ON THE NON-COMMUTATIVE NEUTRIX PRODUCT

 $(x_{+}^{r} \ln x_{+}) \circ x_{-}^{-s}$

ADEM KILIÇMAN AND BRIAN FISHER

ABSTRACT. The non-commutative neutrix product of the distributions $x_+^r \ln x_+$ and x_-^{-s} is evaluated for $r=0,1,2,\ldots$ and $s=1,2,\ldots$ Further neutrix products are then deduced.

In the following, we let N be the neutrix (see van der Corput [1]) having domain $N' = \{1, 2, ..., n, ...\}$ and range the real numbers, with negligible functions finite linear sums of the functions $n^{\lambda} \ln^{r-1} n$, $\ln^r n$, $\lambda > 0$, r = 1, 2, ..., and all functions which converge to zero in the normal sense as n tends to infinity.

We now let $\rho(x)$ be any infinitely differentiable function having the following properties:

- (i) $\rho(x) = 0$ for $|x| \ge 1$,
- (ii) $\rho(x) \geq 0$,
- (iii) $\rho(x) = \rho(-x)$,
- (iv) $\int_{-1}^{1} \rho(x) dx = 1$.

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

Now let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . Then if f is an arbitrary distribution in \mathcal{D}' , we define $f_n(x) = \langle f(t), \delta_n(x-t) \rangle$ for $n = 1, 2, \ldots$ It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely differentiable function is the following (see for example [2] or [3]).

¹⁹⁹¹ Mathematics Subject Classification. 46F10.

 $[\]it Key\ words\ and\ phrases.$ Distribution, delta-function, neutrix, neutrix limit, neutrix product.

Definition 1. Let f and g be distributions in \mathcal{D}' for which on the interval (a,b), f is the kth derivative of a locally summable function F in $L^p(a,b)$ and $g^{(k)}$ is a locally summable function in $L^q(a,b)$ with 1/p+1/q=1. Then the product fg=gf of f and g is defined on the interval (a,b) by

$$fg = \sum_{i=0}^{k} {k \choose i} (-1)^{i} [Fg^{(i)}]^{(k-i)}.$$

The following definition for the neutrix product of two distributions was given in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in \mathcal{D}' and let $g_n(x) = (g * \delta_n)(x)$. We say that the neutrix product $f \circ g$ of f and g exists and is equal to the distribution h on the interval (a, b) if

$$\underset{n\to\infty}{N-\lim} \langle f(x)g_n(x), \phi(x) \rangle = \langle h(x), \phi(x) \rangle^1$$

for all functions ϕ in \mathcal{D} with support contained in the interval (a, b).

Note that if

$$\lim_{n \to \infty} \langle f(x)g_n(x), \phi(x) \rangle = \langle h(x), \phi(x) \rangle,$$

we simply say that the product f.g exists and equals h (see [4]).

It is obvious that if the product f.g exists then the neutrix product $f \circ g$ exists and $f.g = f \circ g$. Further, it was proved in [4] that if the product fg exists by Definition 1 then the product f.g exists by Definition 2 and fg = f.g. Note also that although the product defined in Definition 1 is always commutative, the product and neutrix product defined in Definition 2 is in general non-commutative.

The following theorem holds (see [5]).

Theorem 1. Let f and g be distributions in \mathcal{D}' and suppose that the neutrix products $f \circ g^{(i)}$ (or $f^{(i)} \circ g$) exist on the interval (a,b) for $i=0,1,2,\ldots,r$. Then the neutrix products $f^{(k)} \circ g$ (or $f \circ g^{(k)}$) exist on the interval (a,b) for $k=1,2,\ldots,r$ and

$$f^{(k)} \circ g = \sum_{i=0}^{k} {k \choose i} (-1)^{i} [f \circ g^{(i)}]^{(k-i)}$$
 (1)

or

$$f \circ g^{(k)} = \sum_{i=0}^{k} {k \choose i} (-1)^i [f^{(i)} \circ g]^{(k-i)}$$
 (2)

on the interval (a,b) for $k=1,2,\ldots,r$.

 $^{^1 \}mathrm{See}\ [1]$ or [4] for the definition of N-lim.

