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CONSTRUCTION OF ENTIRE MODULAR FORMS OF
WEIGHTS 5 AND 6 FOR THE CONGRUENCE GROUP
Lo(4N)

G. LOMADZE

ABSTRACT. Two classes of entire modular forms of weight 5 and two
of weight 6 are constructed for the congruence subgroup I'g(4N). The
constructed modular forms as well as the modular forms from [1] will
be helpful in the theory of representation of numbers by the quadratic
forms in 10 and 12 variables.

The present paper is a direct continuation of [1] whose notation will be
preserved here.

Lemma 1. For a given N let
\1’3(7') = \113(7';91,...,g4;h1,...,h4;61,...,C4;N1,...7N4) =

1
= {Eﬁlgllin (7—; C1, 2N1)’1992h2 (T; €2, 2N2) N

1
_Eﬁglhl (T; C1, 2N1)19fql2h2 (T; Co, 2N2)} X

Xy g (75 €3, 2N3) U gy, (T3 €4, 2Na) (1.1)

and

‘1’4(7'):\114(7';91,...,g4;h1,...,h4;01,...,C4§N1,...7N4):

3
= Hﬁquhk(T;Cl“2Nk)1994h4(7—?c472N4)7 (12)
k=1
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where
L h
gk, NulN (k=1,2,34), 4’]\7 Dk 1.
gk, NeIN ( 3.4) ;Nk (13)

For all substitutions from T" in the neighborhood of each rational point T =
_% (v #0, (v,0) =1), we then have

(’7T+(§)5\PJ‘(T;917...,g4;h1,...7h4;0,...,0;N1,...,N4):

= Zcﬁﬁe(%jﬁif) (j = 3.4). (1.4)
n=0

Proof. 1. Taking into account (1.19) from [1], by Lemma 4 from [1], it
follows for n = 2 (with ¢1, h1, gi, b}, N1, Hy instead of g, h, ¢’, ', N, H)
and n = 0 (with ga, ha, g5, by, N2, Hs instead of g, h, ¢’, b/, N, H) that
1

I (yT + 6)39” ,, (730, 2N1)V g1, (750,2N3) =

h
1 gihi

1 /3 _
= ——e(Tsa ) NI(ViN) 2™ Y g, (0, Hyy 28N1) X

Ny 4 Himod2N;
+ 4 art +
Jw, ,(L;HJN) 24 9 /(7;H72N)}><
{glhl PP R Teda]_Veim o
at+ 0
x Z @g;gzh2(07H2§2N2)79géh’2 <m§H2»2N2) =
H2m0d2N2
3 -1
= —6(1 Sgn’y) (2‘7|(N1N2)1/2) Z Pglgih (O’H1;2N1) X
Hymod2N,
H2m0d2N2
) 1 ., om‘—l—ﬁ.
X@g;gzhz(O,H%2N2){E199;h; (mJﬁ,?]\h) X
at + 0 . at + 0
géh/2 (m,HQ,QNQ) — 4’)/71'2(’)/7— +6)19g1h/1 (m,Hl,QNl) X
at +
0 /(7;1{,21\7)}. 1.5
ghe\yr 4522 (15)

If in (1.5) Ny, g1, h1, Hy, g}, b} are replaced by Na, go, he, Ha, g, hb, and
vice versa, then we have

1
E('yT + 6)379./0/2112 (150,2N2)0g, 1, (150,2N7) =

3 -1
= _e(i sgnfy) (2\7|(N1N2)1/2) E Pglgaha (0, Hy;2N3) X
Hymod2N,
HlmgdgNl
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Xsogllglfn (T;Ole;le) X

x{iﬁ” (O‘T+ﬂ;H2,2N2)ﬁgih/l(aTJrﬂHl,le) -

A G s
) at +
—dymi(yT + 6) I gy (m, Ho, 2N2> X
ar+ 0

7_9 AN <77 H ,2N )}
X g1hy ’yT—f—(S 1 1
Subtracting (1.6) from (1.5), we obtain

1
(T + 5)3{E19" (750,2N1)9 gon, (750, 2N2) —

g1h1

1 3
=~ Ugin, (750,2N1)0 (T;O,QNQ)} = —e(z sgnvy) x

191

N, g2ha
1
X (2NN 3T grgin, (0, His 2N1) gy 6,y (0, Ha; 2N2) %
Himod2N,
H2m0d2N2
1 at+ at + [
L (S5 o, Yo (S 1, 00) -
X{Nl 91k YT+ 0 ! 1) " g2he T+ 6 2 2
1 at+ at + [
s (T b o) (T o)
Ny M\ g o) ek e g 2 2

