1)
0 ,

π
S

(1)
0

(−1
2
I+

∗
V (1)

0 )g̃1 − ϕ̃
(2)
0 = G2 on S

(1)
0 ,

−π
S

(2)
0
V(3)
−1g̃3 + ψ̃

(1)
0 = F1 on S

(2)
0 ,

π
S

(2)
0

(−1
2
I+

∗
V (1)

0 )g̃1 − ϕ̃
(3)
0 = F2 on S

(2)
0 ,

πS0V
(2)
−1g̃2 − πS0V

(3)
−1g̃3 = E1 on S0,

ψ̃
(2)
0 + ψ̃

(3)
0 = E2 on S0,

(3.8)

where

Ψ
(1)
0 ∈ Hs

p(∂D1)
(
Bs

p,r(∂D1)
)
, Ψ

(2)
0 ∈ Hs

p(∂D
(1)
2 )

(
Bs

p,r(∂D
(1)
2 )

)
,

Ψ
(3)
0 ∈ Hs

p(∂D
(2)
2 )

(
Bs

p,r(∂D
(2)
2 )

)
,
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G1 ∈ Hs
p(S

(1)
0 )

(
Bs

p,r(S
(1)
0 )

)
, G2 ∈ Hs−1

p (S
(1)
0 )

(
Bs−1

p,r (S
(1)
0 )

)
,

F1 ∈ Hs
p(S

(2)
0 )

(
Bs

p,r(S
(2)
0 )

)
, F2 ∈ Hs−1

p (S
(2)
0 )

(
Bs−1

p,r (S
(2)
0 )

)
,

E1 ∈ Hs
p(S0)

(
Bs

p,r(S0)
)
, E2 ∈ Hs−1

p (S0)
(
Bs−1

p,r (S0)
)
.

The ΨDO −V(1)
−1 is positive and the operators −V(i)

−1(
1
2
I+

∗
V (i)

0 ), i = 2, 3, are
nonnegative, i.e.,

〈−V(1)
−1ϕ, ϕ〉∂D1 > 0 for all ϕ ∈ H−1/2

2 (∂D1), ϕ 6= 0,
〈
− V(2)

−1

(1

2
I+

∗
V (2)

0

)
ψ, ψ

〉
∂D

(1)
2

≥ 0 for all ψ ∈ H−1/2
2 (∂D

(1)
2 )

and 〈
− V(3)

−1

(1

2
I+

∗
V (3)

0

)
ψ, ψ

〉
∂D

(2)
2

> 0 for all ψ ∈ H−1/2
2 (∂D

(2)
2 ),

the equality being fulfilled only when ψ = ([a × x] + b, a), where a and b are
arbitrary three-dimensional constant vectors.

The proof of these inequalities follows from the Green formulae (see [32]).
Then the ΨDOs

B
(i)
M = (−V(i)

−1)
M − V(i)

−1

(1

2
I+

∗
V (i)

0

)
, i = 2, 3,

are positive operators, i.e.,

〈B(2)
M ϕ, ϕ〉

∂D
(1)
2

> 0 for all ψ ∈ H−1/2
2 (∂D

(1)
2 ), ϕ 6= 0,

〈B(3)
M ψ, ψ〉

∂D
(2)
2

> 0 for all ψ ∈ H−1/2
2 (∂D

(2)
2 ), ψ 6= 0.

Hence the ΨDOs V(1)
−1 and B

(i)
M , i = 2, 3, are invertible (which is proved as in

[32], [7]). The first, second and third equations of system (3.8) imply

g̃1 = (V(1)
−1)

−1ϕ̃
(1)
0 + (V(1)

−1)
−1ψ̃

(1)
0 + (V(1)

−1)
−1Ψ

(1)
0 ,

g̃i = −(B
(i)
M )−1V(i)

−1ϕ̃
(i)
0 − (B

(i)
M )−1V(i)

−1ψ̃
(i)
0 + (B

(i)
M )−1Ψ

(i)
0 , i = 2, 3.

After substituting g̃1, g̃2, g̃3 into the remaining equations of system (3.8), we
obtain a system of equations whose corresponding operator has the form

P =




π
S

(1)
0

A(x,D) 0 0

0 π
S

(2)
0

B(x,D) 0

0 0 πS0C(x,D)




36×36

+ T−∞,

where

A(x,D) =


 π

S
(1)
0
V(2)
−1(B

(2)
M )−1V(2)

−1 I
−I π

S
(1)
0

(−1
2
I+

∗
V (1)

0 )(V(1)
−1)

−1


 ,

B(x,D) =


 π

S
(2)
0
V(3)
−1(B

(3)
M )−1V(3)

−1 I
−I π

S
(2)
0

(−1
2
I+

∗
V (1)

0 )(V(1)
−1)

−1


 ,
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C(x,D) =

(
−πS0V

(2)
−1(B

(2)
M )−1V(2)

−1 πS0V
(3)
−1(B

(3)
M )−1V(3)

−1

I I

)

and T−∞ is the operator of order −∞.
Further, after the localization, the operators A(x,D) and B(x,D) are reduced

by means of lifting to the strongly elliptic ΨDOs of order 1, while the operator
C(x,D) is reduced to positive-definite ΨDO.

Indeed, let A(x′, D′) and B(x′, D′) be ΨDOs with the symbols σA(x′, ξ′) and
σB(x′, ξ′) (ξ′ = (ξ1, ξ2)) “frozen” at the points and written in terms of some

local coordinate system of the manifolds S
(1)
0 and S

(2)
0 , respectively.

Denote

R(x′, D′) =

(
L− 0
0 I

)
◦A(x′, D′) ◦

(
L+ 0
0 I

)

and

Q(x′, D′) =

(
L− 0
0 I

)
◦B(x′, D′) ◦

(
L+ 0
0 I

)
,

where L+ = diagΛ+, L− = diagπ+Λ−` are 6×6 matrix operators, Λ± is a ΨDO
operator with the symbol Λ±(ξ′) = ξ2 ± i ± i|ξ1|, π+ denotes the operator of
restriction onto R2

+, and ` is an extension operator.
The operators (

L± 0
0 I

)

are invertible in the respective spaces (see [39]).
The principal homogeneous symbols of the ΨDOs R(x′, D′) and Q(x′, D′) are

written as

σR(x′, ξ′)=

(
(ξn−1−i|ξ′′|)σN2(x

′, ξ′)(ξn−1+i|ξ′′|) (ξn−1−i|ξ′′|)I
−(ξn−1 + i|ξ′′|)I σN1(x

′, ξ′)

)
, x′∈S

(1)
0 ,

σQ(x′, ξ′)=

(
(ξn−1−i|ξ′′|)σN3(x

′, ξ′)(ξn−1+i|ξ′′|) (ξn−1−i|ξ′′|)I
−(ξn−1 + i|ξ′′|)I σN1(x

′, ξ′)

)
, x′∈S

(2)
0 ,

where σN1(x
′, ξ′), σN2(x

′, ξ′) and σN3(x
′, ξ′) are the principal homogeneous sym-

bols of the ΨDOs

N1 =
(
−1

2
I+

∗
V (1)

0

)
(V(1)

−1)
−1, N2 = V(2)

−1(B
(2)
M )−1V(2)

−1, N3 = V(3)
−1(B

(3)
M )−1V(3)

−1,

respectively, written in terms of a given local coordinate system, and I is the
identity matrix.

Let λ
(k)
R , k = 1, . . . , 12, be the eigenvalues of the matrix

(
σR(x1, 0, +1)

)−1
σR(x1, 0,−1), x1 ∈ ∂S

(1)
0 ,

where

σR(x1, 0,−1) =

(
σN2(x1, 0,−1) −I

I σN1(x1, 0,−1)

)
,
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σR(x1, 0, +1) =

(
σN2(x1, 0, +1) I

−I σN1(x1, 0, +1)

)
,

and let λ
(k)
Q , k = 1, . . . , 12, be the eigenvalues of the matrix

(
σQ(x1, 0, +1)

)−1
σQ(x1, 0,−1), x1 ∈ ∂S

(2)
0 ,

where

σQ(x1, 0,−1) =

(
σN3(x1, 0,−1) −I

I σN1(x1, 0,−1)

)
,

σQ(x1, 0, +1) =

(
σN3(x1, 0, +1) I

−I σN1(x1, 0, +1)

)

Introduce the notation

δR = sup
1≤j≤12

x1∈∂S
(1)
0

∣∣∣ 1

2π
arg λ

(j)
R (x1)

∣∣∣, δQ = sup
1≤j≤12

x1∈∂S
(2)
0

∣∣∣ 1

2π
arg λ

(j)
Q (x1)

∣∣∣,

δ = max(δR, δQ).

Using the general theory of pseudodifferential operators (ΨDOs) (see [35],
[36], the following propositions are valid.

Lemma 3.2. Let 1 < p < ∞, 1 ≤ r ≤ ∞, 1/p−1/2+ δ < s < 1/p+1/2− δ.
Then the operators

R(x′, D′) : H̃s
p(R2

+)⊕ H̃s
p(R2

+) → Hs−1
p (R2

+)⊕Hs−1
p (R2

+)
(
B̃s

p,r(R2
+)⊕ B̃s

p,r(R2
+) → Bs−1

p,r (R2
+)⊕ Bs−1

p,r (R2
+)

)
,

Q(x′, D′) : H̃s
p(R2

+)⊕ H̃s
p(R2

+) → Hs−1
p (R2

+)⊕Hs−1
p (R2

+)
(
B̃s

p,r(R2
+)⊕ B̃s

p,r(R2
+) → Bs−1

p,r (R2
+)⊕ Bs−1

p,r (R2
+)

)

are Fredholm.