In the next two theorems, which were proved in [5] and [6] respectively, the distributions x_+^{-r} and x_-^{-r} are defined by

$$x_{+}^{-r} = \frac{(-1)^{r-1}}{(r-1)!} (\ln x_{+})^{(r)}, \quad x_{-}^{-r} = -\frac{1}{(r-1)!} (\ln x_{-})^{(r)},$$

for $r = 1, 2, \ldots$ and not as in the book of Gel'fand and Shilov [7].

Theorem 2. The neutrix products $x_+^r \circ x_-^{-s}$ and $x_-^{-s} \circ x_+^r$ exist and

$$x_{+}^{r} \circ x_{-}^{-s} = x_{+}^{r} x_{-}^{-s} = 0, \tag{3}$$

$$x_{-}^{-s} \circ x_{+}^{r} = x_{-}^{-s} x_{+}^{r} = 0 \tag{4}$$

for r = s, s + 1, ... and s = 1, 2, ... and

$$x_{+}^{r} \circ x_{-}^{-s} = \sum_{i=r+1}^{s} {s \choose i} \frac{(-1)^{i-1} r!}{(s-1)!} c_{1}(\rho) \delta^{(s-r-1)}(x), \tag{5}$$

$$x_{-}^{-s} \circ x_{+}^{r} = \sum_{i=r+1}^{s} {s \choose i} \frac{(-1)^{i-1} r!}{(s-1)!} [c_{1}(\rho) + \frac{1}{2} \psi(i-r-1)] \delta^{(s-r-1)}(x)$$
 (6)

for r = 0, 1, ..., s - 1 and s = 1, 2, ..., where

$$c_1(\rho) = \int_0^1 \ln t \rho(t) dt, \quad \psi(r) = \begin{cases} 0, & r = 0, \\ \sum_{i=1}^r i^{-1}, & r \ge 1. \end{cases}$$

Theorem 3. The neutrix products $x_{+}^{-r} \circ x_{-}^{-s}$ and $x_{-}^{-s} \circ x_{+}^{-r}$ exist and

$$x_{+}^{-r} \circ x_{-}^{-s} = \frac{(-1)^{r} c_{1}(\rho)}{(r+s-1)!} \delta^{(r+s-1)}(x), \tag{7}$$

$$x_{-}^{-s} \circ x_{+}^{-r} = \frac{(-1)^{r-1}c_1(\rho)}{(r+s-1)!} \delta^{(r+s-1)}(x) \text{ for } r, s = 1, 2, \dots$$
 (8)

It was shown in [8] that with suitable choice of the function ρ , $c_1(\rho)$ can take any negative value.

We now prove the following theorem.

Theorem 4. The neutrix products $(x_+^r \ln x_+) \circ x_-^{-s}$ and $x_-^{-s} \circ (x_+^r \ln x_+)$ exist and

$$(x_{+}^{r} \ln x_{+}) \circ x_{-}^{-s} = (x_{+}^{r} \ln x_{+}) x_{-}^{-s} = 0, \tag{9}$$

$$x_{-}^{-s} \circ (x_{+}^{r} \ln x_{+}) = x_{-}^{-s} (x_{+}^{r} \ln x_{+}) = 0$$
 (10)

for $r = s, s + 1, s + 2 \dots$ and $s = 1, 2, \dots$ and

$$(x_{+}^{r} \ln x_{+}) \circ x_{-}^{-s} = \frac{(-1)^{r}}{(s-r-1)!} \left(c_{2} - \frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x)$$

$$- \sum_{i=r+1}^{s-1} \frac{(-1)^{i} r! c_{1}}{(s-i-1)! i! (i-r)} \delta^{(s-r-1)}(x)$$

$$- \psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{i} s r! c_{1}}{i! (s-i)!} \delta^{(s-r-1)}(x), \qquad (11)$$

$$x_{-}^{-s} \circ (x_{+}^{r} \ln x_{+}) = \frac{(-1)^{r}}{(s-r-1)!} \left(c_{2} - \frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x)$$

$$- \sum_{i=r+1}^{s-1} \frac{(-1)^{i} r! c_{1}}{(s-i-1)! i! (i-r)} \delta^{(s-r-1)}(x)$$

$$- \psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{i} s r!}{i! (s-i)!} [c_{1} + \frac{1}{2} \psi(i-r-1)] \delta^{(s-r-1)}(x) \qquad (12)$$

for $r = 0, 1, 2, \dots, s-1$ and $s = 1, 2 \dots$, where

$$c_2(\rho) = \int_0^1 \ln^2 t \rho(t) dt.$$

Proof. We first of all prove that

$$\ln x_{+} \circ x_{-}^{-1} = \left(c_{2} - \frac{\pi^{2}}{12}\right) \delta(x). \tag{13}$$

