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OSCILLATORY CRITERIA FOR NONLINEAR nTH-ORDER
DIFFERENTIAL EQUATIONS WITH QUASIDERIVATIVES

MIROSLAV BARTUŠEK

Abstract. Sufficient conditions are given for the existence of oscilla-
tory proper solutions of a differential equation with quasiderivatives
Lny = f(t, L0y, . . . , Ln−1y) under the validity of the sign condition
f(t, x1, . . . , xn)x1 ≤ 0, f(t, 0, x2, . . . , xn) = 0 on R+ × Rn.

1. Introduction

Consider the nth-order differential equation

Lny(t) = f(t, L0y, L1y, . . . , Ln−1y) in D = R+ × Rn, (1)

where n ≥ 2, R+ = [0,∞], R = (−∞,∞), Liy is the ith quasiderivative of
y defined as

L0y(t) =
y(t)
a0(t)

, Liy(t) =
(Li−1y(t))′

ai(t)
, i = 1, 2, . . . , n− 1,

Lny(t) = (Ln−1y(t))′ ,
(2)

functions ai ∈ C◦(R+) are positive, and f : D → R fulfills the local
Carathéodory conditions.

Throughout the paper we assume that

f(t, x1, . . . , xn) x1 ≤ 0, f(t, 0, x2, . . . , xn) = 0 in D . (3)

Definition. A function y : [0, T ) → R, T ∈ (0,∞], is called a solution
of (1) if (1) is valid for almost all t ∈ [0, T ). It is called noncontinuable if
either T = ∞ or T < ∞, and

lim sup
t→T

n−1
∑

i=0

|Liy(t)| = ∞ .
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Let y : [0, T ) → R, T ≤ ∞, be a noncontinuable solution of (1). It is said
to be proper if T = ∞ and supτ≤t<∞ |y(t)| > 0 for all τ ∈ R+. It is said to
be singular of the first (second) kind if t∗ ∈ (0,∞) exists such that

y ≡ 0 in [t∗,∞), sup
0≤t≤t∗

n−1
∑

i=0

|Liy(t)| > 0

(if T < ∞). A proper solution y is said to be oscillatory if a sequence {tk}∞0
exists such that tk ∈ R+, limk→∞ tk = ∞ and y(tk) = 0 holds. Otherwise,
it is called nonoscillatory.

Many authors studied the problem of structure and properties of proper
nonoscillatory solutions of (1) (see, e.g., [1]–[3]). But as regards proper
oscillatory solutions, their existence is proved only in the cases where n ≥ 3
and ai ≡ 1 (see [4]–[6]), or n = 3 (see [1]).

Definition. Equation (1) has property A if every proper solution y is
oscillatory for even n and it is either oscillatory or

lim
t→∞

Liy(t) = 0 monotonically, i = 0, 1, . . . , n− 1, (4)

for odd n.
Similarly to a differential equation without quasiderivatives (ai ≡ 1), it is

possible to use the following way to prove the existence of proper oscillatory
solutions: If

1◦ there exists no singular solution of the 1st kind;
2◦ there exists no singular solution of the 2st kind;
3◦ (1) has Property A;
4◦ the initial conditions of y at zero are choosen such that (4) is not

valid,

then y is oscillatory proper.

Sufficient conditions for the validity of relations 1◦, 2◦, 4◦ can be easily
obtained similarly to the case ai ≡ 1 (see later). Very profound results
concerning 3◦ are given in [7].

In our paper we generalize the results which could be obtained by this
approach. Especially, we shall weaken conditions 1◦ and 3◦.