Note that the ΨDOs R(x′, D′) and Q(x′, D′) are Fredholm in the anisotropic
Bessel potential spaces with weight

H̃(µ,s),k
p (R2

+)⊕ H̃(µ,s),k
p (R2

+) → H(µ,s−1),k
p (R2

+)⊕H(µ,s−1),k
p (R2

+)

for all µ ∈ R and k = 0, 1, . . . (see [10]).
Since the operators π

S
(1)
0

N1, π
S

(1)
0

N2, π
S

(2)
0

N1 and π
S

(2)
0

N2 are positive-definite,

we obtain a strong G̊arding inequality for the operators A(x,D) and B(x,D)
(see [6, Lemma 3.3]). Hence, using the results obtained in [2], [23], we have

Lemma 3.3. Let 1 < p < ∞, 1 ≤ r ≤ ∞, 1/p−1/2+ δ < s < 1/p+1/2− δ.
Then the operators

π
S

(1)
0

A(x,D) : H̃s−1
p (S

(1)
0 )⊕ H̃s

p(S
(1)
0 ) → Hs

p(S
(1)
0 )⊕Hs−1

p (S
(1)
0 )

(
B̃s−1

p,r (S
(1)
0 )⊕ B̃s

p,r(S
(1)
0 ) → Bs

p,r(S
(1)
0 )⊕ Bs−1

p,r (S
(1)
0 )

)

π
S

(2)
0

A(x,D) : H̃s−1
p (S

(2)
0 )⊕ H̃s

p(S
(2)
0 ) → Hs

p(S
(2)
0 )⊕Hs−1

p (S
(2)
0 )
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(
B̃s−1

p,r (S
(2)
0 )⊕ B̃s

p,r(S
(2)
0 ) → Bs

p,r(S
(2)
0 )⊕ Bs−1

p,r (S
(2)
0 )

)

are invertible.

Let us consider the operator C(x,D). The corresponding system

πS0C(x,D)

(
ϕ

(2)
0

ϕ
(3)
0

)
=

(
Ẽ1

E2

)

is reduced to pseudodifferential equation on the open manifold S0

πS0Nψ̃
(3)
0 = Ẽ1, ψ̃

(2)
0 = −ψ̃

(3)
0 + E2,

where N = N2 + N3.
The ΨDO πS0N is positive-definite and the following proposition holds for it.

Lemma 3.4. Let 1 < p < ∞, 1 ≤ r ≤ ∞, 1/p−1/2+ δ < s < 1/p+1/2− δ.
Then the ΨDOs

πS0N : H̃s−1
p (S0) → Hs

p(S0)(
B̃s−1

p,r (S0) → Bs
p,r(S0)

)

and

πS0C(x,D) : H̃s−1
p (S0)⊕ H̃s−1

p (S0) → Hs
p(S0)⊕Hs

p(S0)(
B̃s−1

p,r (S0)⊕ B̃s−1
p,r (S0) → Bs

p,r(S0)⊕ Bs
p,r(S0)

)

are invertible.

Note that the ΨDO πS0N is invertible in anisotropic Bessel potential spaces

with weight H̃(µ,s−1),k
p → H(µ,s),k

p (S0) (see [10]).
Lemmas 3.3 and 3.4 imply the validity of the following proposition.

Lemma 3.5. Let 1 < p < ∞, 1 ≤ r ≤ ∞, 1/p−1/2+ δ < s < 1/p+1/2− δ.
Then the operator

P :

H̃s−1
p (S

(1)
0 )⊕ H̃s

p(S
(1)
0 )

⊕
H̃s−1

p (S
(2)
0 )⊕ H̃s

p(S
(2)
0 )

⊕
H̃s−1

p (S0)⊕ H̃s−1
p (S0)

→

Hs
p(S

(1)
0 )⊕Hs−1

p (S
(1)
0 )

⊕
Hs

p(S
(2)
0 )⊕Hs−1

p (S
(2)
0 )

⊕
Hs

p(S0)⊕Hs
p(S0)




B̃s−1
p,r (S

(1)
0 )⊕ B̃s

p,r(S
(1)
0 )

⊕
B̃s−1

p,r (S
(2)
0 )⊕ B̃s

p,r(S
(2)
0 )

⊕
B̃s−1

p,r (S0)⊕ B̃s−1
p,r (S0)

→

Bs
p,r(S

(1)
0 )⊕ B̃s−1

p,r (S
(1)
0 )

⊕
Bs

p,r(S
(2)
0 )⊕ B̃s−1

p,r (S
(2)
0 )

⊕
Bs

p,r(S0)⊕ Bs
p,r(S0)




is invertible.
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Theorem 3.6. Let 1 < p < ∞, 1 ≤ r ≤ ∞, 1/p−1/2+δ < s < 1/p+1/2−δ,
M = 2, 3, . . . . Then the operator

AM :
(1)

H s
p →

(3)

H s
p

( (1)

B s
p,r →

(3)

B s
p,r

)

is invertible.

Lemma 2.1 and Theorem 3.6 imply that the following proposition is valid.

Theorem 3.7. Let 1 < p < ∞, 1 ≤ r ≤ ∞, 1/p−1/2+δ < s < 1/p+1/2−δ.
Then the operator

A :
(1)

H s
p →

(2)

H s
p

( (1)

B s
p,r →

(2)

B s
p,r

)

is invertible.

If we take s = 1/p′ in the condition for the operator A to be invertible (see
Theorem 3.7), we conclude that p must satisfy the equality

4

3− 2δ
< p <

4

1 + 2δ
.

Theorem 3.7 and the above reasoning imply the validity of the solution exis-
tence and uniqueness for problem M1.

Theorem 3.8. Let 4/(3−2δ) < p < 4/(1+2δ) and the compatibility condition
(3.7) be fulfilled for s = 1 − 1/p. Then the boundary-contact problem M1 has
a unique solution in the classes W 1

p (Dq), q = 1, 2, (W 1
p,loc(D2) with condition

(1.6) at infinity), which is given by the formulae

U (1) = V(1)g1 in D1, U (2) =





V(2)g2 in D
(1)
2 ,

V(3)g3 in D
(2)
2 ,

πS0V
(2)
−1g2 = πS0V

(3)
−1g3 on S0,

where gq, q = 1, 2, 3, are obtained from system (3.6).

Theorems 2.1, 3.7 and the embedding theorems (see [39]) imply

Theorem 3.9. Let 4/(3 − 2δ) < p < 4/(1 + 2δ), 1 ≤ t ≤ ∞, 1 < r < ∞,
1/r−1/2+δ < s < 1/r+1/2−δ, the compatibility condition (3.7) with t instead
of p be fulfilled, U (q) ∈ W 1

p (Dq), q = 1, 2, (U (2) ∈ W 1
p,loc(D2) with condition (1.6)

at infinity) be a solution of the boundary-contact problem M1. Then:

if ϕ1 ∈ Bs
r,r(S1), ϕ2 ∈ Bs−1

r,r (S
(1)
2 ), ϕ3 ∈ Bs−1

r,r (S
(2)
2 ), fi ∈ Bs

r,r(S
(i)
0 ), hi ∈

Bs−1
r,r (S

(i)
0 ), i = 1, 2, we have U (q) ∈ Hs+1/r

r (Dq), q = 1, 2, (U (2) ∈ Hs+1/r
r,loc (D2));

if ϕ1 ∈ Bs
r,t(S1), ϕ2 ∈ Bs−1

r,t (S
(1)
2 ), ϕ3 ∈ Bs−1

r,t (S
(2)
2 ), fi ∈ Bs

r,t(S
(i)
0 ), hi ∈

Bs−1
r,t (S

(i)
0 ), i = 1, 2, we have U (q) ∈ Bs+1/r

r,t (Dq), q = 1, 2, (U (2) ∈ Bs+1/r
r,t,loc (D2)).
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4. Asymptotics of Solutions

Now we will write the asymptotics of solutions of the boundary-contact prob-
lem M1. The boundary and contact data are assumed to be sufficiently smooth,
i.e.,

ϕ1 ∈ H(∞,s+2M+1),∞
r (S1), ϕ2 ∈ H(∞,s+2M),∞

r (S
(1)
2 ), ϕ3 ∈ H(∞,s+2M),∞

r (S
(2)
2 ),

fi ∈ H(∞,s+2M+1),∞
r (S

(i)
0 ), hi ∈ H(∞,s+2M),∞

r (S
(i)
0 ), i = 1, 2;

here the numbers r and s satisfy the conditions of Theorem 3.9.
Let m1, . . . , m2` be algebraic multiplicities of the eigenvalues λ1, . . . , λ2`,∑2`
j=1 mj = 12, where λj = λ

(j)
R , j = 1, . . . , 2`.

We introduce the notation

bR(x1) =
(
σR(x1, 0, +1)

)−1
σR(x1, 0,−1).

Let
b0R(x1) = K−1(x1)bR(x1)K(x1), x1 ∈ ∂S

(1)
0 ,

be a quasi-diagonal form, where K is some nondegenerate matrix function
detK(x1) 6= 0, and K ∈ C∞ (see [20]).

The asymptotics of solutions to a strongly elliptic pseudodifferential equation
(see [10, Theorem 2.1]) implies the asymptotics of solutions of the pseudodif-
ferential equation

R(x′, D′)χ = F, F ∈ H(∞,s+M),∞
r,comp (R2

+)×H(∞,s+M),∞
r,comp (R2

+)

written in terms of some local coordinate system of the manifold S
(1)
0 .

Thus we obtain an asymptotic expansion of the solution χ = (χ1, χ2)
>

χ(x1, x2,+) = K(x1)x
1/2+∆(x1)
2,+ B0

apr

(
− 1

2πi
log x2,+

)
K−1(x1)c0(x1)

+
M∑

k=1

K(x1)x
1/2+∆(x1)+k
2,+ Bk(x1, log x2,+) + χM+1(x1, x2,+), (4.1)

for all sufficiently small x2,+ > 0, χ
M+1

∈H̃(∞,s+M+1),∞
r,comp (R2

+)×H̃(∞,s+M+1),∞
r,comp (R2

+);
B0

apr
(t) is defined in [10]; the 12× 12 matrix function Bk(x1, t) is a polynomial

of order νk = k(2m0− 1)+m0− 1, m0 = max{m1, . . . , m2`} with respect to the
variable t with 12-dimensional vector coefficients which depend on the variable
x1 and

∆(x1) = (∆1(x1), ∆2(x1));

here

∆j(x1) = (δ
(j)
1 (x1), . . . , δ

(j)
1 (x1)︸ ︷︷ ︸

m1-times

, . . . , δ
(j)
` (x1), . . . , δ

(j)
` (x1)︸ ︷︷ ︸

m`-times

) , j = 1, 2,

δ
(1)
k (x1) =

1

2π
arg λk(x1)− i

2π
|λk(x1)|,

δ
(2)
k (x1) = − 1

2π
arg λk(x1)− i

2π
|λk(x1)|, k = 1, . . . , `.