We put $(x_{-}^{-1})_n = x_{-}^{-1} * \delta_n(x)$ so that

$$(x_{-}^{-1})_n = -\int_x^{1/n} \ln(t-x)\delta'_n(t) dt$$

on the interval [0, 1/n], the intersection of the supports of $\ln x_+$ and $(x_-^{-1})_n$. Then

$$\langle \ln x_+, (x_-^{-1})_n \rangle = -\int_0^{1/n} \ln x \int_x^{1/n} \ln(t - x) \delta'_n(t) \, dt \, dx$$

$$= -\int_0^{1/n} \delta'_n(t) \int_0^t \ln x \ln(t - x) \, dx \, dt$$

$$= -\int_0^1 \rho'(u) \int_0^u [\ln v - \ln n] [\ln(u - v) - \ln n] \, dv \, du$$

on making the substitutions nt = u and nx = v. It follows that

$$\begin{aligned}
N_{-} &\lim_{n \to \infty} \langle \ln x_{+}, (x_{-}^{-1})_{n} \rangle = -\int_{0}^{1} \rho'(u) \int_{0}^{u} \ln v \ln(u - v) \, dv \, du \\
&= -\int_{0}^{1} u \rho'(u) \int_{0}^{1} [\ln u + \ln y] [\ln u + \ln(1 - y)] \, dy \, du
\end{aligned} (14)$$

on making the substitution v = uy.

Now

$$\int_0^1 \ln y \, dy = \int_0^1 \ln(1-y) \, dy = -1,$$

$$\int_0^1 \ln y \ln(1-y) \, dy = -\int_0^1 \ln(1-y) \, dy + \int_0^1 \frac{y \ln y}{1-y} \, dy$$

$$= 1 + \sum_{i=1}^\infty \int_0^1 y^i \ln y \, dy = 1 - \sum_{i=1}^\infty (i+1)^{-2} = 2 - \frac{\pi^2}{6},$$

$$\int_0^1 u \rho'(u) \, du = -\int_0^1 \rho(u) \, du = -\frac{1}{2},$$

$$\int_0^1 u \ln u \rho'(u) \, du = -\int_0^1 (1 + \ln u) \rho(u) \, du = -\frac{1}{2} - c_1,$$

$$\int_0^1 u \ln^2 u \rho'(u) \, du = -\int (2 \ln u + \ln^2 u) \rho(u) \, du = -2c_1 - c_2$$

and it follows from these equations and equation (14) that

$$N-\lim_{n\to\infty} \langle \ln x_+, (x_-^{-1})_n \rangle = c_2 - \frac{\pi^2}{12}.$$
(15)

Further, it follows as above that

$$\begin{split} &\langle \ln x_+, x(x_-^{-1})_n \rangle = -\int_0^{1/n} x \ln x \int_x^{1/n} \ln(t-x) \delta_n'(t) \, dt \, dx \\ &= -n^{-1} \int_0^1 \rho'(u) \int_0^u v[\ln v - \ln n] [\ln(u-v) - \ln u] \, dv \, du \\ &= O(n^{-1} \ln n). \end{split}$$

Now let ϕ be an arbitrary function in \mathcal{D} . Then $\phi(x) = \phi(0) + x\phi'(\xi x)$, where $0 < \xi < 1$. It follows that

$$\langle \ln x_{+}(x_{-}^{-1})_{n}, \phi(x) \rangle - \phi(0) \langle \ln x_{+}, (x_{-}^{-1})_{n} \rangle = \langle \ln x_{+}, x(x_{-}^{-1})_{n} \phi'(\xi x) \rangle$$
$$= O(n^{-1} \ln n)$$
(16)

since $\langle \ln x_+, x(x_-^{-1})_n \rangle = O(n^{-1} \ln n)$. Thus

$$N_{\substack{-\lim \\ n \to \infty}} \langle \ln x_+(x_-^{-1})_n, \phi(x) \rangle = N_{\substack{-\lim \\ n \to \infty}} \phi(0) \langle \ln x_+, (x_-^{-1})_n \rangle = \left(c_2 - \frac{\pi^2}{12} \right) \phi(0)$$

on using equations (15) and (16). Equation (9) follows.