Sometimes, we will suppose that

an(t)|x1|λ 5 |f(t, x1, . . . , xn)| in D, (5)
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where 0 < λ ≤ 1, an ∈ Lloc(R+), an ≥ 0;
∞
∫

0

ai(t) dt = ∞ , i = 1, 2, . . . , n− 1 , (6)

|f(t, x1, . . . , xn)| ≤ h(t)ω
(

n
∑

i=1

|xi|
)

in D, (7)

where h ∈ Lloc(R+), ω ∈ C◦(R+), ω(x) > 0 for x > 0,
∞
∫

0

dt
ω(t) = ∞;

|f(t, x1, . . . , xn)| ≤ A(t)g(|x1|) in R+ × [−ε, ε]n, (8)

where ε > 0, A ∈ Lloc(R+), g ∈ C◦[0, ε], g(0) = 0, g(x) > 0 for x > 0,
ε

∫

0

dt
g(t)

= ∞;











































let
a1

a2
∈ C1(R+) for n = 3 ,

a1 ∈ C1(R+), a2 ∈ C1(R+),
a3

a1
∈ C2(R+) for n = 4

and let for n > 4 an index l ∈ {1, 2, . . . , n− 4} exist

such that al+j , j = 1, 2, are absolutely continuous and

a′l+j , j = 1, 2, are locally bounded from below.

(9)

Notation. If bi ∈ C◦(I), then

I◦(t) ≡ 1, Ik(t, b1, . . . , bk) =

t
∫

0

b1(s)Ik−1(s, b2, . . . , bk) ds, t ∈ I .

Put anj+i(t) = ai(t), j ∈ {. . . ,−1, 0, 1, . . . }, i ∈ {0, 1, . . . , n},
N = {1, 2, . . . }.

2. Main results

Further, we shall investigate a solution y of (1) that satisfies the initial
conditions

l ∈ {0, 1, . . . , n− 1} , τ ∈ {−1, 1} , τLiy(0) > 0, i = 0, 1, . . . , l , (10)

τLjy(0) < 0, j = l + 1, . . . , n− 1,

and we shall prove that this solution is oscillatory proper under the validity
of certain assumptions.



304 MIROSLAV BARTUŠEK

Theorem 1. Let λ ∈ (0, 1) and let (5), (7), and (9) be valid. Let

∞
∫

0

ai+1(τi+1)

τi+1
∫

0

ai+2(τi+2)

τi+2
∫

0

· · ·
τn−1
∫

0

an(τn)
[

τn
∫

0

an+1(τn+1) . . .

τi+n−1
∫

0

ai+n(τi+n) dτi+n . . . dτn+1

]λ
× dτn . . . dτi+1 = ∞ , (11)

i = 0, 1, . . . , n− 1 .

Then any solution y of (1) that fulfills the Cauchy initial conditions (10)
is oscillatory proper.

Theorem 2. Let λ = 1, (5), (6), and (7) hold. Let

lim sup
t→∞

I1(an−1)

∞
∫

t

In−1(s, a1, . . . an−1)
I1(s, an−1)

an(s) ds > 1 . (12)

Further, let either (9) or (8) hold.
Then any solution y of (1), that fulfills the Cauchy initial conditions (10)

is oscillatory proper.

Theorem 3. Let (6), (7) be valid and let functions an ∈ Lloc(R+), b ∈
C◦(R+) exist such that

∫∞
0 an(t) dt = ∞, b(0) = 0, b(x) > 0 for x > 0, b is

nondecreasing, and

an(t)b(|x1|) ≤ |f(t, x1, . . . , xn)| in D .

Further, let either (9) or (8) be valid. Then any solution y of (1) that fulfills
(10) is oscillatory proper.

3. Proof of main results

Let us define two special types of solutions of (1) that will be encountered
later.