444 O. CHKADUA

Without loss of generality suppose that the matrix B0
apr

(t) has the form

B0
apr

(t) = diag{B0
apr

(t), B0
apr

(t)};
here B0

apr
(t) is the upper triangular block-diagonal 6×6-matrix-function defined

in [9].
Hence for the functions χ1 and χ2 we can write an asymptotic expansion.

Indeed, let

K(x1) =

( K11(x1) K12(x1)
K21(x1) K22(x1)

)

12×12

and

K−1(x1)c0(x1) = (c
(1)
0 (x1), c

(2)
0 (x1))

>, (4.2)

where Kij(x1), i, j = 1, 2, are 6 × 6-matrices, c
(i)
0 , i = 1, 2, are six-dimensional

vector functions. Then

χi(x1, x2,+) =
2∑

j=1

Kij(x1)x
1/2+∆j(x1)
2,+ B0

apr

(
− 1

2πi
log x2,+

)
c
(i)
0 (x1)

+
2∑

j=1

M∑

k=1

Kij(x1)x
1/2+∆j(x1)+k
2,+ B

(i)
kj (x1, log x2,+) + χ

(i)
M+1(x1, x2,+), i = 1, 2, (4.3)

where χ
(i)
M+1 ∈ H̃(∞,s+M+1)

r,comp (R2
+) and B

(i)
kj (x1, t) is a polynomial of order νk =

k(2m0 − 1) + m0 − 1 with respect to the variable t with six-dimensional vector
coefficients which depend on the variable x1.

We can also obtain an analogous asymptotic expansion of the solution χ̃ =
(χ̃1, χ̃2) of the strongly elliptic equation

Q(x′, D′)χ̃ = F̃ , F̃ ∈ H(∞,s+M),∞
r,comp (R2

+)×H(∞,s+M),∞
r,comp (R2

+)

in terms of some local coordinate system on the manifold S
(2)
0 . Indeed, we have

χ̃i(x1, x2,+) =
2∑

j=1

Kij(x1)x
1/2+∆j(x1)
2,+ B0

apr

(
− 1

2πi
log x2,+

)
b
(i)
0 (x1)

+
2∑

j=1

M∑

k=1

Kij(x1)x
1/2+e∆j(x1)+k
2,+ B

(i)
kj (x1, log x2,+) + χ̃

(i)
M+1(x1, x2,+), i = 1, 2, (4.4)

where χ̃
(i)
M+1 ∈ H̃(∞,s+M+1),∞

r,comp (R2
+), ∆̃j, j = 1, 2, are defined as ∆j, j = 1, 2, by

means of the eigenvalues λ
(k)
Q , k = 1, . . . , 12, of the matrix bQ.

Let us consider the pseudodifferential equation

πS0Nψ̃
(3)
0 = Ẽ1 and ψ̃

(2)
0 = −ψ̃

(3)
0 + E2,

where

N = V(2)
−1(B

(2)
M )−1V(2)

−1 + V(3)
−1(B

(3)
M )−1V(3)

−1.
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The following equalities hold for the principal homogeneous symbols of the

operators V(i)
−1 and

∗
V (i)

0 , i = 2, 3:

σV(2)
−1

(x′, ξ′) = σV(3)
−1

(x′, ξ′) for x′ ∈ S0,

σ∗
V(2)0

(x′, ξ′) = −σ∗
V(3)0

(x′, ξ′) for x′ ∈ S0.
(4.5)

In view of equality (4.5) we can write the symbol σN(x′, ξ′) of the ΨDO
operator N as follows:

σN(x′, ξ′) =
[(1

2
I + σ∗

V(2)0

(x′, ξ′)
)(

σ−V(2)
−1

(x′, ξ′)
)−1

]−1

+
[(1

2
I − σ∗

V(2)0

(x′, ξ′)
)(

σ−V(2)
−1

(x′, ξ′)
)−1

]−1

.

Since the symbol σ∗
V(2)0

(x′, ξ′) is an odd matrix function with respect to ξ′, while

the symbol σ−V(2)
−1

(x′, ξ′) is an even matrix function, one can easily ascertain that

the symbol σN(x′, ξ′) is even with respect to the variable ξ′, i.e.,

σN(x′,−ξ′) = σN(x′, ξ′), x′ ∈ S0,

and all eigenvalues of the matrix
(
σN(x1, 0, +1)

)−1
σN(x1, 0,−1) = I, x1 ∈ ∂S0,

are trivial λ
(j)
N = 1, j = 1, . . . , 6.

Applying the result on strongly elliptic pseudodifferential equations (see [10,
Theorem 2.1]), we obtain, in terms of some local coordinate system, the follow-

ing result on asymptotic expansion of the functions ψ
(i)
0 , i = 2, 3:

ψ
(i)
0 (x1, x2,+) = (−1)i+1c0(x1)x

−1/2
2,+ +

M∑

k=1

x
−1/2+k
2,+ d

(i)
k (x1)+ψ

(i)
M+1(x1, x2,+), (4.6)

where c0, d
(i)
k ∈ C∞

0 (R), and the remainder ψ
(i)
M+1 ∈ H̃(∞,s+M+1),∞

r,comp (R2
+), i = 2, 3,

M ∈ N. As we can see from (4.6), due to the properties of the symbol σN(x′, ξ′)
(see [12]) there are no logarithms in the entire asymptotic expansion.

Let g = (g1, g2, g3, ϕ
(1)
0 , ψ

(1)
0 ϕ

(2)
0 , ψ

(2)
0 , ϕ

(3)
0 , ψ

(3)
0 ) be a solution of system (3.6),

i.e.,
Ag = Φ,

where

Φ =
(
Φ

(1)
0 , Φ

(2)
0 , Φ

(3)
0 , f1 − π

S
(1)
0

Φ
(1)
0 , h1 + π

S
(1)
0

Φ
(2)
0 , f2 − π

S
(2)
0

Φ
(1)
0 ,

h2 + π
S

(2)
0

Φ
(3)
0 , 0,−(πS0Φ

(2)
0 + πS0Φ

(3)
0 )

)
.

Then
D ◦ Ag = Ψ; (4.7)

here

Ψ =
(
Φ

(1)
0 ,−V(2)

−1Φ
(2)
0 ,−V(3)

−1Φ
(3)
0 , f1 − π

S
(1)
0

Φ
(1)
0 , h1 + π

S
(1)
0

Φ
(2)
0 , f2 − π

S
(2)
0

Φ
(1)
0 ,
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h2 + π
S

(2)
0

Φ
(3)
0 , 0,−(πS0Φ

(2)
0 + πS0Φ

(3)
0 )

)
.

Now adding the expression

T2M+1g = diag
{
0,−(V(2)

−1)
2M+1,−(V(3)

−1)
2M+1, 0, . . . , 0

}
g

to both parts of system (4.7), we obtain the equality

A2M+1g = Ψ̃, (4.8)

where

Ψ̃ =
(
Φ

(1)
0 ,−V(2)

−1Φ
(2)
0 − (V(2)

−1)
2M+1g2,−V(2)

−1Φ
(3)
0 − (V(3)

−1)
2M+1g3, f1 − π

S
(1)
0

Φ
(1)
0 ,

h1 + π
S

(1)
0

Φ
(2)
0 , f2 − π

S
(2)
0

Φ
(1)
0 , h2 + π

S
(2)
0

Φ
(3)
0 , 0,−(πS0Φ

(2)
0 + πS0Φ

(3)
0 )

)
.

Thus (−L−1
+ ϕ

(2)
0 , ϕ

(1)
0 ) satisfies, in some local coordinate system of the mani-

fold S
(1)
0 , the pseudodifferential equation

R(x′, D′)
(

χ1

χ2

)
= F,

and (−L−1
+ ψ

(3)
0 , ϕ

(1)
0 ) satisfies, in some local coordinate system of the manifold

S
(2)
0 , the pseudodifferential equation

Q(x′, D′)
(

χ̃1

χ̃2

)
= F̃ ,

where

F = (L−F1, F2),

F1 = f1 − π
S

(1)
0

Φ
(1)
0 − π

S
(1)
0
V(2)
−1(B

(2)
2M+1)

−1V(2)
−1Φ

(2)
0

−π
S

(1)
0
V(2)
−1(B

(2)
2M+1)

−1V(2)
−1ψ

(2)
0 − π

S
(1)
0
V(2)
−1(B

(2)
2M+1)

−1(V(2)
−1)

2M+1g2,

F2 = h1 + π
S

(1)
0

Φ
(2)
0 − π

S
(1)
0

(
− 1

2
I+

∗
V (1)

0

)
(V(1)

−1)
−1Φ

(1)
0

−π
S

(1)
0

(
− 1

2
I+

∗
V (1)

0

)
(V(1)

−1)
−1ψ

(1)
0

and

F̃ = (L−F̃1, F̃2),

F̃1 = f2 − π
S

(2)
0

Φ
(1)
0 + π

S
(2)
0
V(3)
−1(B

(3)
2M+1)

−1V(3)
−1Φ

(3)
0

−π
S

(2)
0
V(3)
−1(B

(3)
2M+1)

−1(V(3)
−1)

2M+1ψ
(3)
0 − π

S
(2)
0
V(3)
−1(B

(3)
2M+1)

−1(V(3)
−1)

2M+1g3,

F̃2 = h2 + π
S

(2)
0

Φ
(3)
0 − π

S
(2)
0

(
− 1

2
I+

∗
V (1)

0

)
(V(1)

−1)
−1Φ

(1)
0

−π
S

(2)
0

(
− 1

2
I+

∗
V (1)

0

)
(V(1)

−1)
−1ϕ

(1)
0 ;

here
Fi ∈ H(∞,s+2M),∞

r,comp (R2
+), F̃i ∈ H(∞,s+2M),∞

r,comp (R2
+), i = 1, 2.
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Further, we have that (ψ
(2)
0 , ψ

(3)
0 ) is a solution of the system

πS0C(x,D)

(
ψ

(2)
0

ψ
(3)
0

)
=

(
0

−(πS0Φ
(2)
0 + πS0Φ

(3)
0 )

)
.

