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SEQUENTIAL CONVERGENCE IN TOPOLOGICAL
VECTOR SPACES

A. K. KATSARAS AND V. BENEKAS

Abstract. For a given linear topology τ , on a vector space E, the
finest linear topology having the same τ convergent sequences, and
the finest linear topology on E having the same τ precompact sets, are
investigated. Also, the sequentially bornological spaces and the se-
quentially barreled spaces are introduced and some of their properties
are studied.

Introduction

For a locally convex space E, Webb constructed in [1] the finest locally
convex topology on E having the same convergent sequences as the initial
topology and the finest locally convex topology having the same precompact
sets as the initial topology.

In this paper, using the notion of a string introduced in [2], we construct
the finest linear topology which has the same convergent sequences as the
initial linear topology and the finest linear topology having the same pre-
compact sets. Some of the properties of these topologies are studied. We
also give the notion of a sequentially bornological space. A space E is S-
bornological if every bounded linear map from E to an arbitrary topological
vector space is sequentially continuous. This is equivalent to the following:
Every bounded pseudo-seminorm on E is sequentially continuous. The con-
cept of a sequentially barreled space is also given and some of the properties
of the S-bornological spaces and the S-barreled spaces are investigated.

1. Preliminaries

All vector spaces considered in this paper will be over the field of real
numbers or the field of complex numbers. Following [2], we will call a string,
in a vector space E, any sequence U = (Vn) of balanced absorbing sets such
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that Vn+1 + Vn+1 ⊂ Vn for all n. A string U = (Vn), in a topological vector
space E, is called topological if every Vn is a neighborhood of zero. The
string U is called closed (resp. bornivorous) if every Vn is closed (resp.
bornivorous). Every string U = (Vn) defines a linear topology τ +U having
as a base at zero the sequence {Vn : n ∈ N}. The set NU ∩

n
Vn is a subspace

of E. We will denote by EU the quotient space E/NU . The space EU with
the quotient topology is a metrizable topological vector space. By ̂EU we
will denote the completion of EU , and so ̂EU is a Frechet space and is a
complete metrizable topological vector space. Any family F of strings in
E defines a linear topology, namely the supremum of the topologies τU ,
U ∈ F . A family F of topological strings, in a topological vector space
E, is called a base for the topological strings if for any topological string
W = (Wn) there exists U = (Vn) in F with U ≤ W , where U ≤ W means
that Vn ⊂ Wn for all n. The family of all closed topological strings is a base
for the topological strings.

Definition 1.1 ([3,6.1]). A pseudo-seminorm, on a vector space E over
K, is a function p : E → R with the following properties:

1) p(x + y) ≤ p(x) + p(y), for all x, y in E.
2) p(λx) ≤ p(x) for all x ∈ E when |λ| ≤ 1.
3) If λn → 0, then K for all p(λnx) → 0 in x ∈ E.
4) If p(xn) → 0, then p(λnx) → 0 for all λ in K.

If p(x) > 0 when x 6= 0, then p is called a pseudo-norm.

Lemma 1.2. If p is any pseudo-seminorm on E, then dp : E × E → R,
dp(x, y) = p(x − y), is a pseudo-metric, and the corresponding topology τp

is linear. If p is a pseudo-norm, then dp is a metric.

Lemma 1.3. If p is a pseudo-seminorm on E and Vn = {x : p(x) ≤
2−n}, then U = (Vn) is a string and τU = τp.

Lemma 1.4 ([3,6.1]). If U = (Vn) is a string in E, then there exists a
pseudo-seminorm pU on E such that

{

x ∈ E : pU (x) ≤ 2−n−1} ⊂ Vn ⊂
{

x : pU (x) ≤ 2−n}

and so τU = τpU
.

Any linear topology on E is generated by the family of all continuous
pseudo-seminorms on E.