Type I (τ ): y : [0, τ) → R, 0 < τ ≤ ∞ and sequences {tik}, {t̄
n−1
k },

k ∈ N, i ∈ {0, 1, . . . , n− 1} exist such that limk→∞ t◦k = τ ,

0 ≤ t0k < tn−1
k ≤ t̄n−1

k < tn−2
k · · · < t1k < t0k+1 ,
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Liy(tik) = 0, i = 0, 1, . . . , n− 2, Ln−1y(t) = 0 for t ∈ [tn−1
k , t̄n−1

k ], k ∈ N,

Liy(t)L0y(t) > 0 for t ∈ (t0k, tik) , i = 0, 1, . . . , n− 1,

< 0 for t ∈ (tik, t0k+1) , i = 0, 1, . . . , n− 2,

< 0 for t ∈ (t̄n−1
k , t0k+1) , i = n− 1, k ∈ N .

If τ < ∞, then limt→τ Liy(t) = 0, i = 0, 1, . . . , n− 1.

Type II (s ): y : R+ → R, s ∈ {0, 1, . . . , n− 1}, τ ∈ R+,

Ljy(t)Lsy(t) ≥ 0 for j ∈ {0, 1, . . . , s}
≤ 0 for j ∈ {s + 1, . . . , n− 1} ,

Lmy(t) 6= 0, m ∈ {0, 1, . . . , n− 2}, t ∈ [τ,∞) .

Remark. Any solution y of Type I (∞) (of Type II (s)) is oscillatory
proper (nonoscillatory proper). If we define y ≡ 0 on [τ,∞), then any
solution y of Type I(τ), τ < ∞ is singular of the first kind.

Lemma 1. Let J = [t1, t2] ⊂ R+, t1 < t2 and y : J → R be a solution
of (1).

(a) If j ∈ {1, 2, . . . , n}, Ljy(t) ≥ 0 (≤ 0) in J , then Lj−1y is nondecreas-
ing (nonincreasing) in J ;

(b) if j ∈ {1, 2, . . . , n}, Ljy(t) > 0 (< 0) in J , then Lj−1 y is increasing
(decreasing) in J ;

(c) if L0y(t) ≥ 0 (≤ 0) in J , then Ln−1 y is nonincreasing (nondecreas-
ing) in J .

Proof.
(a) Let Ljy(t) ≥ 0 in J . Then according to (2) either

(Lj−1y(t))′ = aj(t)Ljy(t) ≥ 0, j < n or (Ln−1y(t))′ = Lny(t) ≥ 0 holds.
(b), (c) The proof is similar, only (3) must be used instead of (2) in

(c).

Lemma 2. Let y : R+ → R be a solution of (1) which satisfies (10).
Then one of the following possibilities holds:

(a) y is of Type I (∞)
(b) there exists τ ∈ (0,∞) such that y is of Type I(τ) in [0, τ).
(c) there exists i ∈ {0, . . . , n− 1} such that y is of Type II (i).

Proof. First suppose that y satisfies the Cauchy initial conditions

σLiy(0) > 0, i = 0, 1, . . . , n− 1 . (13)

According to Lemma 1 σLiy > 0, i = 0, 1, . . . , n − 1, in some right neigh-
borhood of t = 0, and σLjy, j = 0, 1, . . . , n− 2, are nondecreasing (σLn−1y
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is nondecreasing) until σLj+1y ≥ 0 (σL0y ≥ 0). Thus either y is of Type II
(n− 1) or numbers tn, t̄n exist such that

0 < tn ≤ t̄n, σLjy(t) > 0 in [0, t̄n], j ∈ {0, 1, . . . , n− 2},
σLn−1y(t) > 0 in [0, tn), σLn−1y(t) ≡ 0 in [tn, t̄n] ,

σLjy(t) > 0, σLn−1y < 0 in some right neighborhood of t = t̄n .

By the same procedure it can be proved that either y is of Type II (s),
s ∈ {0, . . . , n− 2}, or numbers tj , j ∈ {0, 1, . . . , n− 2}, exist such that

t̄n−1 < tn−2 < · · · < t0, σLiy(ti) = 0, σLiy > 0 in (ti+1, ti) ,

σLmy > 0, σLky < 0 in (ti+1, ti],

m ∈ {0, 1, . . . i− 1}, k ∈ {i + 1, . . . n− 1},

and

σLiy < 0, i ∈ {0, 1, . . . , n−1} in some right neighborhood of t0. (14)

Thus (13) is valid in this neighborhood and the statement follows by repeat-
ing the considerations in the case (13). Note that in the case Type I(τ),
τ < ∞, the relations limt→τ Liy(t) = 0, i = 0, 1, . . . , n − 1, must be valid
because y is defined in R+.