This system can be reduced to a pseudodifferential equation with the positive-
definite operator

πS0Nψ
(3)
0 = E1, ψ

(2)
0 = −ψ

(3)
0 − (πS0Φ

(2)
0 + πS0Φ

(3)
0 ),

where
N = V(2)

−1(B
(2)
2M+1)

−1V(2)
−1 + V(3)

−1(B
(3)
2M+1)

−1V(3)
−1

and

E1 = −πS0V
(2)
−1(B

(2)
2M+1)

−1V(2)
−1Φ

(2)
0 − πS0V

(2)
−1(B

(2)
2M+1)

−1(V(2)
−1)

2M+1g2

+ πS0V
(2)
−1(B

(2)
2M+1)

−1V(2)
−1ϕ

(2)
0 − πS0V

(2)
−1(B

(2)
2M+1)

−1V(2)
−1(πS0Φ

(2)
0 + πS0Φ

(3)
0 );

here
E1 ∈ H(∞,s+2M),∞

r,comp (R2
+).

Hence we can obtain asymptotic expansions (4.3), (4.4) and (4.6) for the func-

tions −L−1
+ ϕ

(2)
0 , ϕ

(2)
0 , −L−1

+ ψ
(3)
0 , ϕ

(1)
0 and ψ

(3)
0 , ψ

(2)
0 , respectively.

We now define g1, g2 and g3 by the first three equations of system (4.8)

g1 = (V(1)
−1)

−1ϕ
(1)
0 + (V(1)

−1)
−1ψ

(1)
0 + (V(1)

−1)
−1Φ

(1)
0 , (4.9)

gi = −(B
(i)
2M+1)

−1V(i)
−1ϕ

(i)
0 − (B

(i)
2M+1)

−1V(i)
−1ψ

(i)
0

+ (B
(i)
2M+1)

−1Φ
(i)
0 + Gi, i = 2, 3, (4.10)

where

Gi = (B
(i)
2M+1)

−1(−V(i)
−1)

2M+1gi, i = 2, 3,

G2 ∈ H(∞,s+2M),∞
r (∂D

(1)
2 ), G3 ∈ H(∞,s+2M),∞

r (∂D
(2)
2 ).

Using expansions (4.9) and (4.10), we obtain the following representation,
i.e., the solutions of the boundary-contact problem M1 are expressed by the
potential-type functions

U (1) = V(1)(V(1)
−1)

−1ϕ
(1)
0 + V(1)(V(1)

−1)
−1ψ

(1)
0 + R1, (4.11)

r1U (2) = −V(2)(B
(2)
2M+1)

−1V(2)
−1ϕ

(2)
0 − V(2)(B

(2)
2M+1)

−1V(2)
−1ψ

(2)
0 + R2, (4.12)

r2U (2) = −V(3)(B
(3)
2M+1)

−1V(3)
−1ϕ

(3)
0 − V(3)(B

(3)
2M+1)

−1V(3)
−1ψ

(3)
0 + R3, (4.13)

where

R1 ∈ CM+1(D1), R2 ∈ CM+1(D
(1)
2 ), R3 ∈ CM+1(D

(2)
2 ),

suppϕ
(1)
0 ⊂ S

(1)
0 , suppψ

(1)
0 ⊂ S

(2)
0 , suppϕ

(2)
0 ⊂ S

(1)
0 ,

suppψ
(2)
0 ⊂ S0, suppϕ

(3)
0 ⊂ S

(2)
0 , suppψ

(3)
0 ⊂ S0.

Thus, taking into account (4.11), (4.12), (4.13), using the asymptotic expan-

sions of the functions −L−1
+ ϕ

(2)
0 , ϕ

(1)
0 , −L−1

+ ψ
(3)
0 , ϕ

(1)
0 and ψ

(3)
0 , ψ

(2)
0 (see (4.3),
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(4.4), (4.6)), the asymptotic expansion of potential-type functions (see [9, The-
orems 2.2 and 2.3]) we derive the following asymptotic expansions of the solu-
tions of the considered boundary-contact problem M1 in terms of some local

coordinate systems of curves ∂S
(1)
0 , ∂S

(2)
0 , ∂S0:

a) the asymptotic expansion near the contact boundary ∂S
(1)
0 :

U (q)(x1, x2, x3) = (u(q), ω(q))(x1, x2, x3)

=
∑

θ=±1

2∑
j=1

`0∑
s=1

Re

{ ns−1∑
m=0

xm
3

[
d

(q)
sjm(x1, θ)(z

(q)
s,θ )

1/2+∆j(x1)−m

×B0
apr

(
− 1

2πi
log z

(q)
s,θ

)]
c
(q)
jm(x1)

+
M+2∑

k,l=0

M+2−l∑
p+m=0

k+l+p+m6=0

xl
2x

m
3 d

(q)
slmpj(x1, ϑ)(z

(q)
s,ϑ)

1/2+∆j(x1)+k+pB
(q)
skmpj(x1, log z

(q)
s,ϑ)

}

+U (q)
M+1(x1, x2, x3) for M >

2

r
−min{[s− 1], 0}, q = 1, 2, (4.14)

with the coefficients d
(q)
sjm(·,±1), c

(q)
jm, d

(q)
slmpj(·,±1) ∈ C∞

0 (R) and the remainder

U (q)
M+1 ∈ CM+1

0 (R3±), q = 1, 2, where the signs “+” and “-” refer to the cases
q = 1 and q = 2, respectively. Here

z
(q)
s,+1 = (−1)q[x2 + x3τ

(q)
s,+1], z

(q)
s,−1 = (−1)q+1[x2 − x3τ

(q)
s,−1],

−π < Argzs,±1 < π, τs,±1 ∈ C∞
0 (R),

{τ (q)
s,±1}`0

s=1 are all different roots of the polynomial det
◦
M (q)((J >

{ (x1, 0))−1 ·
(0,±1, τ)) of multiplicity ns, s = 1, . . . , `0, in the complex lower half-plane (ns

and `0 depend on q). B
(q)
skmpj(x1, t) is a polynomial of order νkmp = νk + p + m

(νk = k(2m0 − 1) + m0 − 1, m0 = max{m1, . . . , m`},
∑̀
j=1

mj = 6) with respect

to the variable t with vector coefficients which depend on the variable x1.
We write the following relation between the leading (first) coefficients of the

asymptotic expansions (4.14) and (4.3) (see [9, Theorem 2.3]):

d
(1)
sjm(x1, +1) =

1

2π
G{(x1, 0)

1

V (s)
−1,m(x1, 0, +1)σ−1

V(1)
−1

(x1, 0, +1)K2j(x1),

d
(1)
sjm(x1,−1) = − 1

2π
G{(x1, 0)

1

V (s)
−1,m(x1, 0,−1)σ−1

V(1)
−1

(x1, 0,−1)

×K2j(x1)e
iπ(−1/2−∆j(x1)),

d
(2)
sjm(x1, +1) =

(−1)m+1

2π
G{(x1, 0)

2

V (s)
−1,m(x1, 0, +1)σ−1

1
2
I+

∗
V(2)

0

(x1, 0, +1)K1j(x1),

d
(2)
sjm(x1,−1) =

(−1)m+1

2π
G{(x1, 0)

2

V (s)
−1,m(x1, 0,−1)σ−1

1
2
I+

∗
V(2)

0

(x1, 0,−1)
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×K1j(x1)e
iπ(−1/2−∆j(x1)),

j = 1, 2, s = 1, . . . , `0, m = 0, . . . , ns − 1;

here G{ is the square root from the Gram determinant of the diffeomorphism κ
and

q

V (s)
−1,m(x1, 0,±1) =

im+1

m!(ns − 1−m)!

dns−1−m

dτns−1−m
(τ − τ

(q)
s,±1)

ns

×[ ◦
M (q)((J >

{ (x1, 0))−1(0,±1, τ))
]−1

∣∣∣
τ=τ

(q)
s,±1

, q = 1, 2.

The coefficients c
(q)
jm(x1) in (4.14) are defined as follows:

c
(1)
jm(x1) = ajm(x1)B

−
apr

(1

2
+ ∆j(x1)

)
c
(2)
0 (x1),

c
(2)
jm(x1) = ajm(x1)B

−
apr

(1

2
+ ∆j(x1)

)
c
(1)
0 (x1),

j = 1, 2, m = 0, . . . , ns − 1,

where

B−
apr

(t) = diag{Bm1
− (t), . . . , Bml− )t)},

Bmr
− (t) = Bmr

(
− 1

2πi
∂t

)(
Γ(t + 1)e

iπ(t+1
2

)
,

Bmr(t) = ‖bmr
kp (t)‖mr×mr ,

bmr
kp (t) =





( 1

2πi

)p−k (−1)p+k

(p− k)!

dp−k

dtp−k

(
Γ(t + 1)e

iπ(t+1)
2

)
, k ≤ p,

0, k > p,

p = 0, . . . , mr − 1, r = 1, . . . , `.

Further,

ajm(x1) = diag{am1(λ
(j)
1 ), . . . , am`(λ

(j)
` )}, j = 1, 2,

λ(1)
r (x1) = −3

2
− 1

2π
argλr(x1) +

i

2π
log |λr(x1)|+ m,

λ(2)
r (x1) = −3

2
+

1

2π
argλr(x1) +

i

2π
log |λr(x1)|+ m,

m = 0, 1, . . . , ns − 1;

amr(λ(j)
r ) = ‖amr

kp (λ(j)
r ‖mr×mr ,

where

amr
kp (λ(j)

r ) =





−i

p∑

l=k

(−1)p+k(2πi)l−pbmr
kl (µ

(j)
r )

(λ
(j)
r + 1)p−l+1

, m = 0, k ≤ p,

(−1)p+kbmr
kp (λ(j)

r ), m = 1, 2, . . . , ns − 1, k ≤ p,
0, k > p;

here λ
(j)
r = −1 + m + µ

(j)
r , 0 < Reµ

(j)
r < 1, j = 1, 2, r = 1, . . . , `, and c

(1)
0 (x1),

c
(2)
0 (x1) are defined using the first coefficients of the asymptotic expansion of

the functions −L−1
+ ϕ

(2)
0 and ϕ

(1)
0 , respectively (see (4.3)).
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b) the asymptotics of solutions near the contact boundary ∂S
(2)
0 :

U (q)(x1, x2, x3) = (u(q), ω(q))(x1, x2, x3)

=
∑

ϑ=±1

2∑
j=1

`0∑
s=1

Re

{ ns−1∑
m=0

xm
3

[
d

(q)
sjm(x1, θ)(z

(q)
z,θ)

1/2+e∆j(x1)−m

×B0
apr

(
− 1

2πi
log z

(q)
s,θ

)]
c
(q)
jm(x1)

+
M+2∑

k,l=0

M+2−l∑
p+m=0

k+l+p+m6=0

xl
2x

m
3 d

(q)
slmpj(x1, ϑ)(z

(q)
s,ϑ)

