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THE FOURIER METHOD IN THREE-DIMENSIONAL
BOUNDARY-CONTACT DYNAMIC PROBLEMS OF

ELASTICITY

T. BURCHULADZE AND R. RUKHADZE

Abstract. The basic three-dimensonal boundary-contact dynamic
problems are considered for a piecewise-homogeneous isotropic elas-
tic medium bounded by several closed surfaces. Using the Fourier
method, the considered problems are proved to be solvable under
much weaker restrictions on the initial data of the problems as com-
pared with other methods.

1. Two well-known methods – the Laplace transform and the Fourier
method – are widely used in investigating dynamic problems. In the works
by V. Kupradze and his pupils the Laplace transform method was used
to prove the existence of classical solutions of the basic three-dimensional
boundary and boundary-contact dynamic problems of elasticity. Based on
some results from these works, in this paper we use the Fourier method to
show that the basic three-dimensional boundary-contact dynamic problems
of elasticity are solvable in the classical sense. We have succeeded in weak-
ening considerably the restrictions imposed on the data of the problems
as compared with the Laplace transform method. Detailed consideration is
given to the second basic problem. The other problems are treated similarly.

2. Throughout the paper we shall use the following notation:
x = (x1, x2, x3), y = (y1, y2, y3) are points of R3;
|x−y| = (

∑3
k=1(xk−yk)2)1/2 is the distance between the points x and y;

D0 ⊂ R3 is a finite domain bounded by closed surfaces S0, S1, . . . , Sm

of the class Λ2(α), 0 < α ≤ 1, [1]; note that S0 covers all other Sk, while
these latter surfaces do not cover each other and Si ∩ Sk = ∅, i 6= k,
i, k = 0,m; the finite domain bounded by Sk, k = 1,m, is denoted by Dk,
D0 = D0 ∪ (

m
∪

k=0
Sk), Dk = Dk ∪ Sk, k = 1,m;
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L = (0, `), L = [0, `], Ωk = Dk × L is a cylinder in R4, k = 0,m,
Ωk = Dk × L.

The three-component vector u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is called
regular in Ωk (x ∈ Dk, t ∈ L) if

ui(x, t) ∈ C1(Ωk) ∩ C2(Ωk), i = 1, 2, 3.

The system of differential equations of dynamics of classical elasticity for
a homogeneous isotropic medium is written as [1]

µ∆u + (λ + µ) grad div u + F (x, t) = ρ
∂2u
∂t2

, (1)

where u(x, t) = (u1, u2, u3) is the displacement vector, ∆ is the three-
dimensional Laplace operator, F (x, t) is the mass force vector, ρ = const >
0 is the medium density and t is time; λ and µ are the elastic Lamé constants
satisfying the natural conditions

µ > 0, 3λ + 2µ > 0.

In this paper we shall be concerned only with real vector-functions. Any

three-dimensional vector f = (f1, f2, f3) with norm |f | =
√

∑3
k=1 f2

k is
treated as a 3× 1 one-column matrix: f = ‖fk‖3×1;

the sign [·]T denotes transposition;
if A = ‖Aij‖3×3 is a 3× 3 matrix, then |A|2 =

∑3
j,i=1 A2

ij .
We introduce the matrix differential operator

A(∂x) = ‖Aij(∂x)‖3×3,

where

Aij(∂x) = δijµ∆ + (λ + µ)
∂2

∂xi∂xj
,

where δij is the Kronecker symbol. Now (1) can be rewritten in the vector-
matrix form

A(∂x)u(x, t)− ρ
∂2u(x, t)

∂t2
= −F (x, t). (2)

The matrix-differential operator

T (∂x, n(x)) = ‖Tij(∂x, n(x))‖3×3,

where

Tij(∂x, n(x)) = λni(x)
∂

∂xj
+ λnj(x)

∂
∂xi

+ µδij
∂

∂n(x)
,

n(x) is an arbitrary unit vector at the point x (if x ∈ Sk, k = 0, m, then
n(x) is the normal unit vector external with respect to the domain D0), is
called the stress operator.
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It will be assumed that the domains Dk, k = 0, r, are filled with homo-
geneous isotropic elastic media with the Lamé constants λk, µk and density
ρk, while the other domains Dk, k = r + 1,m, are hollow inclusions.

When the operators A(∂x) and T (∂x, n(x)) contain λk and µk instead of

λ and µ, we shall write
k
A(∂x) and

k
T (∂x, n(x)), respectively. Furthermore,

it will be assumed without loss of generality that in (2) ρk = 1, k = 1, r.
We introduce the notation

u+(z, t) = lim
D03x→z∈Sk

u(x, t), k = 0,m,

u−(z, t) = lim
Dk3x→z∈Sk

u(x, t), k = 1, r.