We now define the function $f(x_+, r)$ by

$$f(x_+, r) = \frac{x_+^r \ln x_+ - \psi(r) x_+^r}{r!}$$

and it follows easily by induction that $f^{(i)}(x_+,r)=f(x_+,r-i)$, for $i=0,1,\ldots,r$. In particular, $f^{(r)}(x_+,r)=\ln x_+$, so that

$$f^{(i)}(x_+, r) = (-1)^{i-r-1}(i-r-1)!x_+^{-i+r},$$

for $i=r+1,r+2,\ldots$. Now the product of the functions x_+^i and $x_+^i \ln x_+$ and the distribution x_-^{-1} exists by Definition 1 and it is easily seen that

$$x_{+}^{i}x_{-}^{-1} = (x_{+}^{i}\ln x_{+})x_{-}^{-1} = 0,$$
 (17)

for i = 1, 2, ..., r. Using equation (13) we have

$$f^{(r)}(x_+, r) \circ x_-^{-1} = \left(c_2 - \frac{\pi^2}{12}\right) \delta(x) \tag{18}$$

and using equation (7) we have

$$f^{(i)}(x_+, r) \circ x_-^{-1} = -\frac{c_1}{i - r} \delta^{(i - r)}(x) \tag{19}$$

for $i = r + 1, r + 2, \dots$

Using equations (2) and (17) we now have

$$(s-1)!f(x_{+},r)x_{-}^{-s} = \sum_{i=0}^{s-1} {s-1 \choose i} (-1)^{i} [f^{(i)}(x_{+},r)x_{-}^{-1}]^{(s-i-1)}$$
$$= \frac{(s-1)!}{r!} [x_{+}^{r} \ln x_{+} - \psi(r)x_{+}^{r}] x_{-}^{-s} = 0,$$

for $r = s, s + 1, s + 2, \ldots$ and $s = 1, 2, \ldots$ Equations (9) follow on using equations (3).

When r < s we have

$$(s-1)!f(x_{+},r) \circ x_{-}^{-s} = \sum_{i=r}^{s-1} {s-1 \choose i} (-1)^{i} [f^{(i)}(x_{+},r) \circ x_{-}^{-1}]^{(s-i-1)}$$
$$= {s-1 \choose r} (-1)^{r} (c_{2} - 2 + \frac{\pi^{2}}{12}) \delta^{(s-r-1)}(x) + \frac{\pi^{2}}{r^{2}} (-1)^{r} (c_{2} - 2 + \frac{\pi^{2}}{r^{2}}) \delta^{(s-r-1)}(x) + \frac{\pi^{2}}{r^{2}} (-1)^{r} (c_{2} - 2 + \frac{\pi^{2}}{r^{2}}) \delta^{(s-r-1)}(x) + \frac{\pi^{2}}{r^{2}} (-1)^{r} (c_{2} - 2 + \frac{\pi^{2}}{r^{2}}) \delta^{(s-r-1)}(x) + \frac{\pi^{2}}{r^{2}} (-1)^{r} (c_{2} - 2 + \frac{\pi^{2}}{r^{2}}) \delta^{(s-r-1)}(x) + \frac{\pi^{2}}{r^{2}} (-1)^{r} (c_{2} - 2 + \frac{\pi^{2}}{r^{2}}) \delta^{(s-r-1)}(x) + \frac{\pi^{2}}{r^{2}} (-1)^{r} ($$

$$-\sum_{i=r+1}^{s-1} {s-1 \choose i} \frac{(-1)^i c_1}{i-r} \delta^{(s-r-1)}(x)$$

on using equations (2), (17), (18) and (19). It now follows that

$$(x_{+}^{r} \ln x_{+}) \circ x_{-}^{-s} = r! f(x_{+}, r) \circ x_{-}^{-s} + \psi(r) x_{+}^{r} \circ x_{-}^{-s}$$

and equation (11) follows on using equation (5).

We now consider the product $x_-^{-s} \circ (x_+^{-r} \ln x_+)$. The product $\ln x_- \ln x_+$ exists by Definition 1 and $\ln x_- \ln x_+ = 0$. Differentiating, we get

$$x_{-}^{-1} \circ \ln x_{+} = \ln x_{-} \circ x_{+}^{-1} = \left(c_{2} - \frac{\pi^{2}}{12}\right) \delta(x)$$
 (20)

on replacing x by -x in equation (13).