Analogously, by Lemma 4 from [1], for n — 1 and n = 0 we obtain

(yT + 0)? ’gghg (750,2N3)0g,1,(7;0,2N4) =

1 —1.
= 76(5 sgn ) (2|7|(N3N4)1/2) isgny X
XD Pajanns (0, Hsi 2Ns) g 6,1, (0, Ha; 2Na)

Hsmod2N3
Himod2Ny

, (a7+ﬂ at+ 0

; Ha, 2Ns ) 0, ( $Hi,2N: ).

93hs \ g + 67 T+’

Multiplying (1.7) by (1.8), on account of (1.1), we obtain

(77—}—5)5\113(7;91,...,g4;h1,...,h4;0,...,O;Nl,...,N4):

= e(g sgnvy) (472( ﬁ Nk> 1/2)_1isgn7 x

k=1

4
X Z H(‘Dg];gkhk(07Hk;2Nk> X

Hk 11’10(12]\]';C k=1
(k=1,2,3,4)
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art + 0
\113(7T+6;gi,...,gﬁl; been, ﬁl;Hl,...,H4;N1,...,N4). (1.9)

Further, applying the same reasoning as in [1, Lemma 5, pp. 62-63], we
obtain (1.4) if j = 3.

IT. As in Subsection I, by Lemma 4 from [1], for n = 1 (with g, hg, N,
Gpes Py, Hy for all 1 < k < 4 instead of g, h, N, ¢’, b, H) and n = 0 (with
94, ha, N, g}, By, Hy instead of g, h, N, ¢’, ', H), we obtain

3
(y1 +6)° H ﬂ;khk (150,2N)0g,0,(7;0,2N4) =
k=1

4
5 1/2\ —1
:e(isgn'y)(zwz(HNk) ) isgny X
k=1

4
X Z HWg;gkhk(OaHk;QNk) X
Himod2Ny k=1

(k=1,2,3,4)
3
+ or + 5
9, /(21447;H72Af)ﬁ/ /(ggggf;H,2A7)
x]};[l L, P k k| Vgl n! po—— 4 4

Hence, according to (1.2), it follows that

(’7T—|—5)5\II4(T;91,...,g4;h1,...7h4;0,...70;N1,...,N4):
4
5 1/2\ -1
:e(4sgn7)(472(kl_|1]\7k> ) isgn-y X

4
x Z Hsﬁg,’cgkhk(O’Hk;2Nk) X

Hk modZNk. k=1
(k=1,2,3,4)

ot + 3
\I’4<mag/177gzlvh/1a7h£17H177H47N17aN4> (110)

Further, applying the same reasoning as in [1, Lemma 5], we obtain (1.4)
ifj=4. O

Theorem 1. For a given N the functions W3(7) and U4(T) with ¢ =
co = ¢c3 = ¢4 = 0 are entire modular forms of weight 5 and character
Xx(0) = sgn ’y(ﬁ) (A is the determinant of an arbitrary positive quadratic

form in 10 variables) for the group T'o(4N) if the following conditions hold:

1) 2|gg, Ngx|N (k=1,2,3,4), (1.11)
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hi S
2) 4[N ST e 1.12
) 4 Z |kZ:1 AN}, (1.12)
3) for all a and § with «d =1 (mod 4N)

4
_ N
(kalk)\I/j(T;agl,...,ag4;h1,...,h4;0,...,0;N1,...,N4)—

A
sgné( 7] ) (1391, s gas b,y oo ha; 0,0, 03N, Ly Ny) (1.13)
(j=3,4).