The notation (T (∂z, n(z))u(z, t))± has a similar meaning.

3. Let us consider the following problem: In the cylinder Ωk, k = 0, r,

find regular vectors
k
u(x, t), k = 0, r, satisfying:

(1) the equations

∀(x, t) ∈ Ωk :
k
A(∂x)

k
u(x, t)− ∂2k

u(x, t)
∂t2

= −
k
F (x, t), k = 0, r;

(2) the initial conditions

∀x ∈ Dk : lim
t→0

k
u(x, t) =

k
ϕ(x),

lim
t→0

∂
k
u(x, t)
∂t

=
k
ψ(x), k = 0, r;

(3) the contact conditions

∀(z, t) ∈ Sk × L :
◦
u+(z, t)− k

u−(z, t) =
k
Φ(z, t),

( ◦
T
◦
u(z, t)

)+−
( k
T

k
u(z, t)

)−
=

k
Ψ(z, t),







k=1, r;

(4) the boundary conditions

∀(z, t) ∈ Sk × L :
( ◦
T (∂z, n(z))

◦
u(z, t)

)+
=

k
f(z, t),

k = 0, r + 1, . . . , m.

We shall refer to the above problem as (II)F,ϕ,ψ,Φ,Ψ,f . The given vector-

functions
k
F ,

k
ϕ,

k
ψ,

k
Φ,

k
Ψ,

k
f are assumed to satisfy the conditions:
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1.
k
F (·, ·) ∈ C2(Ωk) and third-order derivatives belong to the class

L2(Dk), k = 0, r. Moreover,
◦
T
◦
F

∣

∣

Sk
= 0, k = 0, r + 1, . . . , m, t ∈ L,

◦
F+ =

k
F−, (

◦
T
◦
F )+ = (

k
T

k
F )−, (

◦
A
◦
F )+ = (

k
A

k
F )−, k = 1, r, t ∈ L;

2. ∀t ∈ L :
∂p

∂tp
k
Φ(·, t) ∈ C2(Sk), p = 0, 7,

∀z ∈ Sk :
k
Φ(z, ·) ∈ C7(L),

(∂m
k
Φ(z, t)
∂tm

)

t=0
= 0, m = 0, 5, k = 1, r;

3. ∀t ∈ L :
∂p

∂tp
k
Ψ(·, t) ∈ C1(Sk), p = 0, 7,

∀z ∈ Sk :
k
Ψ(z, ·) ∈ C7(L),

(∂m
k
Ψ(z, t)
∂tm

)

t=0
= 0, m = 0, 5, k = 1, r;

4. ∀t ∈ L :
∂p

∂tp
k
f(·, t) ∈ C1(Sk), p = 0, 7,

∀z ∈ Sk :
k
f(z, ·) ∈ C7(L),

(∂m
k
f(z, t)
∂tm

)

t=0
= 0, m = 0, 5,

k = 0, r + 1, . . . , m;

5.
k
ϕ ∈ C3(Dk) and fourth-order derivatives belong to class L2(Dk).

Moreover,
◦
T
◦
ϕ
∣

∣

Sk
=

◦
T
◦
A
◦
ϕ
∣

∣

Sk
= 0, k = 0, r + 1, . . . , m,

◦
ϕ+ =

k
ϕ−, (

◦
T
◦
ϕ)+ = (

k
T

k
ϕ)−, (

◦
A
◦
ϕ)+ = (

k
A

k
ϕ)−,

(
◦
T
◦
A
◦
ϕ)+ = (

k
T

k
A

k
ϕ)−, k = 1, r.

6.
k
ψ ∈ C2(Dk) and third-order derivatives belong to the class L2(Dk).

Moreover,

◦
T
◦
ψ

∣

∣

Sk
= 0, k = 0, r + 1, . . . , m,

◦
ψ+ =

k
ψ−, (

◦
T
◦
ψ)+ = (

k
T

k
ψ)−, k = 1, r.

The symbol ·|Sk denotes the restriction to Sk. The uniqueness of a regular
solution of the problem posed is proved in [2].

Let
k
u(1)(x, t) be a regular solution of problem (II)0,0,0,Φ,Ψ,f , and

k
u(2)(x, t)

be a regular solution of problem (II)F,ϕ,ψ,0,0,0. Then, as one can easily ver-

ify,
k
u(x, t) =

k
u(1)(x, t) +

k
u(2)(x, t) will be a regular solution of problem

(II)F,ϕ,ψ,Φ,Ψ,f . The existence of
k
u(1)(x, t) under our assumptions immedi-

ately follows from the results of [2]. Therefore it remains for us to prove the
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existence of a regular solution of problem (II)F,ϕ,ψ,0,0,0, which is what we
are going to do below by means of the Fourier method.