Lemma 1.5. Let (pn) be a sequence of pseudo-seminorms on E and de-

fine p on E by p(x) =
∞
∑

n=1

1
2n ·

pn(x)
1 + pn(x)

. Then p is a pseudo-seminorm

on E and τp coincides with the topology generated by the sequence (pn) of
pseudo-seminorms.
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Lemma 1.6. A topological vector space E is pseudo-metrizable iff its
topology is generated by a countable family of pseudo-seminorms and this is
true iff the topology of E is generated by a single pseudo-seminorm.

2. Sequential Spaces

Definition 2.1. Let V be a subset of a topological vector space E. Then
V is called a sequential neighborhood (S-neighborhood) of zero if every null
sequence in E lies eventually in V . The set V is called sequentially closed
(S-closed) if every x in E, which is a limit of a sequence in V , belongs to V .

Definition 2.2. A string U = (Vn), in a topological vector space E, is
called S-topological if every Vn is an S-neighborhood of zero.

Lemma 2.3. Let U = (Vn) be a string in a topological vector space E
and let p be a pseudo-seminorm on E such that τp = τU . Then, U is S-
topological iff p is sequentially continuous.

Proof. Let U be S-topological and let (xn) be a sequence in E converging
to some x. Given ε > 0, the set W = {x : p(x) ≤ ε} is a τp-neighborhood of
zero and so there is m such that Vm ⊂ W . Since xn − x → 0 in E and Vm

is an S-neighborhood, there exists n0 such that xn − x ∈ Vm when n ≥ n0,
and so p(xn − x) ≤ ε if n ≥ n0. The converse is proved analogously.

Definition 2.4. A topological vector space E is said to be a sequential
space if every S-topological string in E is topological.

Proposition 2.5. Let U = (Vn) be a string in a topological vector space
and let ̂EU be the completion of EU . If J = JU : E → EU is the canonical
mapping, then the following are equivalent:

(1) U is S-topological in E.
(2) J is sequentially continuous.
(3) J is sequentially continuous as a map from E to ̂EU .

Proof. It is clear that (1)⇒(2)⇒(3).
(3)⇒(1). For each subset A of EU , let A denote its closure in ̂EU . Then,

the family {J(Vn) : n ∈ N} is a base at zero in ̂EU . Since the closure of
J(Vn+2) in EU is contained in J(Vn+2) + J(Vn+2) ⊂ J(Vn+1), we have

J−1(Vn+2)) = J−1(J(Vn+2) ∩ EU ) ⊂ J−1(J(Vn+1)) =

= Vn+1 + NU ⊂ Vn+1 + Vn+1 ⊂ VN ,

which shows that Vn is an S-neighborhood of zero in E since J is sequentially
continuous.
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Proposition 2.6. For a topological vector space E, the following are
equivalent:

(1) E is sequential.
(2) Every sequentially continuous linear map, from E to an arbitrary

topological vector space, is continuous.
(3) Every sequentially continuous linear map, from E to an arbitrary

Frechet space, is continuous.
(4) Every sequentially continuous pseudo-seminorm on E is continuous.

Proof. (1)⇒(2). Let f : E → F be a linear and sequentially continuous
and let V be a neighborhood of zero in F . There exists a topological string
U = (Vn) in F with V1 = V . Since f is sequentially continuous, f−1(U) is
S-topological and hence topological by (1). Hence f−1(V ) is a neighborhood
of zero in E.

(3)⇒(1). Let U = (Wn) be an S-topological string. By Proposition 2.5,
the canonical mapping J : E → ̂EU is sequentially continuous and hence by
(3) continuous. As in the proof of the implication (3)⇒(1) in the preceding
Proposition, it follows that each Vn is a neighborhood of zero in E.

(1)⇒(4). Let p be a sequentially continuous pseudo-seminorm and set
Vn = {x : p(x) ≤ 2−n}. Then U = (Vn) is an S-topological string and hence
topological, which implies that p is continuous.

(4)⇒(1). Let U = (Wn) be an S-topological string and let S be as in
Lemma 1.4. By Lemma 2.3, pU is sequentially continuous and hence by (4)
continuous, which implies that (Wn) is topological.

Proposition 2.7. Let {Eα : α ∈ I} be a family of topological vector
spaces, E a vector space and, for each α, fα : Eα → E a linear map. If τ is
the finest linear topology on E for which each fα is continuous and if each
Eα is sequentially, then (E, τ) is sequential.