1/2+∆j(x1)+k+pB
(q)
skmpj(x1, log z

(q)
s,ϑ)

}

+U (q)
M+1(x1, x2, x3) for M >

2

r
−min{[s− 1], 0}, q = 1, 2; (4.15)

here z
(q)
s,+1 = (−1)q[x2 + x3τ

(q)
s,+1], z

(q)
s,−1 = (−1)q+1[x2 − x3τ

(q)
s,−1]. The coefficients

d
(q)
sjm(·,±1) are calculated similarly as in a) and the coefficients b

(q)
jm are defined

as in a) by using the first coefficients b
(q)
0 (q = 1, 2) of the asymptotic expansion

(4.4).

c) the asymptotics of solutions near the cuspidal edge ∂S0:

(riU (2))(x1, x2, x3) = ri(u
(2), ω(2))(x1, x2, x3)

=
∑

ϑ=±1

`0∑
s=1

Re

{ ns−1∑
j=0

xj
3z

1/2−j
s,θ d

(i)
sj (x1, θ) +

M+1∑

k,l=0

M+2−l∑
j+p=1

l+k+j+p6=1

xl
2x

j
3z
−1/2+p+k
s,ϑ d

(i)
slkjp(x1)

}

+U (i)
M+1(x1, x2, x3) for M >

2

r
−min{[s], 0}, i = 1, 2, (4.16)

with the coefficients d
(i)
sj (·,±1), d

(i)
slkjp ∈ C∞

0 (R) and the remainder U (i)
M+1 ∈

CM+1
0 (R3±), i = 1, 2; here

zs,+1 =−x2−x3τ
(2)
s,+1, zs,−1 =x2−x3τ

(2)
s,−1, −π < Argzs,±1 < π, τs,±1 ∈ C∞

0 (R),

{τ (2)
s,±1}`0

s=1 are all different roots of the polynomial det
◦
M (2)((J >

{ (x1, 0))−1 ·
(0,±1, τ)) of multiplicity ns, s = 1, . . . , `0, in the complex lower half-plane.

The coefficients d
(i)
sj (x1,±1) have the form (see [9, Theorem 2.3]):

d
(1)
sj (x1, +1) = G{(x1, 0)

2

V (s)
−1,j(x1, 0, +1)σ−1

1
2
I+

∗
V(2)0

(x1, 0, +1)c(j)(x1),

d
(1)
sj (x1,−1) = −iG{(x1, 0)

2

V (s)
−1,j(x1, 0,−1)σ−1

1
2
I+

∗
V(2)0

(x1, 0,−1)c(j)(x1)

d
(2)
sj (x1, +1) = (−1)j+1G{(x1, 0)

2

V (s)
−1,j(x1, 0, +1)σ−1

1
2
I+

∗
V(3)0

(x1, 0, +1)c(j)(x1),

d
(2)
sj (x1,−1) = (−1)j+1iG{(x1, 0)

2

V (s)
−1,j(x1, 0,−1)σ−1

1
2
I+

∗
V(3)0

(x1, 0,−1)c(j)(x1),
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s = 1, . . . , l0, j = 0, . . . , ns − 1,

where G{ is the square root from the Gram determinant of the diffeomor-
phism κ,

2

V (s)
−1,j(x1, 0,±1) =

ij+1

j!(ns − 1− j)!

dns−1−j

dτns−1−j
(τ − τ

(2)
s,±1)

ns

×( ◦
M (2)((J >

{ (x1, 0))−1 · (0,±1, τ))
)−1

∣∣∣
τ=τ

(2)
s,±1

,

c(j)(x1) =
ij

2
√

π
Γ
(
j − 1

2

)
c0(x1)

and c0(x1) is the first coefficient of the asymptotic expansion in (4.6).

5. Investigation of the Properties of Exponents of the First
Terms of an Asymptotic Expansion of Solutions of Problem

M1 in the Neighbouhoods of Contact Boundaries

We consider the properties of exponents of the first terms of an asymptotic
expansion of solutions of the boundary-contact problem M1 in the neighbour-

hood of the contact boundary ∂S
(1)
0 . Analogous properties will be valid in the

neighbourhood of the contact boundary ∂S
(2)
0 , too.

For the sake of brevity, by γm and δm (m = 1, . . . , 6) we denote the real
and the imaginary part of the first term exponent of the asymptotic expansions
(4.14), and (4.15), i.e.,

γm(x1) =
1

2
−

∣∣∣ 1

2π
argλm(x1)

∣∣∣, δm(x1) = − 1

2π
log |λm(x1)|,

m = 1, . . . , 6, x1 ∈ ∂S
(1)
0 ,

where λm(x1) = λ
(m)
R (x1) m = 1, . . . , 12, are the eigenvalues of the matrix

bR(x1) = (σR(x1, 0, +1))−1σR(x1, 0,−1).

Theorem 5.1. The real parts γm, m = 1, . . . , 6, of the exponents of the first
terms of the asymptotic expansion of solutions of the boundary-contact problem

M1 near the contact boundary ∂S
(1)
0 depend on the elastic constants and also

on the geometry of the contact boundaries and may take any values from the
interval ]0, 1/2[ , i.e.,

(a) if the elastic constants satisfy the limit conditions

a
(2)
ijlk

a
(1)
ijlk

→ 0,
b
(2)
ijlk

b
(1)
ijlk

→ 0,
c
(2)
ijlk

c
(1)
ijlk

→ 0,

then γm → 1/2 (m = 1, . . . , 6);
(b) if for

a
(2)
ijlk

a
(1)
ijlk

→∞,
b
(2)
ijlk

b
(1)
ijlk

→∞,
c
(2)
ijlk

c
(1)
ijlk

→∞
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the limiting relations

1. M+
2

|ζ1|
|ζ2| + M+

1

|ζ2|
|ζ1| → 0; 2.

|Im〈ζ1, ζ2〉|
|ζ1| |ζ2| → c (c > 0),

are valid, then γm → 0 and δm → 0 (m = 1, . . . , 6),

where ζ = (ζ1, ζ2) is the eigenvector of the matrix bR, while M+
1 and M+

2

are maximal eigenvalues of the matrices σ+
N1

= σN1(x1, 0, +1) and σ+
N2

=
σN2(x1, 0, +1).

Here the limits of the coefficients a
(q)
ijlk, b

(q)
ijlk, c

(q)
ijlk are understood in the uniform

sense with respect to the indices i, j, l, k.

Proof. Multiply the coefficients a
(1)
ijlk, b

(1)
ijlk, c

(1)
ijlk by α (α > 0), and the coefficients

a
(2)
ijlk, b

(2)
ijlk, c

(2)
ijlk by β (β > 0); i.e., we consider the differential equations with

the elastic constants αa
(1)
ijlk, αb

(1)
ijlk, αc

(1)
ijlk and βa

(2)
ijlk, βb

(2)
ijlk, βc

(2)
ijlk.

(a) Taking into consideration the estimate obtained in [6] we have

∣∣∣ 1

2π
argλm(x1)

∣∣∣ ≤ 1

π
arctg

(√β√
α

1√
m+

1 m+
2

)
,

where αm+
1 , β−1m+

2 are minimal eigenvalues of the matrices σ+
N1

and σ+
N2

, re-
spectively.

Consequently, as β/α → 0 we get γm → 1
2

(m = 1, . . . , 6).
(b) Since

1

2π
arg λm(x1) =

1

2π
arctg

2Im〈ζ1, ζ2〉
〈σ+

N2
ζ1, ζ1〉+ 〈σ+

N1
ζ2, ζ2〉

+
1

2π
arctg

2Im〈ζ1, ζ2〉
〈σ−N2

ζ1, ζ1〉+ 〈σ−N1
ζ2, ζ2〉

,

we obtain the estimate

∣∣∣ 1

2π
arg λm(x1)

∣∣∣ ≥ 1

π
arctg

2|Im〈ζ1,ζ2〉|
|ζ1| |ζ2|

β−1M+
2
|ζ1|
|ζ2| + αM+

1
|ζ2|
|ζ1|

. (5.1)

Further, since

|λm(x1)|2 =
(〈σ−N2

ζ1, ζ1〉+ 〈σ−N1
ζ2, ζ2〉)2 + (2Im〈ζ1, ζ2〉)2

(〈σ+
N2

ζ1, ζ1〉+ 〈σ+
N1

ζ2, ζ2〉)2 + (2Im〈ζ1, ζ2〉)2
,

we get
1

b
≤ |λm(x1)|2 ≤ b, (5.2)

where

b =
(β−1M+

2 |ζ1|2 + αM+
1 |ζ2|2)2 + (2Im〈ζ1, ζ2〉)2

(β−1m+
2 |ζ1|2 + αm+

1 |ζ2|2)2 + (2Im〈ζ1, ζ2〉)2
;

here αM+
1 and β−1M+

2 are maximal eigenvalues of the matrices σ+
N1

and σ+
N2

respectively, while the vectors ζ1 and ζ2 depend in general on α and β.
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Thus, using the inequalities (5.1) and (5.2) and taking into consideration the
limiting relations 1 and 2 from subsection (b), for β/α → ∞ we get γm → 0
and δm → 0 (m = 1, . . . , 6). ¤

Remark 5.2. In the centrally symmetric isotropic case the exponents of the
first terms of the asymptotic expansion of solutions of the boundary-contact
problem M1 γj + iδj (j = 1, . . . , 6) are calculated explicitly.

Indeed, the differential operator of the couple-stress elasticity theory for a
homogeneous isotropic centrally symmetric medium takes the form (see [26]):

M(q)(∂x) =




1

M (q)(∂x)
2

M (q)(∂x)
3

M (q)(∂x)
4

M (q)(∂x)




6×6

,

k

M (q)(∂x) =
∥∥ k

M (q)
ij (∂x)

∥∥
3×3

, k = 1, 4, q = 1, 2,

1

M (q)
ij (∂x) = (µq + αq)δij∆ + (λq + µq − αq)∂i∂j,

2

M (q)
ij (∂x) =

3

M (q)
ij (∂x) = −2αq

3∑

k=1

εijk∂k,

4

M (q)
ij (∂x) = δij

[
(νq + βq)∆− 4αq

]
+ (εq + νq − βq)∂i∂j,

where δij and εijk are respectively the Kronecker and the Levi-Civita symbol.
The coefficients λq, µq, αq, νq, βq, εq, q = 1, 2, are the elastic constants satisfying
the conditions

µq > 0, 3λq + 2µq > 0, αq > 0, νq > 0, 3εq + 2νq > 0, βq > 0.