4. Let κ0 be an arbitrary fixed positive integer, I be the 3×3 unit matrix,
D =

r
∪

k=0
Dk.

We apply the term “Green tensor” of the second basic problem of the

operator
k
A(∂x)−κ2

0I to a 3×3 matrix G(x, y,−κ2
0) =

k
G(x, y,−κ2

0), x ∈ Dk,
y ∈ D, x 6= y, k = 0, r, which satisfies the conditions:

(1) ∀x ∈ Dk, ∀y ∈ D, x 6= y:
k
A(∂x)

k
G(x, y,−κ2

0)− κ2
0

k
G(x, y,−κ2

0) = 0, k = 0, r;
(2) ∀z ∈ Sk, ∀y ∈ D:

( ◦
G(z, y,−κ2

0)
)+

=
( k
G(z, y,−κ2

0)
)−

, k = 1, r,
( ◦
T (∂z, n(z))

◦
G(z, y,−κ2

0)
)+

=
( k
T (∂z, n(z))

k
G(z, y,−κ2

0)
)−

, k = 1, r;
(3) ∀z ∈ Sk, ∀y ∈ D:

( ◦
T (∂z, n(z))

◦
G(z, y,−κ2

0)
)+

= 0, k = 0, r + 1, . . . ,m;

(4)
k
G(x, y,−κ2

0) =
k
Γ(x− y,−κ2

0)− k
g(x, y), x ∈ Dk, y ∈ D, k = 0, r,

where
k
Γ(x− y,−κ2

0) is the Kupradze matrix of fundamental solutions with

the Lamé constants λk and µk [1], and
k
g(x, y) is the regular solution of the

following problem:

∀x ∈ Dk, ∀y ∈ D :
k
A(∂x)

k
g(x, y)− κ2

0
k
g(x, y) = 0, k = 0, r,

∀z ∈ Sk, ∀y ∈ D :
(◦
g(z, y)

)+ −
(k
g(z, y)

)−
=

=
◦
Γ(z − y,−κ2

0)−
k
Γ(z − y,−κ2

0),
( ◦
T (∂z, n(z))

◦
g(x, y)

)+−
( k
T (∂z, n(z))

k
g(x, y)

)−
=

=
◦
T (∂z, n(z))

◦
Γ(z − y,−κ2

0)−

−
k
T (∂z, n(z))

k
Γ(z − y,−κ2

0), k = 1, r,

∀z ∈ Sk, ∀y ∈ D :
( ◦
T (∂z, n(z))

◦
g(x, y)

)+
=
◦
T (∂z, n(z))

k
Γ(z−y,−κ2

0),

k = 0, r + 1, . . . , m.

The solvability of this problem is given in [1], which provides the existence
of G(x, y,−κ2

0). By using the Green formula it is easy to prove [1] that
G(x, y,−κ2

0) possesses the symmetry property of the form

G(x, y,−κ2
0) = GT (y, x,−κ2

0). (3)
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Moreover, we have the estimates [2]

∀(x, y) ∈ D ×D : Gmn(x, y,−κ2
0) = O(|x− y|−1),

∂
∂xj

Gmn(x, y,−κ2
0) = O(|x− y|−2),

m, n, j = 1, 2, 3,



















(4)

5. Consider the problem with eigenvalues

∀x ∈ Dk :
k
A(∂x)

k
w(x) + ω

k
w(x) = 0, k = 0, r,

∀z ∈ Sk :
◦
w+(z) =

k
w−(z), (

◦
T
◦
w(z))+ = (

k
T

k
w(z))−, k = 1, r,

∀z ∈ Sk : (
◦
T
◦
w(z))+ = 0, k = 0, r + 1, . . . , m.























(5)

The eigenvector-function of problem (5) w(x) =
k
w(x) = (

k
w1(x),

k
w2(x),

k
w3(x)), x ∈ Dk, k = 0, r, is regular if

k
wi ∈ C1(Dk) ∩ C2(Dk), i = 1, 2, 3,

k = 0, r.
By the known procedure [1] it can be shown that problem (5) is equivalent

to a system of integral equations

w(x) = (ω + κ2
0)

∫

D
G(x, y,−κ2

0)w(y)dy, x ∈ D. (6)

By virtue of (3) and (4) we see that (6) is an integral equation with a
symmetric kernel of the class L2(D). By the Hilbert–Schmidt theorem there
exists a countable system of eigenvalues (ωn+κ2