Proof. If U is an S-topological string in (E, τ), then each f−1
α (U) is S-

topological in Eα and so it is topological in E, which implies that U is
topological in (E, τ).

Corollary 2.8. Quotient space and direct sums of sequential spaces are
sequential.

The family FS of all S-topological strings in (E, τ) is direct. We will
denote by τS the linear topology generated by the family FS .

Proposition 2.9. (1) τS is the coarsest sequential topology finer than τ .
(2) τS is the finest linear topology on E having the same with τ convergent

sequences.
(3) The topologies τ and τS have the same bounded sets.
(4) If τ1 is a linear topology such that every τ -null sequence is also τ1-null,

then τ1 ≤ τS.
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(5) A linear map f , from (E, τ) to an arbitrary topological vector space
F , is sequentially continuous iff it is τS-continuous.

(6) τS is generated by the family of all sequentially continuous pseudo-
seminorms on (E, τ).

Proof. Clearly τ ≤ τS . It follows directly from the definition that every
τS-null sequence is also τS-null and so τ and τS have the same convergent
sequences and the same bounded sets. If τ1 is a linear topology on E such
that every τ -null sequence is also τ1-null, then every τ1-topological string is
sequentially τ -topological, which implies that τ1 ≤ τS . This proves (2),(3),
and (4).

(1) Since every τS-sequential string is also τ -sequential (by (2)), the
topology τS is sequential and it is clearly the coarser sequential topology
finer than τ .

(5) If the linear map f : (E, τ) → F is sequentially continuous, then for
each topological string U in F , f−1(U) is an S-topological string in (E, τ)
and so f−1(U) is τS-topological, which proves that f is τS-continuous. The
converse is clear.

(6) It follows from Lemma 2.3.

Proposition 2.10. If the linear map f : (E, τ) → (F, τ1) is continuous,
then f is (τS , τS

1 )-continuous.

Proof. It follows from the fact that, for each S-topological string in F ,
f−1(U) is S-topological in E.

Corollary 2.11. If (E, τ) =
∏

α∈I
(Eα, τα), then τS ≥

∏

α∈I
τS
α .

Proposition 2.12. If (E, τ) =
n
∏

k=1
(Ek, τn), then τS =

n
∏

k=1
τS
k .

Proof. Let τ0 =
n
∏

k=1
τS
k . By the preceding corollary, we have τ0 ≤ τS .

On the other hand, let U(Vn) be an S-topological string in (E, τ). For
each k, 1 ≤ k ≤ n, let jk : Ek → E be the canonical mapping. Set
V m

k = j−1
k (Vm+n+1). Each V m

k is an S-neighborhood of zero in (Ek, τk) and
so Uk = (V m

k )∞m=1 is an S-topological string in Ek. The set

Wm =
n

∏

k=1

V m
k

is a τ0-neighborhood of zero in E and Wm ⊂ Vm, which implies that U is
τ0-topological. Thus τS ≤ τ0, and the result follows.
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Proposition 2.13. Let (E, τ) = ⊕
α∈I

(Eα, τα), where each (Eα, τα) is

Hausdorff. Then τS = ⊕
α∈I

τS
α .

Proof. Let σ = ⊕
α∈I

τS
α . If fα : Eα → E is the canonical mapping, then fα

is (τS
α , τS)-continuous and so τS ≤ σ. On the other hand, let U = (Vn) be

an S-topological string in (E, τ) and let (x(n)) be a null sequence in (E, τ).
By [2, 5.10], there exists a finite subset I0 = {α1, . . . , αm} of I such that
x(n)

α = 0 for all n and all α 6∈ I0. Let

g : (E, τ) →
m
⊕

k=1

(

Eαk , ταk

)

=
m
∏

k=1

(

Eαk , ταk

)

be a canonical projection. If τ0 =
m
∏

k=1
ταk , then g is (τ, τ0)-continuous and

so g is (τS , τS
0 )-continuous. The canonical embedding

h :
m
⊕

k=1

(

Eαk , τS
αk

)

→ (E, σ)

is continuous. But
n
⊕

k=1
τS
αk

=
n

∏

k=1

τS
αk

= τS
0 .

