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ON THE NON-COMMUTATIVE NEUTRIX PRODUCT

(% Inzy)ox”®

ADEM KILICMAN AND BRIAN FISHER

ABSTRACT. The non-commutative neutrix product of the distribu-

tions 7, Inzy and z_° is evaluated for r = 0,1,2,... and s =

1,2,.... Further neutrix products are then deduced.

In the following, we let N be the neutrix (see van der Corput [1]) having
domain N’ ={1,2,... ,n,...} and range the real numbers, with negligible
functions finite linear sums of the functions n*In" ' n, In"n, A > 0, r =
1,2,..., and all functions which converge to zero in the normal sense as n
tends to infinity.

We now let p(z) be any infinitely differentiable function having the fol-
lowing properties:

(i) p(z) =0 for x| > 1,

(ii) p(z) =0,

(i)  p(z) = p(—=),

(v) [ p(z)de=1.

Putting 0, (z) = np(nz) forn = 1,2,... , it follows that {d,(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function 6(z).

Now let D be the space of infinitely differentiable functions with compact
support and let D’ be the space of distributions defined on D. Then if f is an
arbitrary distribution in D/, we define f,, () = (f*d,)(z) = (f(t),0n(x—1))
forn = 1,2,.... It follows that {f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely differ-
entiable function is the following (see for example [2] or [3]).
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Definition 1. Let f and g be distributions in D’ for which on the interval
(a,b), f is the kth derivative of a locally summable function F' in LP(a,b)
and g(® is a locally summable function in L9(a,b) with 1/p+1/q = 1. Then
the product fg = gf of f and g is defined on the interval (a,b) by

k
- 1) Fg®1k=1)
fo=3 ;) rte)
The following definition for the neutrix product of two distributions was
given in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D’ and let g,(x) = (g *
0n)(x). We say that the neutrix product fog of f and g exists and is equal
to the distribution h on the interval (a,b) if

N-tim (£(2)g (2), 6(2) = (h(z), 6(x)!
for all functions ¢ in D with support contained in the interval (a,b).

Note that if
lim (f(z)gn (), #(2)) = (h(z), ¢(2)),

n— o0

we simply say that the product f.g exists and equals h (see [4]).

It is obvious that if the product f.g exists then the neutrix product fog
exists and f.g = f o g. Further, it was proved in [4] that if the product
fg exists by Definition 1 then the product f.g exists by Definition 2 and
fg = f.g. Note also that although the product defined in Definition 1 is
always commutative, the product and neutrix product defined in Definition
2 is in general non-commutative.

The following theorem holds (see [5]).

Theorem 1. Let f and g be distributions in D’ and suppose that the
neutriz products f o g (or £ o g) exist on the interval (a,b) for i =
0,1,2,...,7. Then the neutriz products f*) o g (or f o g®) exist on the
interval (a,b) for k=1,2,... ,r and

Moy =3 (5) (11 og 0 0

or

0
on the interval (a,b) fork=1,2,... ,r.

ISee [1] or [4] for the definition of N-lim.
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In the next two theorems, which were proved in [5] and [6] respectively,
the distributions 7" and z_" are defined by

for r =1,2,... and not as in the book of Gel’fand and Shilov [7].

S

Theorem 2. The neutriz products x”, o x”_% and x_° o x”, exist and

xfox® =l al® =0, (3)

x_ "oz =22 =0 (4)

forr=s,5+1,... and s=1,2,... and

oo = 3 () rawee ), 6

woat =3 () W vt-r- 0w @

forr=0,1,...,s—1and s=1,2,..., where

1
0 r=20
= Intp(t) dt, = s ’
(o) = [ wipyar. v) {ZH i oro1
Theorem 3. The neutriz products x" o x_* and x_° o x" exist and
—r —s (_1>7‘Cl(p) r4s—
(L’Jr oxr_ =~ = mé( + 1)(x)7 (7)
e (C)T0) ey
S T __ TS —
z fox" = (T+S—1)!5 (x) for ry,s=1,2,.... (8)

It was shown in [8] that with suitable choice of the function p, ¢1(p) can
take any negative value.

We now prove the following theorem.

Theorem 4. The neutriz products (x'y Inxy)ox”* and x_*
exist and

o(zf Inxy)

(). Inzy)oar”® = (2 Inxy)z”® =0, (9)

%oz Inzy)=a"%(al Inzy) =0 (10)
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forr=s,s+1,s+2... ands=1,2,... and

_1) 2
(@) ow== D (o - TYgtemr 0 a)

(s—r—1) 1
o = (71)7;70101 (s—r—1) T
i:;H (s—z’—l)!i!(i—r)(S (@)
o 3 kst (), ()
—1)" 2
x_%o(z In x+)—(8£741)_1)! <02 — E)(;(sfrfl)(x)
s (=1)'rley (s=r=1) (.
i;ﬂ (s—i—l)!i!(i—r)d (@)
°L(=1)isr! 1. (s—r—1)
—(r) Z m[cﬁri?ﬁ@ﬂ”—l)w ()  (12)
i=r+1 :

forr=0,1,2,...,s—1and s =1,2... , where

ca(p) = /0 In? tp(t) dt.