0)∞n=1 and the corresponding

orthonormal in D system of eigenvectors (w(n)(x))∞n=1 = (
k
w(n)(x))∞n=1, x ∈

Dk, k = 0, r, of equation (6). Hence, in turn, it follows that (ωn)∞n=1 and

(
k
w(n)(x))∞n=1 are respectively the eigenvalues and eigenvectors of problem

(5). It has been established [1] that all ωn ≥ 0. Note that ω = 0 is
a sixth-rank eigenvalue and the corresponding eigenvectors are the rigid
displacement vectors

χ(n)(x) = (χ(n)
1

, χ(n)
2

, χ(n)
3

), n = 1, 6, x ∈ D.

In what follows we shall assume that ωn = 0, w(n)(x) = χ(n)(x), n = 1, 6.
The properties of a volume potential [1] imply the regularity of eigenvectors.

Let us prove that the system (w(n)(x))∞n=1 is complete in L2(D). For
this it is sufficient to show that if f ∈ L2(D) is an arbitrary vector then the
conditions

∫

D
fT (x)w(n)(x) dx = 0, n = 1, 2, . . . , (7)
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imply that f(x) = 0 almost everywhere in D. We introduce the notation

h(x) =
∫

D
G(x, y,−κ2

0)f(y) dy.

By the Hilbert–Schmidt theorem h(x) is expanded in an absolutely and
uniformly convergent series

h(x) =
∞
∑

n=1

fnw(n)(x)
ωn + κ2

0
,

where

fn =
∫

D
fT (x)w(n)(x) dx, n = 1, 2, . . . .

By (7) all fn = 0 and therefore

h(x) ≡ 0. (8)

On the other hand, we know [1] that

( k
A(∂x)− κ2

0I
)

h(x) + f(x) = 0 (9)

almost for all x ∈ D.
By virtue of (8) and (9) we finally conclude that f(x) = 0 almost every-

where in D.

6. Let u(x) =
k
u(x) and v(x) =

k
v(x), x ∈ Dk, k = 0, r, be arbitrary vectors

belonging to the class C1(Dk) and their second-order derivatives belong to
the class L2(Dk). Then the following Green formulas are valid [1]:

∫

D

(

vT Au + E(v, u)
)

dx =
∫

S0

(
◦
vT )+(

◦
T
◦
u)+dS +

+
m

∑

k=r+1

∫

Sk

(
◦
vT )+(

◦
T
◦
u)+dS +

r
∑

k=1

∫

Sk

(

(
◦
vT )+(

◦
T
◦
u)+ − (

k
vT )+(

k
T

k
u)−

)

dS; (10)

∫

D

(

vT Au− uT Av
)

dx =
∫

S0

(

(
◦
vT )+(

◦
T
◦
u)+ − (

◦
uT )+(

◦
T
◦
v)+

)

dS +

+
m

∑

k=r+1

∫

Sk

(

(
◦
vT )+(

◦
T
◦
u)+ − (

◦
uT )+(

◦
T
◦
v)+

)

dS +

+
r

∑

k=1

(
∫

Sk

(

(
◦
vT )+(

◦
T
◦
u)+ − (

k
vT )−(

k
T

k
u)−

)

dS −

−
∫

Sk

(

(
◦
uT )+(

◦
T
◦
v)+ − (

k
uT )−(

k
T

k
v)−

)

dS
)

; (11)
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here

E(v, u) =
3

∑

p,q=1

(

µ
∂vp

∂xq

∂up

∂xq
+ λ

∂vp

∂xp

∂uq

∂xq
+ µ

∂vp

∂xq

∂uq

∂xp

)

. (12)

On rewriting (12) as

E(v, u) =
3λ + 2µ

3
div v div u +

µ
2

∑

p 6=q

(∂vp

∂xq
+

∂vq

∂xp

)(∂up

∂xq
+

∂uq

∂xp

)

+

+
µ
3

∑

p,q

( ∂vp

∂xp
− ∂vq

∂xq

)(∂up

∂xp
− ∂uq

∂xq

)

we easily find that E(v, u) = E(u, v) and E(v, v) ≥ 0.

Theorem 1. The inequality
∞
∑

n=7

Φ2
nωn ≤

∫

D
E(Φ, Φ) dx, (13)

where
Φn =

∫

D
ΦT (x)w(n)(x) dx,

holds for any vector Φ(x) =
k
Φ(x), x ∈ Dk, k = 0, r, satisfying the conditions

k
Φ ∈ C0(Dk), ∂

k
Φ

∂xi
∈ L2(Dk), i = 1, 2, 3, k = 0, r; ∀z ∈ Sk :

◦
Φ+(z) =

k
Φ−(z),

k = 1, r.