The stress operator of couple-stress elasticity is written as

N (q)(∂z, n(z)) =




1

N (q)(∂z, n(z))
2

N (q)(∂z, n(z))
3

N (q)(∂z, n(z))
4

N (q)(∂z, n(z))




6×6

,

k

N (q)(∂z, n(z)) =
∥∥ k

N (q)
ij (∂z, n(z))

∥∥
3×3

, k = 1, 4, q = 1, 2,

1

N (q)
ij (∂z, n(z)) = λqni(z)∂j + (µq − αq)nj(z)∂i + (µq + αq)δij

∂

∂n(z)
,

2

N (q)
ij (∂z, n(z)) = −2αq

3∑

k=1

εijknk(z),
3

N (q)
ij (∂z, n(z)) = 0,

4

N (q)
ij (∂z, n(z)) = εqni(z)∂j + (νq − βq)ni(z)∂i + (νq + βq)δij

∂

∂n(z)
.

The matrices σ±Nq
= σNq(x1, 0,±1), q = 1, 2, have the following expressions

σ±N1
=

(
1
σ ±

N1
0

0
2
σ ±

N1

)

6×6

, σ±N2
=

(
1
σ ±

N2
0

0
2
σ ±

N2

)

6×6

,
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where

1
σ ±

N1
=




µ1 + α1 0 0
0 a1 ∓ib1

0 ±ib2 a1




3×3

,
2
σ ±

N1
=




ν1 + β1 0 0
0 c1 ∓id1

0 ±id1 c1




3×3

,

1
σ ±

N2
=




1

µ2 + α2

0 0

0
a2

a2
2 − b2

2

∓i
b2

a2
2 − b2

2

0 ±i
b2

a2
2 − b2

2

a2

a2
2 − b2

2




3×3

,

2
σ ±

N2
=




1

ν2 + β2

0 0

0
c2

c2
2 − d2

2

∓i
d2

c2
2 − d2

2

0 ±i
d2

c2
2 − d2

2

c2

c2
2 − d2

2




3×3

,

here

aq =
2(λq + 2µq)(µq + αq)

λq + αq + 3µq

, bq =
2(µq + αq)

2

λq + αq + 3µq

, q = 1, 2,

and

cq =
2(εq + 2νq)(νq + βq)

εq + βq + 3νq

, dq =
2(νq + βq)

2

εq + βq + 3νq

, q = 1, 2.

Hence in the considered case the eigenvalues λj (j = 1, . . . , 12) of the matrix

bR(x1) =
(
σR(x1, 0, +1)

)−1
σR(x1, 0,−1)

are calculated in the manner as follows:

λ1,2 =
(µ1 + α1)− (µ2 + α2)± 2i

√
(µ1 + α1)(µ2 + α2)

µ1 + α1 + µ2 + α2

,

λ3,4 =

{
B±√B2−AC

A
for B2 − AC ≥ 0,

B±i
√

AC−B2

A
for B2 − AC < 0,

λ5,6 =

{
B±√B2−AC

C
for B2 − AC ≥ 0,

B±i
√

AC−B2

C
for B2 − AC < 0,

λ7,8 =
(ν1 + β1)− (ν2 + β2)± 2i

√
(ν1 + β1)(ν2 + β2)

ν1 + β1 + ν2 + β2

,

λ9,10 =





eB±
√
eB2− eA eC
eA for B̃2 − ÃC̃ ≥ 0,

eB±i
√
eA eC− eB2

eA for B̃2 − ÃC̃ < 0,
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λ11,12 =





eB±
√
eB2− eA eC
eC for B̃2 − ÃC̃ ≥ 0,

eB±i
√
eA eC− eB2

eC for B̃2 − ÃC̃ < 0,

where

A = a2a1 + b1b2 + a2
2 − b2

2 + a2b1 + b2a1, B = a2a1 − b1b2 − a2
2 + b2

2,

C = a2a1 + b1b2 + a2
2 − b2

2 − a2b1 − b2a1,

Ã = c2c1 + d1d2 + c2
2 − d2

2 + c2d1 + d2c1, B̃ = c2c1 − d1d2 − c2
2 + d2

2,

C̃ = c2c1 + d1d2 + c2
2 − d2

2 − c2d1 − d2c1.

Hence we obtain

γ1 =
1

2
− 1

π
arctg

√
µ2 + α2√
µ1 + α1

, δ1 = 0,

γ2,3 =





1
2
, B2 − AC ≥ 0,

1
2
− 1

2π
arctg

√
AC−B2

B
, B2 − AC < 0, B > 0,

1
2π

arctg
√

AC−B2

|B| B2 − AC < 0, B < 0,

δ2,3 =




− 1

2π
log B±√B2−AC

A
, B2 − AC ≥ 0,

∓ 1
2π

log
(

A
C

)
, B2 − AC < 0,

γ4 =
1

2
− 1

π
arctg

√
ν2 + β2√
ν1 + β1

, δ4 = 0,

γ5,6 =





1
2
, B̃2 − ÃC̃ ≥ 0,

1
2
− 1

2π
arctg

√
eA eC− eB2

eB , B̃2 − ÃC̃ < 0, B̃ > 0,

1
2π

arctg

√
eA eC− eB2

| eB| , B̃2 − ÃC̃ < 0, B̃ < 0,

δ5,6 =




− 1

2π
log

eB±
√
eB2− eA eC
eA , B̃2 − ÃC̃ ≥ 0,

∓ 1
2π

log
( eA
eC

)
, B̃2 − ÃC̃ < 0.

Remark 5.3. If B2 − AC 6= 0 and B̃2 − ÃC̃ 6= 0, then B0
apr

(t) = I, i.e., the
first terms of the asymptotic expansion of solutions of the boundary-contact

problem M1 contain no logarithms near the contact boundary ∂S
(i)
0 , i = 1, 2.

Remark 5.4. Note that in the isotropic case we obtain more exact limit
relations (for the elasticity case see [6]):

a) if B > 0, B2 − AC ≥ 0 and µ2 + α2 → 0 or µ1 → ∞, then γ1 → 1/2,
γ2 = γ3 = 1/2;

b) if B > 0, B2 − AC < 0 and µ1 →∞, then γm → 1/2, m = 1, 2, 3;
c) if B > 0, B2 − AC < 0 and µ2 + α2 → 0, then γ1 → 1/2, γ2,3 → 1/4;
d) if B < 0 and µ1 + α1 → 0 or µ2 →∞, then γm → 0, m = 1, 2, 3;
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e) if |µ1 − µ2| → 0, |α1 − α2| → 0, then γm → 1/4, m = 1, 2, 3,
and

ã) if B̃ > 0, B̃2 − ÃC̃ ≥ 0 and ν2 + β2 → 0 or ν1 → ∞, then γ4 → 1/2,
γ5,6 = 1/2;

b̃) if B̃ > 0, B̃2 − ÃC̃ < 0 and ν1 →∞, then γm → 1/2, m = 4, 5, 6;

c̃) if B̃ > 0, B̃2 − ÃC̃ < 0 and ν2 + β2 → 0, then γ4 → 1/2, γ5,6 → 1/4;

d̃) if B̃ < 0, ν1 + β1 → 0 or ν2 →∞, then γm → 0, m = 4, 5, 6;
ẽ) if |ν1 − ν2| → 0, |β1 − β2| → 0, then γm → 1/4, m = 4, 5, 6.

It is not difficult to see that if the conditions

B2 − AC > 0 and B̃2 − ÃC̃ > 0

hold, then the exponent of the first term of the asymptotics of solutions of the
boundary-contact problem M1 has the form

γ =
1

2
− 1

π
arctg max

{√µ2 + α2√
µ1 + α1

,

√
ν2 + β2√
ν1 + β1

}
.

Since γ < 1
2
, γ2,3 = γ5,6 = 1

2
, the oscillation of solutions vanishes in some

neighbourhood of the contact boundary and therefore solutions describe the
real physical process.

Note that this class has been found only in the spatial case since in the plane
case it is known that the oscillation does not vanish.

In the general case we have found a class of anisotropic bodies when the oscil-
lation in the asymptotic expansion vanishes and the real parts γj j = 1, . . . , 6,
of exponents of the first terms of the asymptotic expansion are calculated by
simpler formulas.

Let αj > 0 and βj > 0, j = 1, . . . , 6, be the eigenvalues of the matrices σ+
N1

and σ+
N2

, respectively.

Theorem 5.5. If the conditions

1) rank

(
σ+

N1
− αjI

σ+
N2
− βjI

)
< 6, j = 1, . . . , 6;

2) 〈ζ(j)
1 , ζ

(j)

1 〉 6= 0, j = 1, . . . , 6,

are satisfied, where ζ
(j)
1 (j = 1, . . . , 6) is the common eigenvector of the matrices

σ+
N1

and σ+
N2

, which correspond to the eigenvalues αj and βj, then the oscillation
participanting in the asymptotic expansion of solutions of the boundary-contact
problem M1 vanishes, i.e., δj = 0, j = 1, . . . , 6, and the real parts of the
exponents of the first terms of the asymptotic expansion are calculated by a
simpler formula

γj =
1

2
− 1

π
arctg

1√
αjβj

, j = 1, . . . , 6.

Proof. From the condition 1) we obtain the existence of the common eigenvec-

tors ζ
(j)
1 , j = 1, . . . , 6, for the matrices σ+

N1
and σ+

N2
, i.e.,

σ+
N1

ζ
(j)
1 = αjζ

(j)
1 , σ+

N2
ζ

(j)
1 = βjζ

(j)
1 , j = 1, . . . , 6. (5.3)
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Since σ+
N1

= σ−N1
and σ+

N2
= σ−N2

, we have

σ−N1
ζ

(j)

1 = αjζ
(j)

1 , σ−N2
ζ

(j)

1 = βjζ
(j)

1 , j = 1, . . . , 6. (5.4)

Further, we look for an eigenvector ζ(j) of the matrix
(
σR(x1, 0, +1)

)−1
σR(x1, 0,−1)

in the form ζ(j) = (ζ
(j)
1 , γ̃jζ

(j)
1 ). We obtain

(
σR(x1, 0, +1)

)−1
σR(x1, 0,−1)ζ(j) = λjζ

(j).