As above, we have

$$x_{-}^{-1}x_{+}^{i} = x_{-}^{-1}(x_{+}^{i}\ln x_{+}) = 0, (21)$$

for $i = 0, 1, \dots, r - 1$. Using equation (20) we have

$$x_{-}^{-1} \circ f^{(r)}(x_{+}, r) = \left(c_{2} - \frac{\pi^{2}}{12}\right)\delta(x)$$
 (22)

and using equation (8) we have

$$x_{-}^{-1} \circ f^{(i)}(x_{+}, r) = \frac{c_{1}}{i - r} \delta^{(i - r)}(x),$$
 (23)

for $i = r + 1, r + 2, \ldots$ Equations (10) follow as above on using equations (1) and (21) and equations (12) follow on using equations (1), (6), (20), (21), (22), and (23). \square

Corollary. The neutrix products $(x_-^{-r} \ln x_-) \circ x_+^{-s}$ and $x_+^{-s} \circ (x_-^r \ln x_-)$ exist and

$$(x_{-}^{r} \ln x_{-}) \circ x_{+}^{-s} = (x_{-}^{r} \ln x_{-}) x_{+}^{-s} = 0,$$

$$x_{+}^{-s} \circ (x_{-}^{r} \ln x_{-}) = x_{+}^{-s} (x_{-}^{r} \ln x_{-}) = 0,$$

for $r = s, s + 1, s + 2, \dots$ and $s = 1, 2, \dots$ and

$$(x_{-}^{r} \ln x_{-}) \circ x_{+}^{-s} = \frac{(-1)^{s+1}}{(s-r-1)!} \left(c_{2} - \frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x)$$

$$+ \sum_{i=r+1}^{s-1} \frac{(-1)^{s-r+i} r! c_{1}}{(s-i-1)! i! (i-r)} \delta^{(s-r-1)}(x)$$

$$+ \psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{s-r+i} sr! c_{1}}{i! (s-i)!} \delta^{(s-r-1)}(x),$$

$$x_{+}^{-s} \circ (x_{-}^{r} \ln x_{-}) = \frac{(-1)^{s+1}}{(s-r-1)!} \left(c_{2} - \frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x)$$

$$+ \sum_{r+1}^{s-1} \frac{(-1)^{s-r+i} r! c_{1}}{(s-i-1)! i! (i-r)} \delta^{(s-r-1)}(x)$$

$$+ \psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{s-r+i} s r!}{i! (s-i)!} \left[c_{1} + \frac{1}{2} \psi(i-r-1)\right] \delta^{(s-r-1)}(x)$$

for $r = 0, 1, 2, \dots, s - 1$ and $s = 1, 2, \dots$

Proof. The results follow immediately on replacing x by -x in equations (9), (10), (11), and (12). \square

References

- 1. J. G. van der Corput, Introduction to the neutrix calculus. *J. Analyse Math.* **7**(1959–60), 291–398.
- 2. B. Fisher, The product of distributions. Quart. J. Math. Oxford (2) **22**(1971), 291–298.
- 3. B. Fisher, On defining the product of distributions. *Math. Nachr.* **99**(1980), 239–249.
- 4. B. Fisher, A non-commutative neutrix product of distributions. *Math. Nachr.* **108**(1982), 117–127.
- 5. B. Fisher, E. Savaş, S. Pehlivan, and E. Özçağ, Results on the non-commutative neutrix product of distributions. *Math. Balkanica* **7**(1993), 347–356.
- 6. B. Fisher and A. Kiliçman, The non-commutative neutrix product of the distributions x_{+}^{-r} and x_{-}^{-s} . Math. Balkanica (to appear).
- 7. I. M. Gel'fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations. *Academic Press*, *New York–London*, 1964; Russian original: Fizmatgiz, Moscow, 1958.
- 8. B. Fisher, Some results on the non-commutative neutrix product of distributions. *Trabajos de Matematica* **44**, *Buenos Aires*, 1983.

(Received 10.08.1994)

Authors' address: Department of Mathematics and Computer Science University of Leicester, Leicester LE1 7RH, England