In particular, the theorem implies the convergence of the series on the
left-hand side of (13).
Proof. Applying (10) to the vectors Φ(x) and w(n)(x) we obtain

∫

D
E(Φ, w(n)) dx = ωnΦn, n = 7, . . . . (14)

In particular, by setting Φ = w(n) in (14) we have
∫

D
E(w(m), w(n)) dx =

{

ωn for m = n,
0 for m 6= n.

(15)

If we consider a nonnegative value

I =
∫

D
E(v, v) dx ≥ 0

and assume that

v(x) = Φ(x)−
n0
∑

n=7

Φnw(n)(x),
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then simple calculations will give

I =
∫

D
E(Φ, Φ) dx +

n0
∑

m,n=7

ΦmΦn

∫

D
E(w(m), w(n)) dx−

−2
n0
∑

n=7

Φn

∫

D
E(Φ, w(n)) dx ≥ 0. (16)

Taking into account of (14) and (15), from (16) we obtain
n0
∑

n=7

Φ2
nωn ≤

∫

D
E(Φ, Φ) dx.

Theorem 2. The inequality
∞
∑

n=7

Φ2
nω2

n ≤
∫

D
|AΦ|2dx (17)

holds for any vector Φ(x) =
k
Φ(x), x ∈ Dk, k = 0, r, satisfying the conditions

k
Φ ∈ C1(Dk),

∂2
k
Φ

∂xi∂xj
∈ L2(Dk), i, j = 1, 2, 3, k = 0, r,

∀z ∈ Sk :
◦
Φ+(z) =

k
Φ−(z),

( ◦
T
◦
Φ(z)

)+
=

( k
T

k
Φ(z)

)−
, k = 1, r,

∀z ∈ Sk :
( ◦
T
◦
Φ(z)

)+
= 0, k = 0, r + 1, . . . ,m.

In particular, the theorem implies the convergence of series on the left-
hand side of (17).

Proof. Applying (11) to the vectors Φ(x) and w(n)(x) we obtain
∫

D

(

ΦT Aw(n) − w(n) T AΦ
)

dx = 0, n = 7, . . . . (18)

Taking into account that Aw(n) + ωnw(n), from (18) we have
∫

D
AΦw(n)dx = −ωnΦn.

Hence

(AΦ)n = −ωnΦn. (19)

On writing the Bessel inequality
∞
∑

n=7

(AΦ)2n ≤
∫

D
|AΦ|2dx (20)
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for A(∂x)Φ(x), we find that on account of (19), from (20) we obtain (17).

7. Because of the linearity of problem (II)F,ϕ,ψ,0,0,0 its solution can be rep-
resented as the sum of solutions of problems (II)0,ϕ,ψ,0,0,0 and (II)F,0,0,0,0,0.
By a formal application of the Fourier method to problem (II)0,ϕ,ψ,0,0,0 we
obtain

u(x, t) =
k
u(x, t) =

6
∑

n=1

χ(n)(x)(ϕn + tψn) +

+
∞
∑

n=7

w(n)(x)
(

ϕn cos
√

ωn t +
ψn√
ωn

sin
√

ωn t
)

, x ∈ D, t ∈ L,

where

ϕn =
∫

D
ϕT (x)w(n)(x) dx, ψn =

∫

D
ψT (x)w(n)(x) dx.

On expanding formally the solution of problem (II)F,0,0,0,0,0 u(x, t) in series
with respect to the system (w(n)(x))∞n=1

u(x, t) =
∞
∑

n=1

un(t)w(n)(x), F (x, t) =
∞
∑

n=1

Fn(t)w(n)(x),

we have

u(x, t) =
6

∑

n=1

χ(n)(x)
∫ t

0

(
∫ t

0
Fn(τ)dτ

)

dt +

+
∞
∑

n=7

w(n)(x)
1

√
ωn

∫ t

0
Fn(τ) sin

√
ωn(t− τ)dτ, x ∈ D.

Thus to solve problem (II)F,ϕ,ψ,0,0,0 we formally obtain the representation

u(x, t) =
6

∑

n=1

χ(n)(x)(ϕn + tψn) +

+
∞
∑

n=7

w(n)(x)
(

ϕn cos
√

ωn t +
ψn√
ωn

sin
√

ωn t
)

+

+
6

∑

n=1

χ(n)(x)
∫ t

0

(

∫ t

0
Fn(τ)dτ

)

dt +

+
∞
∑

n=7

w(n)(x)
1

√
ωn

∫ t

0
Fn(τ) sin

√
ωn(t− τ)dτ. (21)
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Apply the Green formula (11) to ϕ(x) and w(n)(x). Taking into account
the boundary and contact conditions for these vectors we have

∫

D
(Aϕ)T w(n)dx = −ωn

∫

D
ϕT w(n)dx,

i.e.,

(Aϕ)n = −ωnϕn, n = 7, 8, . . . . (22)

Applying now (11) to the vectors Aϕ(x) and w(n)(x) we obtain

(A2ϕ)n = −ωn(Aϕ)n, n = 7, 8, . . . .