Taking into consideration the expression of the matrices σR(x1, 0,±1), we get
{

σ−N2
ζ

(j)
1 − γ̃jζ

(j)
1 = λjσ

+
N2

ζ
(j)
1 + λj γ̃jζ

(j)
1 ,

ζ
(j)
1 + γ̃jσ

−
N1

ζ
(j)
1 = −λjζ

(j)
1 + λj γ̃jσ

+
N1

ζ
(j)
1 .

(5.5)

Now, by the scalar multiplication of both equations (5.5) by the vector ζ
(j)

we have{
〈σ−N2

ζ
(j)
1 , ζ

(j)

1 〉 − γ̃j〈ζ(j)
1 , ζ

(j)

1 〉 = λj〈σ+
N2

ζ
(j)
1 , ζ

(j)

1 〉+ λj γ̃j〈ζ(j)
1 , ζ

(j)

1 〉,
〈ζ(j)

1 , ζ
(j)

1 〉+ γ̃j〈σ−N1
ζ

(j)
1 , ζ

(j)

1 〉 = −λj〈ζ(j)
1 , ζ

(j)

1 〉+ λj γ̃j〈σ+
N1

ζ
(j)
1 , ζ

(j)

1 〉.
(5.6)

Substituting (5.3) and (5.4) into (5.6), we get




βj〈ζ(j)
1 , ζ

(j)

1 〉 − γ̃j〈ζ(j)
1 , ζ

(j)

1 〉 = λjβj〈ζ(j)
1 , ζ

(j)

1 〉+ λj γ̃j〈ζ(j)
1 , ζ

(j)

1 〉,
〈ζ(j)

1 , ζ
(j)

1 〉+ γ̃jαj〈ζ(j)
1 , ζ

(j)

1 〉 = −λj〈ζ(j)
1 , ζ

(j)

1 〉+ λj γ̃jαj〈ζ(j)
1 , ζ

(j)

1 〉.

Taking into account the condition 2), i.e., 〈ζ(j)
1 , ζ

(j)

1 〉 6= 0, we obtain the following
system of equations with respect to λj and γ̃j (j = 1, . . . , 6):

{
βj − γ̃j = λjβj + λj γ̃j,

1 + γ̃jαj = −λj + λj γ̃jαj.

Further,

λj =

√
αjβj ∓ i√
αjβj ± i

, γ̃j = ±i

√
βj

αj

, j = 1, . . . , 6.

Clearly,

|λj| = 1, j = 1, . . . , 6.

Hence

δj = 0, j = 1, . . . , 6.

Calculating γj (j = 1, . . . , 6), we get

γj =
1

2
− 1

π
arctg

1√
αjβj

, j = 1, . . . , 6. ¤
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If under the conditions of Theorem 5.5

αiβi 6= αjβj for all i 6= j, i, j = 1, . . . , 6,

then B0
apr

(t) = I, i.e., the first terms of the asymptotic expansions (4.14), (4.15)
contain no logarithms.

Remark 5.6. Let us assume that in the neighborhood of the boundary the

contact surfaces S
(1)
0 and S

(2)
0 are parallel to the isotropic plane. We consider

the case, where the coefficients b
(q)
ijlk = 0 and, instead of a

(q)
ijlk and c

(q)
ijlk, we have

the elastic constants of transversally-isotropic elastic bodies, i.e., instead of a
(q)
ijlk

we have
a

(q)
11 , a

(q)
33 , a

(q)
13 , a

(q)
55 , a

(q)
66 , q = 1, 2,

and, instead of c
(q)
ijlk, we have

c
(q)
11 , c

(q)
33 , c

(q)
13 , c

(q)
55 , c

(q)
66 , q = 1, 2,

which satisfy the following conditions:



a
(q)
11 − a

(q)
66 > 0, a

(q)
55 > 0, a

(q)
66 > 0,

a
(q)
33 >

(a
(q)
13 )2

a
(q)
11 − a

(q)
66

, q = 1, 2,





c
(q)
11 − c

(q)
66 > 0, c

(q)
55 > 0, c

(q)
66 > 0,

c
(q)
33 >

(c
(q)
13 )2

c
(q)
11 − c

(q)
66

, q = 1, 2.

It is not difficult to see that in this case the eigenvalues αj and βj, j = 1, . . . , 6,
of the matrices σ+

N1
and σ+

N2
are calculated explicitly.

Let a
(q)
11 6= a

(q)
33 and c

(q)
11 6= c

(q)
33 (q = 1, 2); then the conditions 1)–2) of Theorem

5.5 have the form
C1 −D1

D2 − C2

=
B1

B2

,
C̃1 − D̃1

D̃2 − C̃2

=
B̃1

B̃2

,

where

Bq =

a
(q)
55

(√
a

(q)
11

√
a

(q)
33 − a

(q)
13

)

a
(q)
55 +

√
a

(q)
11

√
a

(q)
33

, Cq =
1

2

a
(q)
11 a

(q)
55

(√
a

(q)
2 +

√
a

(q)
3

)

a
(q)
55 +

√
a

(q)
11

√
a

(q)
33

,

Dq =
1

2

√
a

(q)
33

√
a

(q)
11 a

(q)
55

(√
a

(q)
2 +

√
a

(q)
3

)

a
(q)
55 +

√
a

(q)
11

√
a

(q)
33

, q = 1, 2,

a
(q)
2 and a

(q)
3 are the roots of the equation (see [26])

a
(q)
11 a

(q)
55 a2 +

[
(a

(q)
13 + a

(q)
55 )2 − a

(q)
11 a

(q)
33 − (a

(q)
55 )2

]
a + a

(q)
33 a

(q)
55 = 0, q = 1, 2,

and

B̃q =

c
(q)
55

(√
c
(q)
11

√
c
(q)
33 − c

(q)
13

)

c
(q)
55 +

√
c
(q)
11

√
c
(q)
33

, C̃q =
1

2

c
(q)
11 c

(q)
55

(√
c
(q)
2 +

√
c
(q)
3

)

c
(q)
55 +

√
c
(q)
11

√
c
(q)
33

,
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D̃q =
1

2

√
c
(q)
33

√
c
(q)
11 c

(q)
55

(√
c
(q)
2 +

√
c
(q)
3

)

c
(q)
55 +

√
c
(q)
11

√
c
(q)
33

, q = 1, 2,

where c
(q)
2 and c

(q)
3 are the roots of the equation

c
(q)
11 c

(q)
55 c2 +

[
(c

(q)
13 + c

(q)
55 )2 − c

(q)
11 c

(q)
33 − (c

(q)
55 )2

]
c + c

(q)
33 c

(q)
55 = 0, q = 1, 2.

If we assume that a
(q)
13 = −a

(q)
55 and c

(q)
13 = −c

(q)
55 , q = 1, 2, then the conditions

1)–2) of Theorem 5.5 can be rewritten in a simpler form:√
a

(1)
11 −

√
a

(1)
33√

a
(2)
33 −

√
a

(2)
11

=

√
a

(1)
55√

a
(2)
55

and

√
c
(1)
11 −

√
c
(1)
33√

c
(2)
33 −

√
c
(2)
11

=

√
c
(1)
55√

c
(2)
55

.

Now let us consider the case, where the domains Dq, q = 1, 2, are filled with
the same material. The following theorem is fulfilled (for analogous results in
the case of elasticity theory see [7], [8]; see also [14]).

Theorem 5.7. If the domains Dq, q = 1, 2, are filled with the same material,
then the asymptotic expansion of solutions of the boundary-contact problem M1

near the contact boundary ∂S
(1)
0 takes the form

U (q)(x1, x2, x3) = (u(q), ω(q))(x1, x2, x3)

=
∑

ϑ=±1

2∑
j=1

l0∑
s=1

Re

{ ns−1∑
m=0

xm
3

[
d

(q)
sjm(x1, θ)(z

(q)
s,theta)

1
4
+∆j(x1)−m

]
c
(q)
jm(x1)

+
M+2∑

k,l=0

M+2−l∑
p+m=0

k+l+p+m6=0

xl
2x

m
3 d

(q)
slmpj(x1, ϑ)(z

(q)
s,ϑ)

1
4
+∆j(x1)+k+pB

(q)
skmpj(x1, log z

(q)
s,ϑ)

}

+U (q)
M+1(x1, x2, x3) for M >

2

r
−min{[s− 1], 1}, q = 1, 2, (5.7)

with the coefficients d
(q)
sjm(· ,±1), c

(q)
jm, d

(q)
slmpj(· ,±1) ∈ C∞

0 (R) and the remainder

U (q)
M+1 ∈ CM+1

0 (R 3

±), q = 1, 2,

z
(q)
s,+1 = (−1)q(x2 +x3τ

(q)
s,+1), z

(q)
s,−1 = (−1)q+1(x2−x3τ

(q)
s,−1), −π < Argτ

(q)
s,±1 < π.

In this case the parameters ∆j are calculated by

∆j(x1) =
(
δ
(j)
1 (x1), . . . , δ

(j)
6 (x1)

)
, j = 1, 2,

where

δ
(1)
k (x1) = − i

2π
log |λk(x1)|, δ

(2)
k (x1) =

1

2
− i

2π
log |λk(x1)|, k = 1, . . . , 6.

Proof. When the domains Dq, q = 1, 2, are filled with the same material, we
can show, like in [7], that the eigenvalues λk(x1), k = 1, . . . , 12, of the matrix

(
σR(x1, 0, +1)

)−1
σR(x1, 0,−1), x2 ∈ ∂S

(1)
0 ,
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are calculated by means of the eigenvalues βk(x1), k = 1, 2, 3, of the matrix σ∗
V0

,

i.e.,

λk(x1) =





i

√
1− 2βk(x1)

1 + 2βk(x1)
, if k = 1, . . . , 6,

−i

√
1− 2βk−6(x1)

1 + 2βk−6(x1)
, if k = 7, . . . , 12,

where −1/2 < βk < 1/2, k = 1, . . . , 6.
Hence the exponent of the first term of the asymptotic expansion of solutions

has the form
1

2
∓ 1

4
− i

2π
log |λk(x1)|, k = 1, . . . , 6. ¤

Note that in this case the asymptotic expansion has step equal to one half
(see [8]).

The same asymptotic expansion can also be obtained near the contact bound-

ary ∂S
(2)
0 .

6. Solvability and Asymptotics of Solutions of
the Boundary-Contact Wedge-Type Problem M2

We will formulate theorems of the uniqueness and existence of solutions of
problem M2.