Thus, h is (τS
0 , σ)-continuous and so

h ◦ g : (E, τS) → (E, σ)

is continuous and hence x(n) = h ◦ g(x(n)) → 0 in (E, σ). This proves
that the identity map from (E, τS) to (E, σ) is sequentially continuous and
therefore continuous. This implies that σ ≤ τS and the result follows.

Proposition 2.14. Let F be a topologically complemented subspace, of
a topological vector space (E, τ), and let τ

∣

∣F be the topology induced by τ
on F . Then τS

∣

∣F = (τ
∣

∣F )S.

Proof. Since the inclusion map from F to E is ((τ
∣

∣F )S , τS)-continuous, we
have that τS

∣

∣F ≤ (τ
∣

∣F )S . To prove the inverse inequality, let G be a
topological complement of E and let π1, π2 be the projections of E onto F
and G, respectively. Then π1, π2 are continuous. Let now τ1 = τ

∣

∣F and let
U = (Vn) be an S-topological string in (F, τ1). Let Wn = Vn + G. Each
Wn is an S-neighborhood of zero in (E, τ). In fact, let (xn) be a τ -null
sequence. Since π1(xm) → 0 in F , there exists m0 such that π1(xm) ∈ Vn

if m ≥ m0 and so x0 ∈ Wn if m ≥ n0. Now, W = (Wn) is an S-topological
string in (E, τ). Since Wn∩F = Vn, it follows that U is (τS

∣

∣F )-topological,
which proves that τS

1 ≤ τS
∣

∣F .
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3. The Topology τp

Definition 3.1. A string U = (Vn) in a topological vector space (E, τ)
is called precompactly-topological (pr-topological) if for each n and each
τ -precompact subset A of E there exists a finite subset Sn of A such that
A ⊂ Sn + Vn.

Lemma 3.2. If U = (Vn) and W = (Wn) are pr-topological strings in
E and λ a non-zero scalar, then λU = (λVn) and U ∩W = (Vn ∩Wn) are
also pr-topological.

Proof. It is easy to see that λU is pr-topological. For the U ∩ W , let A
be a non-empty τ -precompact set and let k ∈ N . There are x1, . . . , xn,
y1, . . . , ym in A such that

A ⊂
n
⋃

i=1

(

xi + Vk+1
)

, A ⊂
n
⋃

j=1

(

yj + Wk+1
)

.

Let
D =

{

(i, j) : A ∩ (xi + Vk+1) ∩ (yj + Wk+1) 6= ∅
}

.

Clearly,

A ⊂
⋃

(i,j)∈D

(

xi + Vk+1
)

∩
(

yj + Wk+1
)

.

For each α = (i, j) ∈ D, choose zα ∈ A ∩ (xi + Vk+1) ∩ (yj + Wk+1). If
z ∈ (xi + Vk+1) ∩ (yj + Wk+1), then

z − xi ∈ Vk+1, zα − xi ∈ Vk+1, z − yj ∈ Wk+1, zα − yj ∈ Wk+1.

Thus
z − zα = (z − xi)− (zα − xi) ∈ Vk+1 + Vk+1 ⊂ Vk

and similarly z − zα ∈ Wk, i.e., z − zα ∈ Vk ∩ Wk. Thus A ⊂ {zα : α ∈
D}+ Wk ∩ Vk.

Notation 3.3. For a linear topology τ on E, we will denote by τp the linear
topology generated by the family of all pr-topological strings in (E, τ).

We omit the proof of the following easily established proposition.

Proposition 3.4. 1) τp is the finest linear topology on E having the
same τ precompact sets.

2) τ ≤ τp and if τ1 is a linear topology on E such that every τ -precompact
set is also τ1-precompact, then τ1 ≤ τp.