Further, let (10) be valid. By the use of (13), (14) we see that the same
initial conditions are valid in some t∗, t∗ ∈ [0, t0], in the previous part of
the proof. Thus the statement of the lemma can be proved similarly.

Remark. Let y : [0, τ) → R, τ < ∞, be a noncontinuable solution. Then
the statement of Lemma 2 is valid, too, if (a) is changed into

(a′) y is of Type I(τ) with the exception of limt→τ Liy(t) = 0, i =
0, 1, . . . , n− 1, and if Type II (s) is defined only on [0, τ).

Lemma 3 ([6, Lemma 9.2]). Let c0 ≥ 0, t0 ∈ I ⊂ R+, h ∈ Lloc(I),
h ≥ 0, ω ∈ C0(R+), ω(x) > 0 for x > c0,

∫∞
c0

ds
ω(s) < ∞. Then for every

continuous function x(t) : I → R+ which satisfies

x(t) ≤ c0 +
[

t
∫

t0

h(τ)ω(x(τ)) dτ
]

sign(t− t0), t ∈ I ,

we have

x(t) ≤ Ω−1
(∣

∣

∣

∣

t
∫

t0

h(τ) dτ
∣

∣

∣

∣

)

, t ∈ I,

where Ω−1 is the inverse function of Ω(s) =

s
∫

c0

dτ
ω(τ)

.
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Lemma 4. Let (7) hold. Then there exists no singular solution of (1) of
the second kind.

The lemma can be proved analogously to Lemma 4 in [7].

Lemma 5 (see [7], Lemma 1.5 and Consequence 1.2). Let
ω : (0,∞) → R+ be continuous, nondecreasing and h ∈ Lloc(R+), h ≥ 0,
such that

∞
∫

0

h(t) dt = ∞,

1
∫

0

dx
ω(x)

< ∞ .

Then the differential inequality u′ + a(t)ω(u) ≤ 0 has no proper positive
solution in R+.

Lemma 6. Let (5) be valid and one of the following conditions hold:
(a) λ = 1, (6) and (12) hold
(b) λ ∈ (0, 1), (11) holds.
Then there exists no solution of (1) of Type II(i), i = 0, 1, . . . , n− 1.

Proof. (a) With respect to (6) no solution of (1) of Type II(i), i = 0, 1, . . . ,
n − 2, exists (see [3]). The fact that there exists no solution of Type II
(n− 1) is proved by Chanturia [7] in the proof of Theorem 3.5.

(b) We prove indirectly that a solution of Type II(s), s ∈ {0, 1, . . . , n−1},
does not exist. Thus suppose, without loss of generality, that a solution of
(1) y : R+ → R exists such that T ∈ R+,

Liy(t) ≥ 0 , i = 0, 1, . . . , s ; Ljy(t) ≤ 0 , j = s + 1, . . . n− 1 ,

Lmy(t) 6= 0 , m = 0, 1, . . . , n− 2 , t ≥ T .
(15)

Then according to Lemma 1 and (3)

|Liy| is nondecreasing for i ∈ {0, 1, . . . , n− 1} , i 6= s ,

Lsy is nonincreasing in [T,∞) .
(16)

Further, by the use of (2), (5), (15), (16)

|Liy(t)| ≥
∞
∫

T

ai+1(s)|Li+1y(s)| ds , i = 0, 1, . . . , n− 2 ,

|Ln−1y(t)| =
∞
∫

T

|Lny(s)| ds =

∞
∫

T

an(s)|L0y(s)|λ ds ,

− (Lsy(t))′ = as+1(t)|Ls+1y(t)| for s ∈ {0, 1, . . . , n− 2} ,

− (Lsy(t))′ = −Lny(t) ≥ an(t)(L0y(t))λ for s = n− 1 .