Hence on account of (22)

ϕn =
(A2ϕ)n

ω2
n

. (23)

Similarly, applying successively (11) to the vectors ψ(x) and w(n)(x), F (x, t)
and w(n)(x), we have

ψn = − (Aψ)n

ωn
, Fn(t) = − (AF )n

ωn
. (24)

By virtue of (23) and (24) series (21) takes the form

u(x, t) =
6

∑

n=1

χ(n)(x)(ϕn + tψn) +
6

∑

n=1

χ(n)(x)
∫ t

0

(
∫ t

0
Fn(τ)dτ

)

dt +

+
∞
∑

n=7

w(n)(x)
ω2

n
(A2ϕ)n cos

√
ωn t−

∞
∑

n=7

w(n)(x)

ω3/2
n

(Aψ)n sin
√

ωn t−

−
∞
∑

n=7

w(n)(x)

ω3/2
n

∫ t

0
(AF )n(τ) sin

√
ωn (t− τ)dτ. (25)

Now to substantiate the Fourier method we have to prove that (25) actually
provides a regular solution of problem (II)F,ϕ,ψ,0,0,0. For this it is necessary
to show that the series of (25) as well as the series obtained by a single
term-by-term differentiation of these series converge uniformly in the closed
cylinder, while the series obtained by a double term-by-term differentiation
of these series converges uniformly inside the cylinder Ω = D × L.
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8. First we consider the series
∞
∑

n=7

w(n)(x)
ω2

n
(A2ϕ)n cos

√
ωn t. (26)

Estimating (26) by applying the Cauchy–Buniakovski inequality we obtain

∣

∣

∣

m+p
∑

n=m

w(n)(x)
ω2

n
(A2ϕ)n cos

√
ωn t

∣

∣

∣ ≤

≤
[

m+p
∑

n=m

|w(n)(x)|2

ω4
n

·
m+p
∑

n=m

(A2ϕ)2n
]1/2

. (27)

Since A2ϕ ∈ L2(D), by virtue of the Bessel inequality

∞
∑

n=7

(A2ϕ)2n ≤
∫

D
|A2ϕ|2dx.

Therefore for any ε > 0 there exists a number N(ε) such that for m ≥ N(ε)
and any natural p we have

m+p
∑

n=m

(A2ϕ)2n < ε. (28)

By (28) it follows from (27) that in order to prove the uniform convergence
of series (26) it is sufficient to establish in Ω that the sum of the series

∞
∑

n=7

|w(n)(x)|2

ω4
n

(29)

exists and is uniformly bounded in D.
From (6) we have

∫

D
G(x, y,−κ2

0)w(n)(y) dy =
w(n)(x)
ωn + κ2

0
,

i.e.,
(

G(x, y,−κ2
0)

)

n =
w(n)(x)
ωn + κ2

0
.

Therefore the Bessel inequality gives

∞
∑

n=7

|w(n)(x)|2

(ωn + κ2
0)2

≤
∫

D
|G(x, y,−κ2

0)|2dy. (30)
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By (4) it follows from (30) that the sum of the series

∞
∑

n=7

|w(n)(x)|2

(ωn + κ2
0)2

(31)

exists and is bounded in D. Since

lim
n→∞

(

1 +
κ2

0

ωn

)

= 1, n ≥ 7,

we have the inequality

|w(n)(x)|2

ω2
n

=
|w(n)(x)|2

(ωn + κ2
0)2

· (ωn + κ2
0)2

ω2
n

=
|w(n)(x)|2

(ωn + κ2
0)2

(

1 +
κ2

0

ωn

)2
≤

≤ M
|w(n)(x)|2

(ωn + κ2
0)2

, n ≥ 7, (32)

where M is constant. The uniform boundedness of the sum of series (31)
and inequality (32) imply that the sum of the series

∞
∑

n=7

|w(n)(x)|2

ω2
n

(33)

exists and is uniformly bounded in D. The same conclusion is even more
valid for series (29).

Now we shall show that the series obtained by a single term-by-term
differentiation of (26) are uniformly convergent in Ω.