Proposition 3.5. A linear map f : (E, τ) → F is τp-continuous iff it
maps τ -precompact sets in E into precompact sets in F .
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Proof. The condition is clearly necessary since every τ -precompact set is
also τp-precompact and images of precompact sets, under continuous linear
mappings, are precompact. For the sufficiency, let U = (Vn) be a topological
string in F . If A is a τ -precompact set, then f(A) is precompact in F and so,
given n, there exists a finite subset Sn of A such that f(A) ⊂ f(Sn) + Vn,
which implies that A ⊂ Sn + f−1(Vn). Thus f−1(U) is pr-topological in
(E, τ), which proves that f is τp-continuous.

Proposition 3.6. If the linear map f : (E, τ) → (F, τ1) is continuous,
then f is (τp, τp

1 )-continuous.

Proof. It follows from the fact that for every pr-topological string in (F, τ1),
f−1(U) is pr-topological in (E, τ).

Corollary 3.7. If (E, τ) =
∏

α∈I
(Eα, τα), then τp ≥

∏

α∈I
τp
α.

For the proof of the following Proposition we use an argument analogous
to that of Proposition 2.12.

Proposition 3.8. If (E, τ) =
n
∏

k=1
(Ek, τk), then τp =

n
∏

k=1
τp
k .

Proposition 3.9. Let (E, τ) = ⊕
α∈I

(Eα, τα), where each τα is Hausdorff.

Then τp = ⊕
α∈I

τp
α.

Proof. Let σ = ⊕
α∈I

τp
α. If fα : Eα → E is the canonical embedding, then fα

is (τp
α, τp)-continuous and so τp ≤ σ. On the other hand, let U = (Vn) be

a σ-topological string. We need to show that U is pr-topological in (E, τ).
To this end, let A be a τ -precompact set. By [2, 5.10], there exists a finite
subset I ′ = {α1, . . . , αn} of I such that xα = 0 for all x ∈ A and all α 6∈ I ′.
If πk : E → Eαk is the canonical projection, then Ak = πk(A) is precompact
in Eαk . Given n, there exists a finite subset S of A such that

Ak ⊂ πk(S) + f−1
αk

(Vn+m−1)

for k = 1, . . . , m. Given x ∈ A, there are xk ∈ Ak, k = 1, . . . , m, such that

x =
m
∑

k=1
fαk(xk). Since

Vn+m−1 + Vn+m−1 + · · ·+ Vn+m−1
︸ ︷︷ ︸

m−times

⊂ Vn

and since fαk(xk) ∈ fα(Sk) + Vm+n−1, Sk = πk(S), it follows that x ∈
T + Vn, T =

m
∑

k=1
fαk(Sk). Thus, A ⊂ T + Vn, which shows that U is

pr-topological in (E, τ). This clearly completes the proof.
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Proposition 3.10. Let F be a topologically complemented subspace of a
topological vector space (E, τ). Then τp

∣

∣F = (τ
∣

∣F )p.

Proof. For the proof we use an argument analogous to that of Proposi-
tion 2.14.

Proposition 3.11. Let {(Eα, τα) : α ∈ I} be a family of topological
vector spaces, E a vector space, and fα : Eα → E a linear map, for each
α ∈ I. If τ is the finest linear topology on E for which each fα is continuous
and if τp

α = τp for all α ∈ I, then τp = τ .

Proof. If U is a pr-topological string in (E, τ), then f−1
α (U) is pr-topological

in (Eα, τα) and so f−1(U) is τα-topological, which implies that U is τ -
topological.

Corollary 3.12. Let F be a subspace of (E, τ) and let τ0 be the quotient
topology on E

∣

∣F . If τp = τ , then τp
0 = τ0.

Lemma 3.13. Let τ1, τ2 be two linear topologies on E. If every τ1-
precompact set is also τ2-precompact, then every τ1-
bounded set is τ2-bounded.

Proof. Assume the set A is τ1-bounded but not τ2-bounded. Then there
exists a balanced τ2-neighborhood V of zero in E and a sequence (xn) in A
such that xn 6∈ n2V . If yn = n−1xn, then yn

τ1→ 0 (since A is τ1-bounded),
and so the set B = {yn : n ∈ N} is τ1-precompact. By our hypothesis, B is
τ2-precompact and hence B is τ2-bounded, which is not true since B is not
absorbed by V .