Proof. 1. As in the case of Theorem 1 from [1], the functions ¥5(7) and
Wy(7) with ¢; = ¢co = ¢3 = ¢4 = 0 satisfy the condition 1) and, by Lemma
1, also the condition 4) of the definition from [1, p. 53-54].

IT. From (1.12), since 2 1 4, it follows that

2
4‘N52 ’f 4‘ Z 4‘;\’;}@ §2e (2N =2, (1.14)
k=

Taking into account (1.11), by Lemma 3 from [1], for n = 2 and n = 0
(with g,, h., N, and gs, hs, Ny instead of g, h, N), we obtain for each
substitution from I'g(4N)

9" <a7+50 2Nr>’l9 . (OCT“FﬁO 2Ns> :i3n('y)(sgn5—1)i1—|6| ™
sy Yy gshs T s Uy

grhe \yr 4 6 Ty
N, N; B6 1 g2 B 2 -
() o+ o (T (™7 g ) >
T s
ay6? ; h? h?
Xe( 4 <4N +4]\@)) x
Xﬁo‘g Ry (T 0 2N) ags,hs (T;032Ns) (115)

forr=1,,s=2andr=2, s=1.
Analogously, by Lemma 3 from [1], for n = 1 and n = 0, we have

at + 3 ot + 3 .
ﬁfllshs( s ;0 2N3)19g4h4( et :0 2N4> = sgn § 21N (sgn6=1)
1—1s! { N3 N. B8/ g g2 -
1—|6] (£Y34¥4 52 3 52@ 2N3)— 74(5290(2]\74) 2
- ( |6 )(’YTjL ) (4 <4N3 +4N4 )) X
(1, W
Xe( 1 (4N3 + 4N4)) x
Xﬂ/ﬂ!]zﬁh:s(’r;072N3)190494,h4(7_§072Ns)- (1.16)



194 G. LOMADZE

Hence, by (1.1), (1.15), (1.16), and (1.14), we obtain

\I!3(QT+6

—— 1, ;h,...,h;O,...,O;N,...JV)z
T+ g1 ga; N1 4 1 4

4
N,
_ Sgn(sin(v)(sgnéfl)(_l)lf\é\ (Hk:l k>(77+5)5 %

9]
XWs(T;Q97, .- yagg;hiy ... he;0,000,0; Ny, oo, Ny,

from which according to (1.13) it follows for all a and § with ad = 1
(mod 4N) that

aT +
\113(76;‘91,...794;]11,...,h4;0,...,O;Nl,...,N4> =
YT + 0
—A 5
:Sgné(W)(’YT+5) \113(7—;913"' 794;h17"' 7h4;07"',0;N13"' 7N4)'

Analogously, by the just mentioned Lemma 3, for n = 1 and n = 0 (with
9k, hi, N (k=1,2,3,4) instead of g, h, N), according to (1.11) and (1.14),
we find for all substitutions from I'g(4N) that

3
H ﬂ;khk (?;7—7_7;';?7 0, 2Nk)19g4h4 (:Z_%?, 0, 2N4) =

4
= Sgn(gin(v)(sgné—l)(_1)1—|6| (Hk:(;1|‘7\7k)(,yq. + 5)5 %

agr,hk aga,ha

3
< [T (750,2N)0, . . (7;0,2Ny). (1.17)
k=1

Hence, by (1.2), (1.17), and (1.13), for all @ and § with «d = 1 (mod 4N)

we have

aT +
\114(76;917"'794;}1‘17'"7h4;07"'70;N17"'7N4) =
T+ 0
A 5
:sgné(W)(erré) Uu(T391,--. 594301, ... ha;0,.00,0; Ny, .., Ny).