Proof. We first of all prove that

7T'2

Inz, ox”! = <02 - E)c;(a:) (13)

We put (z~'),, = =" % 6, () so that

(2= ) = — /1/n In(t — x)d,, (t) dt

on the interval [0, 1/n], the intersection of the supports of Inz | and (z~'),,.
Then

1/n 1/n
(Inay, (221, = —/0 lnx/ In(t — )4/, (t) dt dx
1/n t
= —/ 5;1(15)/ InzIn(t — z)dxdt
0 0

_ —/Olp'(u) /Ou[lm — Inn)finu — v) — Inn] dodu
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on making the substitutions nt = u and nx = v. It follows that
1 u
N-lim(Inz, (z~1),) —/ o' (u) / Invin(u — v)dvdu
1 1
= - / up (u) / nu+Iny|[lnu+In(1 —y)] dy du (14)
0 0

on making the substitution v = uy.

Now
1 1
/lnydy:/ In(l —y)dy = -1,
0 0

1 1 1
1
/1nyln(1fy)dy:f/ ln(lfy)dy+/ &dy
0 0 o 1—y
=1

o0 1 ) 2
:1+Z/ yzlnydy:1—2(i+1)*2:2—%,
i=1 70 i

1 1
/up’(u)du —/ p(u) du = —3,
0 0
1 1
/ulnup’(u)du:f/ (1 +Inu)p(u) du 5 —C1,
0 0
1
/ wln? up' (u) du —/(21nu+1n2u)p(u)du —2¢1 — ¢
0

and it follows from these equations and equation (14) that

2
N-lim{Inz, (z=1),) = co — % (15)

Further, it follows as above that

1/n 1/n
(Inzy,z(z”Y),) = —/ xlnx/ In(t — x)d,,(t) dt dz
0 T

=-n" /0 p(u)/o v[lnv — Inn|[ln(u —v) — Inu] dvdu
=O0(n"'1nn).

Now let ¢ be an arbitrary function in D. Then ¢(z) = ¢(0) + x¢'(£x),
where 0 < £ < 1. Tt follows that

(Inxy (2=

), () = $(0)(Inwy, (x71)n) = (Inay, 2(27")nd’ (€2))
=O(n 'Inn) (16)
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since (Inz,z(z~"),) = O(n~'Inn). Thus
N-lim(n . (). 6(a)) = N-limo(0) (. (+=),) = (€2 — =) 6(0)
on using equations (15) and (16). Equation (9) follows.
We now define the function f(x,r) by

xl Inxy —P(r)z],
rl

f(x-‘m T) =
and it follows easily by induction that f®)(z,,r) = f(xy,r —1i) , for i =
0,1,...,r. In particular, f(")(x,,r) = Inx, , so that

FOas,r) = (1)1 i —r = Dlai™,

fori=r+1,r+2,... . Now the product of the functions mfk and xi Inz
and the distribution 2! exists by Definition 1 and it is easily seen that

ot = (2 Inzy)zZ! =0, (17)

for i =1,2,...,r. Using equation (13) we have

FO @) on = (e = 75 )dla) (18)
and using equation (7) we have
[ r)oa™t = =250 (@) (19)
i—r
fori=r+1,r+2,....
Using equations (2) and (17) we now have
s—1 s—1
e ¥l U [ VA e
1=
s — T —S
( o L' [ Inxy —(r)z’ Je”* =0,
forr=s,s+1,s+2,... and s = 1,2,.... Equations (9) follow on using
equations (3).
When r < s we have
s—1 s—1 ) ) .
(s —DIf(zy,r)ox”® = Z ( ; )(1)’[]”(1)(:&,_,7") ozl

:(S_l)( 1) (CQ—2+1 )5‘5 Y (z) +

r
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B ()t

1=r+1

on using equations (2), (17), (18) and (19). It now follows that

i lnzy)oax”® =rlf(zy,r)ox’® +(r)zl ox?
+ +

and equation (11) follows on using equation (5).
We now consider the product #~% o (#"Inz ). The product Inz_ Inz

exists by Definition 1 and Inz_ Inz, = 0. Differentiating, we get

2

el olnzy =lnx_oxl' = <02 - %)(5(:6) (20)
on replacing z by —z in equation (13).
As above, we have
a2tz =27 (2% Inzy) =0, (21)

for i =0,1,...,r — 1. Using equation (20) we have

2

2= o [y, 1) = (o2 = T3 )0(a) (22)
and using equation (8) we have

e o fD(zy ) = %5<H>(x), (23)
fori=r+1,r+2,.... Equations (10) follow as above on using equations

(1) and (21) and equations (12) follow on using equations (1), (6), (20),
(21), (22), and (23). O

Corollary. The neutriz products (x_"Inz_)ox* and x*o (27 Inx_)
exist and

(" Inz_)ox ®=(z_"Inz_)z * =0,
z fo(zl Inz_) =2 (2" Inz_) =0,

forr=s,s+1,s+2,... and s=1,2,... and

—s (_1)S+1 m’ s—r—
(@ Inz_)oxl "= m(@_ﬁ)g( D(z)
s T-‘rz,r]cl
6(5—7"—1)
+z;1 s—z—l'm—r) (=)

+(r) Z Mg(s—r—l)(x),

I(s —12)!
S il(s —1)!
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IS T (_1)S+1 m s—r—1
" o(x_lnx_):m<cg_ﬁ)5( ) (z)

s—1 N
(_1)6_7+Zr!cl (s—r—1)
* ; Goi—iG—n)° (z)

+ w(fr) Z (_;Lw[cl + %w(z —r— 1)}5(877‘—1)(1,)

(s — 7))
Rl (s —1)!
forr=0,1,2,... ;s—1lands=1,2,....

Proof. The results follow immediately on replacing x by —z in equations
(9), (10), (11), and (12). O
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