Corollary 3.14. 1) τ and τp have the same bounded sets.
2) If (E, τ) is a bornological space, then τ = τS = τp.

Recall that a topological vector space E is called countably barreled if
every string in E which is the intersection of a countable number of closed
topological strings is topological. Also, E is called countably quasi-barreled
if every bornivorous string in E which is the intersection of a countable
number of closed topological strings is topological.

Notation 3.15. If τ is a linear topology on E, we will denote by τβ the
linear topology generated by the family of all τ -closed strings. By τβ∗ we will
denote the linear topology generated by the family of all closed bornivorous
strings in (E, τ).

Proposition 3.16. Let (E, τ) be a topological vector space.
1) If (E, τ) is countably quasi-barreled, then τβ∗ ≤ τp.
2) If (E, τ) is countably barreled, then τβ ≤ τp.
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Proof. It follows from [2, 18.5] since every τ -precompact set is τβ∗ (resp.
τβ)-precompact when (E, τ) is countably quasi-barreled (resp. countably
barreled).

4. Sequentially Bornological Spaces

Definition 4.1. A topological vector space E is called sequentially bor-
nological (S-bornological) if every bornivorous string is S-topological.

Since τ and τS have the same bounded sets, (E, τ) is S-bornological iff
(E, τS) is bornological.

Definition 4.2. A pseudo-seminorm p, on a topological vector space E,
is called bounded if for every bounded sequence (xn) in E and every null
sequence of scalars (λn) we have p(λnxn) → 0.

Note. If p is a seminorm, then p is bounded iff it is bounded on bounded
sets.

Definition 4.3. A linear map f between two topological vector spaces
E,F is called bounded if it maps bounded sets in E into bounded sets in
F .

Proposition 4.4. For a topological vector space (E, τ) the following pro-
perties are equivalent:

(1) (E, τ) is S-bornological.
(2) Every bounded linear map, from (E, τ) to an arbitrary topological

vector space, is sequentially continuous.
(3) Every bounded linear map, from (E, τ) to an arbitrary Frechet space,

is sequentially continuous.
(4) Every bounded pseudo-seminorm on E is sequentially continuous.

Proof. (1)⇒(2). Let f : (E, τ) → F be linear and bounded. If U is a
topological string in F , then f−1(U) is a bornivorous string in (E, τ), and
hence f−1(U) is S-topological. This proves that f is τS-continuous and
hence f is sequentially τ -continuous.

(3)⇒(1). Let U = (Vn) be a bornivorous string in E and consider the
Frechet space F = ̂EU . Let j : E → F be the canonical mapping. If A is
bounded in (E, τ), then for each n there exists a scalar λ such that A ⊂ λVn
and so j(A) ⊂ λj(Vn), which proves that J(A) is bounded in F . Thus, j
is bounded and hence j is sequentially continuous by our hypothesis, which
implies that U is S-topological by Proposition 2.5.

(1)⇒(4). Let p be a bounded pseudo-seminorm on (E, τ) and set Wm =
{x : p(x) ≤ 2−m}. Every Wm is bornivorous. In fact, assume that Wm does
not absorb a τ -bounded set A. Then, there exists a sequence (xn) in A with
xn 6∈ 2nWm. Now (xn) is a bounded sequence and p(2−nxn) > 2−m for all
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n, which is a contradiction. Thus, U = (Wn) is a bornivorous string and
hence S-topological by (1). Let now m be given and let (xn) be a τ -null
sequence. Since Wm is an S-neighborhood of zero, there exists n0 such that
xn ∈ Wm and so p(xn) ≤ 2− if n ≥ n0.

(4)⇒(1). Let W = (Vn) be a bornivorous string in (E, τ) and let p = pW

be as in Lemma 1.4. Then, p is bounded. In fact, let (xn) be a bounded
sequence and let λn → 0. Given k, there exists a scalar α such that (xn) ⊂
αVk. Now

λnxn ∈ λn αVk ⊂ Vk

for large n, which implies that p(λnxn) ≤ 2−k eventually. By (4), p is
sequentially continuous and hence W is S-topological by Lemma 2.3.