Assume that the following compatibility conditions are fulfilled on the curves

∂S
(1)
0 , ∂S

(2)
0 ∂S0:

∃Φ(i)
0 , i = 1, 2, 3, Φ

(i)
0 ∈ Bs−1

p,r (∂D1), Φ
(2)
0 ∈ Bs−1

p,r (∂D
(1)
2 ), Φ

(3)
0 ∈ Bs−1

p,r (∂D
(2)
2 ),

h1 − π
S

(1)
0

Φ
(1)
0 + π

S
(1)
0

Φ
(2)
0 ∈ B̃s−1

p,r (S
(1)
0 ),

h2 − π
S

(2)
0

Φ
(1)
0 + π

S
(2)
0

Φ
(3)
0 ∈ B̃s−1

p,r (S
(2)
0 )

πS0Φ
(2)
0 + πS0Φ

(3)
0 ∈ B̃s−1

p,r (S0)

(6.1)

hold for ϕ1 ∈ Bs−1
p,r (∂D1), ϕ2 ∈ Bs−1

p,r (∂D
(1)
2 ), ϕ3 ∈ Bs−1

p,r (∂D
(2)
2 ), 1 < p < ∞,

1 ≤ r ≤ ∞, 1/p− 1/2 < s < 1/p + 1/2.

Here Φ
(i)
0 , i = 1, 2, 3, are some fixed extensions of the functions ϕi, i = 1, 2, 3,

on ∂D1, ∂D
(1)
2 , ∂D

(2)
2 , respectively.

Theorem 6.1. Let 4/3 < p < 4 and the compatibility conditions (6.1) be

fulfilled on ∂S
(1)
0 , ∂S

(2)
0 ∂S0 for s = 1− 1/p. Then the boundary-contact wedge-

type problem M2 has solutions of the classes W 1
p (Dq), q = 1, 2, if and only if

the condition∫

S1

ϕ1([a× z] + b, a) ds−
∫

S
(1)
2

ϕ2([a× z] + b, a) ds−
∫

S
(2)
2

ϕ3([a× z] + b, a) ds

+

∫

S
(1)
0

h1([a× z] + b, a) ds +

∫

S
(2)
0

h2([a× z] + b, a) ds = 0
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is fulfilled, where a and b are arbitrary three-dimensional constant vectors.
Solutions of the boundary-contact problem M2 are given by the potential-type

functions

U (1) = V(1)(V(1)
−1)

−1(B
(1)
2M+1)

−1ϕ
(1)
0 + V(1)(V(1)

−1)
−1(B

(1)
2M+1)

−1ψ
(1)
0 + R1, (6.2)

r1U (2) = V(2)(V(2)
−1)

−1(B
(2)
2M+1)

−1ϕ
(2)
0 + V(2)

−1(V
(2)
−1)

−1(B
(2)
2M+1)

−1ψ
(2)
0 + R2, (6.3)

r2U (2) = V(3)(V(3)
−1)

−1(B
(3)
2M+1)

−1ϕ
(3)
0 + V(3)

−1(V
(3)
−1)

−1(B
(3)
2M+1)

−1ψ
(3)
0 + R3, (6.4)

with R1 ∈CM+1(D1), R2 ∈CM+1(D
(1)
2 ), R3 ∈ CM+1(D

(2)
2 ), while the functions

(ϕ
(1)
0 , ϕ

(2)
0 ), (ψ

(1)
0 , ϕ

(3)
0 ) and (ψ

(2)
0 , ψ

(3)
0 ) are solutions of the systems

{
π

S
(1)
0

N1ϕ
(1)
0 = Ψ1,

ϕ
(2)
0 = ϕ

(1)
0 + G1,

{
π

S
(2)
0

N2ψ
(1)
0 = Ψ2,

ϕ
(3)
0 = ψ

(1)
0 + G2,

{
πS0N3ψ

(2)
0 = Ψ3,

ψ
(3)
0 = −ψ

(2)
0 + G3,

respectively. Here

N1 = (B
(1)
2M+1)

−1 − (B
(2)
2M+1)

−1,

N2 = (B
(1)
2M+1)

−1 − (B
(3)
2M+1)

−1,

N3 = −(B
(2)
2M+1)

−1 − (B
(3)
2M+1)

−1,

where

B
(1)
2M+1 = −(V(1)

−1)
2M+1 +

(
− 1

2
I+

∗
V (1)

0

)
(V(1)

−1)
−1,

B
(i)
2M+1 = (V(i)

−1)
2M+1 +

(1

2
I+

∗
V (i)

0

)
(V(i)

−1)
−1, i = 2, 3.

The operators Nj, j = 1, 2, 3, are positive-definite ΨDOs.
Let

∆Nj
(x1) =

(
δ
(1)
j (x1), . . . , δ

(1)
j (x1)︸ ︷︷ ︸

m1-times

, . . . , δ
(`)
j (x1), . . . , δ

(`)
j (x1)︸ ︷︷ ︸

m`-times

)
,

δ
(k)
j (x1) = − i

2π
log |λ(k)

Nj
(x1)|, j = 1, 2, 3, k = 1, . . . , `

(generally speaking, mk and ` depend on j),

where λ
(k)
Nj

, j = 1, 2, k = 1, . . . , `, are the eigenvalues of the matrix

bNj
(x1) =

(
σNj

(x1, 0, +1
)−1

σNj
(x1, 0,−1)

of multiplicity mk, k = 1, . . . , `,
6∑

k=1

mk = 6; here mk, k = 1, . . . , `, and `

depend on j, and the eigenvalues of the matrix bN3 = I are trivial, λ
(k)
N3

= 1,
k = 1, . . . , 6.

Note that the boundary data of the problem M2 are assumed to be suf-

ficiently smooth, i.e., ϕ1 ∈ H(∞,S+2M),∞
r (S1), ϕ2 ∈ H(∞,S+2M),∞

r (S
(1)
2 ), ϕ3 ∈

H(∞,S+2M),∞
r (S

(2)
2 ), fi ∈ H(∞,S+2M+1),∞

r (S
(i)
0 ), hi ∈ H(∞,S+2M),∞

r (S
(i)
0 ), i = 1, 2,

1
r
− 1

2
< s < 1

r
+ 1

2
.
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Recalling that solutions of the problem M2 are represented by potential-type
functions (see (6.2), (6.3), (6.4)) and using the asymptotic expansion of such
functions (see [9, Theorems 2.2 and 2.3]), we obtain the following asymptotic
expansions of problem M2 in terms of some local coordinate systems of curves

∂S
(1)
0 , ∂S

(2)
0 , ∂S0:

a) Asymptotic expansion near the contact boundaries ∂S
(j)
0 , j = 1, 2:

U (q)(x1, x2, x3) = (u(q), ω(q))(x1, x2, x3)

=
∑

ϑ=±1

`0∑
s=1

Re

{ ns−1∑
j=0

xj
3

[
d

(q)
sj (x1, θ)(z

(q)
s,θ )

1
2
−j+i∆(x1)

]
c(j)(x1)

+
M+1∑

l,k=0

M+2−l∑
p+j=1

k+l+p+j 6=1

xl
2x

j
3d

(q)
sljp(x1, ϑ)z

− 1
2
+i∆(x1)+p+k

s,ϑ B
(q)
skjp(x1, z

(q)
s,ϑ)

}

U (q)
M+1(x1, x2, x3) for M >

2

r
−min{[s], 0}, q = 1, 2, (6.5)

with U (q)
M+1 ∈ CM+1

0 (R 3

±), q = 1, 2. Here ∆ = ∆Nj
, j = 1, 2, and

z
(q)
s,+1 = (−1)q

[
x2 + x3τ

(q)
s,+1

]
, z

(q)
s,−1 = (−1)q

[
x2 − x3τ

(q)
s,−1

]
, −π < Argzs,±1 < π.

The first coefficients d
(q)
sj (·,±1), c(j) are calculated as in(4.14) (see [9]).

b) Asymptotic expansions near the cuspidal edge ∂S0 (see (4.16)):

riU (2)(x1, x2, x3) = ri(u
(2), ω(2))(x1, x2, x3)

=
∑

ϑ=±1

`0∑
s=1

Re

{ ns−1∑
j=0

xj
3z

1
2
−j

s,θ d
(i)
sj (x1, θ) +

M+1∑

l,k=0

M+2−l∑
j+p=1

l+k+j+p6=1

xl
2x

j
3z
− 1

2
+p+k

s,ϑ d
(i)
slkjp(x1)

}

+U (i)
M+1(x1, x2, x3) for M >

2

r
−min{[s], 0}, i = 1, 2, (6.6)

with U (i)
M+1 ∈ CM+1

0 (R 3

±), i = 1, 2. Here

zs,+1 = −x2 − x3τ
(2)
s,+1, zs,−1 = −x2 − x3τ

(2)
s,−1, −π < Argzs,±1 < π.

The coefficients d
(i)
sj (x1,±1) are calculated as in (4.16).

Remark 6.2. Note that if we consider the boundary-contact problem M2 for
the nonhomogeneous equations

M(q)(∂x)U (q) + F (q) = 0 in Dq, q = 1, 2,

and use the boundary and boundary-contact data

ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, fi = hi = 0, i = 1, 2,

then the compatibility conditions (6.1) are fulfilled automatically on ∂S
(1)
0 ,

∂S
(2)
0 , ∂S0.
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Remark 6.3. It is easy to see that if the matrices bNj
, j = 1, 2, are unitary

(b∗Nj
= b−1

Nj
), then the oscillation in the asymptotic expansion (42) vanishes, i.e.,

∆j = 0, j = 1, 2.
In the case of transversally isotropic bodies we obtain the following necessary

and sufficient conditions under which the oscillation vanishes:

B1

B2

=
4C1D1 −B2

1

4C2D2 −B2
2

,
B̃1

B̃2

=
4C̃1D̃1 − B̃2

1

4C̃2D̃2 − B̃2
2

. (6.7)

For the centrally symmetric isotropic case condition (6.7) tales the form

λ1 + µ1 − α1 = λ2 + µ2 − α2,

ε1 + ν1 − β1 = ε2 + ν2 − β2.
(6.8)

Condition (6.8) written in terms of the Poisson constants was found in [16],
when investigating the asymptotic properties of solutions of boundary positive-
definite pseudodifferential equations of crack-type problems of elasticity (see
also [38]).
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