Differentiating term-by-term series (26) with respect to t we obtain

−
∞
∑

n=7

w(n)(x)

ω3/2
n

(A2ϕ)n sin
√

ωn t. (34)

The remainder of series (34) is estimated as

∣

∣

∣

m+p
∑

n=m

w(n)(x)

ω3/2
n

(A2ϕ)n sin
√

ωn t
∣

∣

∣ ≤

≤
[

m+p
∑

n=m

|w(n)(x)|2

ω3
n

·
m+p
∑

n=m

(A2ϕ)2n
]1/2

.

The existence and uniform convergence of the sum of series (33) in D imply
that the sum of the series

∞
∑

n=7

|w(n)(x)|
ω3

n

exists and is uniformly convergent in D.
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Hence, as above, we conclude that series (34) is uniformly convergent in
Ω.

Now differentiating term-by-term series (26) with respect to xi, i = 1, 2, 3,
we have

∞
∑

n=7

∂w(n)(x)
∂xi

ω2
n

(A2ϕ)n cos
√

ωn t. (35)

The remainder of series (35) is estimated as
∣

∣

∣

∣

∣

∣

m+p
∑

n=m

∂w(n)(x)
∂xi

ω2
n

(A2ϕ)n cos
√

ωn t

∣

∣

∣

∣

∣

∣

≤

≤





m+p
∑

n=m

∣

∣
∂w(n)(x)

∂xi

∣

∣

2

ω4
n

m+p
∑

n=m

(A2ϕ)2n





1/2

.

By virtue of (28) in order to prove that series (35) is uniformly convergent
in Ω it is sufficient to prove that the sum of the series

∞
∑

n=7

∣

∣
∂w(n)(x)

∂xi

∣

∣

2

ω4
n

(36)

exists and is uniformly bounded in D.
Let G(2)(x, y,−κ2

0) be the iterated kernel of G(x, y,−κ2
0). We have

G(2)(x, y,−κ2
0) =

∫

D
G(x, z,−κ2

0)G(z, y,−κ2
0)dz, x 6= y. (37)

Differentiate (37) with respect to xi. On the right-hand side of (37) differen-
tion can be performed under the integral sign, since we shall now show that
the integral obtained by a formal differentiation is uniformly convergent for
any x 6= y:

∂G(2)(x, y,−κ2
0)

∂xi
=

∫

D

∂G(x, z,−κ2
0)

∂xi
G(z, y,−κ2

0)dz, x 6= y.

By virtue of (4) and the theorem on the composition of two kernels [3] we
obtain

∀(x, y) ∈ D ×D :
∣

∣

∣

∂G(2)(x, y,−κ2
0)

∂xi

∣

∣

∣ ≤ c1
∣

∣ ln |x− y|
∣

∣ + c2.

Thus
∂G(2)(x, y,−κ2

0)
∂xi

∈ L2(D), i = 1, 2, 3.
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It is likewise clear that

w(n)(x) = ω2
n

∫

D
G(2)(x, y,−κ2

0)w(n)(y) dy. (38)

Therefore the Bessel inequality gives

∞
∑

n=7

∣

∣

∣

∂w(n)(x)
∂xi

∣

∣

∣

2

ω4
n

≤
∫

D

∣

∣

∣

∂G(2)(x, y,−κ2
0)

∂xi

∣

∣

∣

2
dy.

Hence we conclude that the sum of series (26) exists and is uniformly con-
vergent in D.

We shall now prove that the series obtained by a double term-by-term
differentiation of (26) are uniformly convergent in the cylinder Ω′k = D′

k×L,
where D′

k ⊂ Dk, k = 0, r, is an arbitrary strictly internal closed subdomain.
A double term-by-term differentiation of series (26) with respect to t

leads to

−
∞
∑

n=7

w(n)(x)
ωn

(A2ϕ)n cos
√

ωn t. (39)

On estimating the remainder of series (39) as above, by virtue of (28) and
the uniform boundedness of the sum of series (33) we conclude that series
(39) is uniformly convergent in Ω.