Proposition 4.5. A countable product (E, τ) =
∞
∏

n=1
(Ek, τk) of S-borno-

logical spaces is S-bornological.

Proof. Each τS
n is bornological and so τ0 =

∞
∏

n=1
τS
n is bornological by [2, 11.6].

If τ b is the bornological topology associated with τ , then τS ≤ τ b, since τS

has the same τ bounded sets. Since τ ≤ τ0 ≤ τS (by Corollary 2.11), we
have that τ0 = τ b = τS and so τS is bornological.

Proposition 4.6. Let F be a topologically complemented subspace of a
topological vector space (E, τ). If (E, τ) is S-bornological, then F is S-
bornological.

Proof. Let τ0 = τ
∣

∣F . By Proposition 2.14, we have τS
0 = τS

∣

∣F . Thus, it
suffices to assume that (E, τ) is bornological and show that τ0 is bornolog-
ical. If U = (Vn) is a bornivorous string in (F, τ0) and if G is a topological
complement of F , then (Wn), where Wn = Vn + G is a bornivorous string
in (E, τ) and Wn ∩ F = Vn, which shows that U is τ0-topological.

Proposition 4.7. Let (E, τ) = ⊕
α∈I

(Eα, τα), where each τα is Hausdorff.

If each (Eα, τα) is S-bornological, then (E, τ) is S-bornological.

Proof. By Proposition 2.13, we have τS = ⊕
α∈I

τS
α . Since the direct sum of

bornological spaces is bornological ([2, 11.5]), the result follows.

5. Sequentially Barreled Spaces

Definition 5.1. A topological vector space E is called sequentially-bar-
reled (S-barreled) if every closed string in E is S-topological.

Proposition 5.2. A topological vector space E is S-barreled iff every
lower-semicontinuous pseudo-seminorm on E is sequentially continuous.
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Proof. Assume that E is S-barreled and let p be a lower-semicontinuous
pseudo-seminorm on E. If Vn = {x : p(x) ≤ 2−n}, then U = (Vn) is a closed
string and hence S-topological, which implies that p is sequentially continu-
ous (by Lemma 2.3). Conversely, suppose that every lower-semicontinuous
pseudo-seminorm on E is sequentially continuous and let W = (Wn) be a
closed string in E. Let p = pW be as in Lemma 1.4. Let {Vγ : γ ∈ Γ} be a
base at zero in E consisting of balanced sets and make Γ into a direct set
by defining γ1 ≥ γ2 if Vγ1 ⊂ Vγ2 . Define p on E by

p(x) = sup
γ∈Γ

inf
y∈Vγ

pW (x + y).

Then, p is lower-semicontinuous (it is the biggest lower-semicontinuous func-
tion f with f ≤ p) and it is easy to show that p(x + y) ≤ p(x) + p(y) and
that p(λx) ≤ p(x) when |λ| ≤ 1. Moreover

{

x : p(x) < 2−n−1} ⊂ Wn. (∗)

In fact, let p(x) < 2−n−1. For each γ ∈ Γ, there exists yγ in Vγ with
pW (x + yγ) < 2−n−1 and so x + yγ ∈ Wn. Since the net (yγ)γ∈Γ converges
to zero and Wn is closed, we have that x ∈ Wn. It now follows easily that p
is a pseudo-seminorm which, by our hypothesis, is sequentially continuous.
Now (∗) implies that W is S-topological and the result follows.

Proposition 5.3. A topological vector space (E, τ) is S-barreled iff any
linear topology τ1 on E, having a base at zero consisting of τ -closed sets, is
weaker than τS.