Thus the functions ¥3(7) and Uy (7) with ¢; = c2 = ¢35 = ¢4 = 0 satisfy
the condition 2) of the definition from [1].
III. According to (13) from [1] we have

1) grhr(T;(LQNT)ﬁgshs (T7Oa2Ns) =

=—72 Y (<D)lrretheme (AN, m, 4 g, ) e(Ar7) (1.18)

My, M =00
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forr=1,s=2and r =2, s =1, where

2
1
A=) T(QNkmk +9x/2) =
k=1
2 1 1 2
_ 2 2 .
-2 (Nym3 + 5mkgk) +5 ;gk/élNk, (1.19)

2) (150,2N3)0 g, 1, (750,2Ny) =

=i Z (—1)h3m3+h4m4(4N3m3 —‘rgg)e(AQT), (120)

m3,M4=—00

93 h3

where
1
! 1
=D (Nemi + Smuge) + 4 ng/4Nk, (1.21)
k=3
H e (750, 2N5) g, (730, 25 =
q e 4 h 3
Y Z (—1)Zk:1 kmkH(AlNkmk + gk)e(AT),
mMi,...,MMg=—00 k=1
where
SR
— 2 _
k=1
4 1 1 4
=>  (Nemi+ = =57 g2 /4N 1.22
k:1( kmk+2mk9k)+4kz::lgk/ & ( )

Ay + As and A are integers by virtue of (1.11) and (1.12). Therefore the
functions W3(7) and W4(7) satisfy the condition 3) of the definition from
1]. O
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2.
Lemma 2. For a given N let

(133(7'):(1)3(7';91,... 7g4;h1,... ,h4;61,... ,C4;N1,... ,N4)=

1
= {E /gllhl (T;01’2N1)7992h2(7502a2N2) -
1 4
=5 Dot (75 €1, 2N0) 1, (ri2,2N2) } [T g, (70, 2N0) - (21)
k=3
and
@4(7’) :q)4(7—;glv"' ag4;h1,~" ah4;cla"' 764;N17"' 3N4) -
4
=TI 9gun (73 00, 2N0), (2.2)
k=1
where
4 hk)
2|gr, Ng|N (k=1,2,3,4), 4NY —. 2.3
|gks Ni|N ( ), 4 ; N, (2.3)

For all substitutions from T in the neighborhood of each rational point T =
_% (v#0, (v,0) =1), we then have

> . n ar+ .
(481 0y(r) = 3 DYe(gy Tog) (=34 @)

Proof. 1. As in the proof of Lemma 1, by Lemma 4 from [1], it follows for
n =1 that
(y7 4+ 6)39, . (1;0,2N3)0 . (1;0,2N4) =

gshs gaha

3
= —e(5 sgn7) (2h|(NaNg) ) 7! x

4
x> ] aygena (0, Hs: 2N3)pg: g, (750, Has 2Ny) x
H3m0d2N3k:1
Hyimod2Ny

/ O‘T_"/G. /
<y (S Han2Na) e

ar +

Multiplying (1.7) by (2.5), by virtue of (2.1), we obtain

(Y7 +0)°®3(T5 91, s gashas .o B0, 0Ny, oo Ny) =
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3 4 1/24 —1
- 6(5 sgny) (472( H N’“) ) Z Pgr g (0, His 2Ny ) X
k=1

Hk- monNk
(k=1,2,3,4)
¢3<g1jl§;gq7”.,gu;hﬁ,“.,h%;fﬁ,“.,EU;AH,”.,AQ>.(26)
YT+ 0

Further, applying the same reasoning as in [1, Lemma 5], we obtain (2.4)
if j = 3.
II. By Lemma 4 from [1], for n = 1 we have

4 —_
(yr +0)8 H ﬁgkhk 7;0,2N) = e(gsgn'y) (472( H Nk) 1/2) ' X
k=1 k=1

4 4
ar + 3
< 3 Lewon©H2N ] v oo (S 120,

HkmOdQNk k=1 k=1
(k=1,2,3,4)

Hence, according to (2.2), it follows that

(’77-—'_5)6@4(7-;917"' >g4;h17"' 7h4;07"'70;N17"' 7N4) =

3 4 1/2y —1 4
‘6(28gn7)(472(kl:[1Nk) ) T eopoen (0. His 2N

Hypmod2Ny k=1
(k=1,2,3,4)