(17)
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From this and (17) we have for t ∈ [T,∞)

|Ls+1y(t)| =

=

t
∫

T

as+2(τs+2)

τs+2
∫

T

as+3(τs+3)· · ·
τn−2
∫

T

an−1(τn−1)|Ln−1y(τn−1)| =

=

t
∫

T

as+2(τi+2)· · ·
τn−2
∫

T

an−1(τn−1)

τn−1
∫

T

an(τn)×

×
[

τn
∫

T

a1(s1)

τ1
∫

T

· · ·
τs−1
∫

T

as(τs)Lsy(τs)
]λ

dτs . . . dτ1dτn . . . dτs+2 ≤

≤ Zs(t, T )(Lsy(t))λ, s = 0, 1, . . . , n− 2,

|L0y(t)| ≥ Zn−1(t, T )Ln−1y(t) (for s = n− 1),

where

Zs(t, T ) =

t
∫

T

as+2(τi+2)· · ·
τn−1
∫

T

an(τn)
[

τn
∫

T

a1(τ1) . . .

· · ·
τs−1
∫

T

as(τs)dτs . . . dτ1

]λ
dτn dτs+2, s = 0, 1, . . . , n− 2 ,

Zn−1(t, T ) =

t
∫

T

a1(τ1)

τ1
∫

T

a2(τ2)· · ·
τn−2
∫

T

an−1(τn−1) dτn−1 . . . dτ1

(for s = n− 1) .

It follows from (17) that

(Lsy(t))′ + as+1(t)Zβ
s (t, T )(Lsy(t))λ ≤ 0, t ∈ [T,∞),

where β = 1 for s ∈ {0, 1, . . . , n− 2}, β = λ for s = n− 1.
As according to (11)

Zs(∞, T ) = Zs(∞, 0) = ∞,

we get the contradiction to Lemma 5 if Lsy(t) > 0 in [T,∞). Thus with
respect to (17)

s = n− 1, Ln−1y(t) ≡ 0 on [τ,∞), τ ∈ [T,∞),
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is the last case which has to be considered. In that case, according to (17),
(16),

0 = −(Ln−1y(t))′ = an(t)(L0y(t))λ ,

an(t) = 0 for almost all t ∈ [τ,∞) .

The contradiction to (11), i = n−1, proves the statement of the lemma.

Remark.
(a) The idea of the proof (b) is due to Kiguradze [5] (for the nth-order

differential equation); see [7], too.
(b) In [7] sufficient conditions for equation (1) to have Property A are

given. For example, (1) has Property A if (5), (6), λ = 1,

lim sup
t→∞

In−i(t, an−1, . . . , ai)
In−i−1(t, an−1, . . . , ai+1)

×

×
∞
∫

t

In−i−1(s, an−1, . . . , ai+1)Ii(s, a1, . . . , ai))
I1(s, ai)

an(s) ds > 1 (18)

for i = 1, 2, . . . , n − 1, 2|(i + n) and
∞
∫

0
In−1(t, an−1, . . . , a1)an(t) dt = ∞

holds.
It is evident that if (1) has Property A then solutions of Type II (i),

i = 0, 1, . . . , n − 1, do not exist. Condition (12) is the same as (19) for
i = n−1. Assumptions of Lemma 6 are weaker see the following example. A
similar situation exists for 0 < λ < 1. Moreover, in [7] an extra assumption
is made in this case.