Proof. Suppose that (E, τ) is S-barreled and let τ1 have the stated prop-
erties. Then, there is a base F for the τ1-topological strings, consisting
of τ -closed strings. Since (E, τ) is S-barreled, every member of F is S-
topological in (E, τ) and hence τ1 ≤ τS . Conversely, assume that (E, τ) has
the same property stated in the proposition. The family Fc of all τ -closed
strings is directed and it generates a linear topology τ2. This topology has a
base at zero consisting of τ -closed sets and hence τ2 ≤ τS by our hypothesis.
It follows that every τ -closed string is S-topological in (E, τ) and so (E, τ)
is S-barreled.

Definition 5.4. A family F of linear maps, from a topological vector
space E to another F , is called sequentially equicontinuous if for each neigh-
borhood V of zero in F the set ∩

f∈F
f−1(V ) is an S-neighborhood of zero

in E.

Proposition 5.5. For a topological vector space E, the following prop-
erties are equivalent:

(1) E is S-barreled.



SEQUENTIAL CONVERGENCE IN TOPOLOGICAL VECTOR SPACES 163

(2) Every pointwise bounded family F of continuous linear maps, from E
into another topological vector space F , is S-equicontinuous.

(3) Every pointwise bounded family of continuous linear maps, from E
into an arbitrary Frechet space, is S-equicontinuous.

Proof. (1)⇒(2). Let V be a neighborhood of zero in F . Choose a closed
topological string U = (Vn) in F with V1 ⊂ V . Let Wn = ∩

f∈F
f−1(Vn).

Then (Wn) is a closed string in E and hence S-topological by (1). Thus
∩

f∈F
f−1(V ) is an S-neighborhood because it contains W1.

(3)⇒(1). For the proof we use an argument analogous to the one used
in [2, 7.2].

Corollary 5.6. Let E be an S-barreled space, F an arbitrary topological
vector space, and (fα)α∈I a pointwise bounded net of continuous linear maps
from E to F . If the limit lim fα(x) = f(x) exists for each x ∈ E, then f is
sequentially continuous.

Corollary 5.7. Every pointwise limit of continuous linear maps, from
an S-barreled space into an arbitrary topological vector space, is sequentially
continuous.

Proposition 5.8. Let E be a Hausdorff S-barreled space and let F be a
subspace of finite codimension. Then, F is S-barreled.

Proof. We may consider the case in which the codimension of F is one. Let
U = (Vn) be a closed string in F . There are two possible cases.

Case I. Each Vn is a proper subset of its closure V n in E. Then, each
V n is absorbing in E. In fact, let x0 ∈ V n+1\Vn+1 and let x ∈ E. Then
x = y + λx0 with y ∈ F . Since Vn+1 is absorbing in F , there exists a scalar
µ, |µ| ≥ |λ|, with y ∈ µVn+1, and so

x ∈ µVn+1 + λV n+1 ⊂ µV n.

Now, (V n) is a closed string in (E, τ) and hence each V n is an S-neigh-
borhood in (E, τ). Moreover, V n ∩ F = Vn. It is clear now that U is
S-topological in F .

Case II. There exists an n such that Vn is closed in E. We will show
that each Vm is an S-neighborhood in F . Without loss of generality, we
may assume that V1 is closed in F . Then, each Vm is closed in E. Choose
x0 ∈ E with x0 6∈ F and let W = {λx0 : |λ| ≤ 1}. The set W is compact
in E and hence each Wn = Vn + 2−nW is closed in E. Clearly (Wn) is a
closed string in E and Wn ∩ F = Vn. Since each Wn is an S-neighborhood
of zero in E, it follows that Vn is an S-neighborhood of zero in F .
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Definition 5.9. A linear map f , between two topological vector spaces
E and F , is called sequentially open (S-open) if f(V ) is an S-neighborhood
of zero in F for each S-neighborhood V of zero in E.

Proposition 5.10. Let E, F be topological vector spaces and let f : E →
F be linear, continuous and sequentially open. If E is S-barreled, then F is
S-barreled.

Proof. It is clear that f is onto. Let U = (Vn) be a closed string in
F . Then, f−1(U) is a closed string in E and so f−1(U) is S-topological.
Since f(f−1(Vn)) = Vn and f is sequentially open, it follows that U is
S-topological in F .
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