A double term-by-term differentiation of series (26) with respect to x
gives

∞
∑

n=7

∂2w(n)(x)
∂xi∂xj

ω2
n

(A2ϕ)n cos
√

ωn t, i, j = 1, 2, 3. (40)

On estimating the remainder of series (40) as above, by virtue of (28) in
order to prove the uniform convergence of series (40) in Ω′ = D′ × L,

D′ =
r
∪

k=0
D′

k, it is sufficient to show that the sum of the series

∞
∑

n=7

∣

∣

∣

∂2w(n)(x)
∂xi∂xj

∣

∣

∣

2

ω4
n

(41)

exists and is uniformly bounded in D′. Using some results from [4] we
obtain the estimate

∀(x, y) ∈ D′ ×D :
∣

∣

∣

∂2G(2)(x, y,−κ2
0)

∂xi∂xj

∣

∣

∣ ≤
c

|x− y|
, i, j = 1, 2, 3.
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By virtue of (38) the above estimate allows us to write the Bessel inequality

∞
∑

n=7

∣

∣

∣

∂2w(n)(x)
∂xi∂xj

∣

∣

∣

2

ω4
n

≤
∫

D

∣

∣

∣

∂2G(2)(x, y,−κ2
0)

∂xi∂xj

∣

∣

∣

2
dy, x ∈ D′,

implying that the sum of series (41) exists and is uniformly bounded in D′.

9. We proceed to investigating the second series of (25), having rewritten
it as

∞
∑

n=7

w(n)(x)
ω2

n

(

(Aψ)n
√

ωn
)

sin
√

ωn t. (42)

Comparing series (42) and (26) one can easily note that they have the same
structure. The only difference is that the cosine is replaced by the sine, and
(A2ϕ)n by (Aψ)n

√
ωn. In investigating series (26) we used the fact that the

series
∞
∑

n=7

(A2ϕ)2n

is convergent. Due to the restrictions imposed on ψ the convergence of the
series

∞
∑

n=7

(Aψ)2nωn

immediately follows from Theorem 1 proved above. Therefore the above-
described investigation scheme is applicable to series (42).

10. Finally, we shall investigate the third series of (25), having rewritten
it as

∞
∑

n=7

w(n)(x)
ω2

n

∫ t

0
(AF )n(τ)

√
ωn sin

√
ωn (t− τ)dτ.

As is clear from the foregoing discussion, we are to show the convergence of
the series

∞
∑

n=7

∫ e

0

(

(AF )n(τ)
)2

ωn dτ.

The latter assertion immediately follows from Theorem 1 and the well-
known theorem on limit passage under the Lebesgue integral sign.

It remains for us to prove that the Fourier series of the vector-function
F (x, t)

∞
∑

n=1

Fn(t)w(n)(x) (43)



FOURIER METHOD IN DYNAMIC PROBLEMS OF ELASTICITY 575

is uniformly convergent in the closed cylinder Ω. Consider the series
∞
∑

n=7

w(n)(x)
∫ t

0

dFn(τ)
dτ

dτ. (44)

Estimate the remainder of series (44) by the Cauchy–Buniakovski inequality
∣

∣

∣

∣

∣

m+p
∑

n=m

w(n)(x)
∫ t

0

dFn(τ)
dτ

dτ

∣

∣

∣

∣

∣

≤

≤

[m+p
∑

n=m

|w(n)(x)|2

ω2
n

m+p
∑

n=m

∫ e

0

∣

∣

∣

dFn(τ)
dτ

∣

∣

∣

2
ω2

n dτ

]1/2

.

Applying Theorem 2 for the vector-function ∂F (x,t)
∂t and the theorem on

limit passage under the integral sign we can state that the series
∞
∑

n=7

∫ e

0

∣

∣

∣

dFn(τ)
dτ

∣

∣

∣

2
ω2

n dτ

is convergent. Hence, taking into account the uniform boundedness of the
sum of series (33), we find that series (44) is uniformly convergent in Ω.
From (44) we have

∞
∑

n=7

w(n)(x)
∫ t

0

dFn(τ)
dτ

dτ =

=
∞
∑

n=7

Fn(t)w(n)(x)−
∞
∑

n=7

Fn(0)w(n)(x).

Now it is clear that in order to prove the uniform convergence of series (43)
in Ω it is sufficient to show that the series

∞
∑

n=7

Fn(0)w(n)(x) (45)

is uniformly convergent in D. We estimate the remainder of series (45) as
follows:

∣

∣

∣

∣

∣

m+p
∑

n=m

Fn(0)w(n)(x)

∣

∣

∣

∣

∣

≤

[m+p
∑

n=m

|w(n)(x)|2

ω2
n

m+p
∑

n=m

F 2
n(0)ω2

n

]1/2

.

Applying Theorem 2 for F (x, 0), we immediately obtain the convergence of
the series

∞
∑

n=7

F 2
n(0)ω2

n.
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Now taking into account the uniform boundedness of the sum of series
(33), we obtain the uniform convergence of series (45) in D, which completes
the substantiation of the Fourier method for the considered problem.

Thus, the main result of this paper can be formulated as the following

Theorem 3. If F,ϕ, ψ satisfy the conditions of Section 3, then the series
(25) is a regular solution of the problem (II)F,ϕ,ψ,0,0,0.
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