Example. Consider equation (1) with (5) where n = 6, a0 = a1 = a2 =
a3 = a4 = 1, a5 = 1

t+1 , a6 = 1
(t+1)5 . Then condition (11) is true, but (19)

is not true for i = 3. Thus solutions of Type II(i), i = 0, 1, . . . , 5, do not
exist; at the same time the above results of (5) do not guarantee Property
A for (1).

Lemma 7. Let (6) hold and functions an ∈ Lloc(R+), g ∈ C0(R+) exist
such that g(0) = 0, g(x) > 0 for x > 0, g is nondecreasing,

∫∞
0 an(t) dt = ∞,

and

an(t)g(|x1|) ≤ |f(t, x1, . . . , xn)| in D .

Then there exists no solution of (1) of Type II (i), i = 0, 1, . . . , n− 1.
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Proof. According to [3] and (6) no solution of Type II (i), i = 0, 1, . . . , n−2,
exists. Let y be a solution of (1) of Type II (n − 1). Then according to
Lemma 1 |Ln−1y| is nonincreasing and

∞ > |Ln−1y(∞)− Ln−1y(T )| =
∞
∫

T

|Lny(s)| ds =

=

∞
∫

T

an(t)g(|L0y(s)|) ds ≥ g(|L0y(T )|)
∞
∫

T

an(s) ds = ∞ .

The contradiction proves the lemma.

Lemma 8. Let (8) be valid. Then there exists no singular solution of
(1) of the first kind.

Proof. Let on the contrary a solution y of (1) of the first kind exist. Then
numbers τ, τ1 ∈ R+, τ1 < τ , exist such that

%(τ1) > 0, Liy ≡ 0 on [τ,∞), i = 0, 1, . . . , n− 1,

where %(t) =
n−1
∑

i=0

|Liy(t)| .
(19)

Then by the use of (2) and (8)

|Liy(t)| ≤
τ

∫

t

ai+1(s)|Li+1y(s)| ds, i = 0, 1, . . . , n− 2 ,

|Ln−1y(t)| ≤
τ

∫

t

|Lny(s)| ds ,

|Liy(t)| 5

5

τ
∫

t

ai+1(si+1)

τ
∫

si+1

ai+2· · ·
τ

∫

sn−2

an−1(sn−1)

τ
∫

sn−1

|Lny(sn)| dsn . . . dsi+1 ≤

≤
[

n−1
∏

j=i+1

τ
∫

τ1

aj(s) ds
]

τ
∫

t

|Lny(s)| ds, i = 0, 1, . . . , n− 2 ,

%(t) ≤ C

τ
∫

t

|Lny(s)| ds ≤ C

τ
∫

t

A(s)g(%(s)) ds , t ∈ [τ1, τ ],
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where

C =
n−2
∑

i=0

n−1
∏

j=i+1

τ
∫

τ1

aj(s) ds + 1 .

Then it follows from Lemma 3 that

%(τ1)
∫

0

ds
g(s)

≤ C

τ
∫

τ1

A(s) ds < ∞,

which contradicts (8) and (19).

Lemma 9. Let y be a solution of (1) defined in R+ that satisfies the
initial conditions (10). Let (9) be valid. Then y is not of Type I(τ) for
τ < ∞.

Proof. For n = 3, 4 the statement follows from [8] and [9]. Let n > 4. Let
on the contrary a solution y of Type I(τ), τ < ∞ exist. It follows from the
assumptions of the lemma that an interval Λ = [τ1, τ ], τ1 < τ , exists, for
which we have

max
t∈Λ

ae ·max
t∈Λ

ae+1

min
t∈Λ

ae ·min
t∈Λ

ae+1
≤ 5

4
, ae+1(t)ae+2(t) + [a′e+1(t)]−

∫

Λ

ae+2(s) ds > 0 ,

ae+2(t)ae+3(t) + [a′e+2(t)]−

∫

Λ

ae+3(s) ds > 0,

(20)

where [g(t)]− = min(0, g(t)).
Use the same notation as in the definition of Type I(τ).