O‘T+ﬂ/ / / ’
@(———ﬂ N ;h,”wh;H,“wH;NV“,N).
><477_+591 g4t 45111 4; V1 4

Further, applying the same reasoning as in [1, Lemma 5], we obtain (2.4) if
j=4. 0O

Theorem 2. For a given N the functions ®3(7) and ®4(7) with ¢ =
ca = c3 = ¢4 = 0 are entire modular forms of weight 6 and character
x(6) = (ﬁ) (A is the determinant of an arbitrary positive quadratic form

in 12 variables) for the group To(4N) provided that the following conditions
hold:

1) 2|gg, Np|N (k:1,2,3,4), (2.7)
2) 4|N 4 2.
) AN \Zm (2:3)

3) forall o and 0 with d =1 (mod 4N)

4
N
(W)éj(T;agla'"aag4;h17'"7h4;07"'70;N1a"'7N4)
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A
= () 27300, oo guihs a0 0NN (29)
(1 =3,4).

Proof. 1. As in the case of Theorem 1, the functions ®3(7) and P4(7)
with ¢; = ¢a = ¢3 = ¢4 = 0 satisfy the condition 1) and, on account of
Lemma 2, also the condition 4) of the definition from [1].

IT. Since 214, from (2.8) it follows that

4‘]\752 4‘24‘3\26% (2N)=2, (2.10)

Taking into account (2.7)7 by Lemma 3 from [1], for n = 1 we find that
for all substitutions from I'o(4N) we have

4

ar + 300y (sgné—1) ;11| { N3 N4
g%khk<w 0, 2Nk) = 3N (sgno=1);1 “”(W) x

3 @ ﬁ 2¢(2N3)—2 i 2¢(2N4)—2
x(rr +0)%e 1 (4]\73(S an° ))

xe( - a1<52 (4’;\2 n 4’;\2)) Hﬁagk (102N, (211)

Taking into account (2.10) and (2.9), by (2.1), (1.15), and (2.11), for all «
and § with ad =1 (mod 4N) we obtain

at +
Oy (T guihys e B0, 0Ny, Ny ) =
3(77__'_67917 » 945 N1y s b4, Y, s Uy V1 4)
— ;2n(y)(sgnd—1) 1—19| Hk 1 5
i (-1) P (= B (4 9)0

XP3(T;09q, .. g4 b1, .. yha; 0,00 0Ny, ..., Ny) =
A
(|5|)(7T+5) (1)3(7—;913"' 794;h17~~' ;h4;07"'70;N17"' 7N4)'

Analogously, taking into account (2.7) and (2.10), by Lemma 3 from [1],
for n = 1, we have

4 at +
1;[119/9 <w+6 osz)_
4 4
_ (W) (77 + 8)° T Pagun (730,22 (212)
k=1

for all substitutions from I'g(4N).
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Hence, by (2.2), (2.12), and (2.9), for all @ and ¢ with «d =1 (mod 4N),

we have

¢4<a7+5

m;gla"',94;h1a'"ah4;0a"'aO;Nl7"'7N4> =

A
= (m)(7T+6)6¢4(T7917 794;h17"' ah4;07"'70;N17"' 7N4)'

Thus the functions ®3(7) and ®4(7) with ¢; = ¢3 = ¢3 = ¢4 = 0 satisfy
the condition 2) of the definition from [1].

III. According to (13) from [1], we have

1) (1.18) with A; defined by (1.19);

2) 4
H ﬁ;khk (15;0,2Ny) =
k=3

00 4
_ —7'1'2 Z (_1)h3m3+h4m4 1_‘[(4:‘2\]]”7,“C +gk)e(A27),
ma3,ma4=—00 k=3
where As is defined by (1.20);
3)

4
H o n, (750,2N) =
k=1

00 4

_ ﬂ_4 Z (71)21:1 e H(4Nkmk + gk)e(AT)a

M1, Mg=—00 k=3
where As is defined by (1.21).
Thus the functions ®3(7) and ®4(7) with ¢; = ca = ¢3 = ¢4 = 0 satisfy
the condition 3) of the definition from [1]. O
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