According to limt→τ Ley(t) = 0 there exists k0 ∈ N such that

|Ley(te+1
k0

)| > |Ley(te+1
k0+1)| > 0 , te+1

k0
> τ1 . (21)

Denote te+1
k0

= t1, tek0
= t2, te−1

k0
= t3, Λ1 = t2 − t1, Λ2 = t3 − t2. Then

it follows from (21) and from the definition of Type I(τ) that (we choose
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Le−1(t2) > 0 for simplicity)

Le−1y > 0 in [t1, t3), Le−1y(t3) = 0 ,

Le−1 is increasing (decreasing) in [t1, t2]( in [t2, t3]) ,

Ley > 0 in [t1, t2) , Ley(t2) = 0 , Ley < 0 in (t2, t3] ,

Le is decreasing in [t0, t3] ,

Le+1y(t1) = 0 , Le+1y < 0 in (t1, t3],

Le+1y is decreasing in [t0, t3]

Le+jy < 0 and Le+jy is decreasing in [t0, t3], j = 2, 3 .

(22)

From this and (21), (22)

Ley(t1) > |Ley(t3)|, (23)

Le+1y(t) =

t
∫

t1

ae+2(s)Le+2y(s) ds ≥ Le+2y(t)
∫

Λ

ae+2(s) ds , t ∈ [t1, t3],

[Ley(t)]′′ = [ae+1Le+1y(t)]′ = ae+1(t)ae+2(t)Le+2y(t) +

+a′e+1(t)Le+1y(t) ≤ ae+1(t)ae+2(t)Le+2y(t) +

+[a′e+2(t)]−Le+1y(t) ≤ Le+2y(t)[ae+1(t)ae+2(t) + [a′e+2(t)]−

−
∫

Λ

ae+2(s) ds] < 0 , t ∈ [t1, t3] . (24)

Thus

Ley is concave in [t1, t3] . (25)

We can prove similarly that

Le+1y is concave in [t1, t3] . (26)

Further, by the use of (23), (25)

Le−1y(t2) =

t3
∫

t2

ae(s)|Ley(s)| ds ≤ max
s∈Λ

ae(s)|Ley(t3)|
Λ2

2
,

Le−1y(t2) = Le−1y(t2)− Le−1y(t1) =

t2
∫

t1

ae(s)Ley(s) ds ≥

≥ min
s∈Λ

ae(s)Ley(t1)
Λ1

2
.
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Thus, according to (24)

1 ≤ |Ley(t3)|
Ley(t1)

max
s∈Λ

ae(s)

min
s∈Λ

ae(s)
Λ2

Λ1
<

max
s∈Λ

ae(s)

min
s∈Λ

ae(s)
Λ2

Λ1
. (27)

According to (23), (26)

Le(t1) =

t2
∫

t1

ae+1(s)|Le+1y(s)| ds 5 |Le+1y(t2)|
Λ1

2
max
s∈Λ

ae+1(s) ,

|Le(t3)| =
t3

∫

t2

ae+1(s)|le+1y(s)| ds = |Le+1y(t2)|Λ2 min
s∈Λ

ae+1(s) .

Thus, according to (24), (27) and (23)

1 <
Λ1

2Λ2

max
s∈Λ

ae+1(s)

min
s∈Λ

ae+1(s)
≤ 1

2

max
s∈Λ

ae+1(s)max
s∈Λ

ae(s)

min
s∈Λ

ae+1(s)min
s∈Λ

ae(s)
≤ 5

8
.

The contradiction proves the statement of the lemma.

Proof of Theorem 1. According to Lemmas 2, 6, and 9 y is of Type I(∞)
and by the use of Lemma 4 it is proper.

Proof of Theorem 2. The statement is a consequence of Lemmas 2, 4, 6, 8,
and 9.

Proof of Theorem 3. It follows from Lemmas 4, 8, and 9 that y is proper
and according to Lemma 7 it is of Type I(∞).
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