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ON THE MODE-CHANGE PROBLEM FOR RANDOM
MEASURES

TS. HAHUBIA AND R. MNATSAKANOV

Abstract. The classical change-point problem in modern terms, i.e.,
the mode-change problem, is stated for sufficiently general set-indexed
random processes, namely for random measures. A method is shown
for solving this problem both in the general form and for the intensity
of compound Poisson random measures. The results obtained are
novel for the change-point problem, too.

1. Introduction

1. The goal of this paper is to state the classical change-point problem in
modern terms, i.e., to formulate the mode-change problem for sufficiently
general set-indexed random processes by which we mean random signed
measures with realizations almost surely (a.s.) belonging to D(A) which is
the space of set functions “outer continuous with inner limits” and where
A, a domain of set functions, is a family of Borel subsets of a d-dimensional
compact (d ≥ 1) under some entropy condition. An attempt is made to indi-
cate one way of solving this problem in the general form and in a particular
case, namely, for the intensity of compound Poisson random measures. The
obtained results are novel for the classical change-point problem, too.

When studying various phenomena of nature and social life, one may
come across a situation in which a certain observed process is flowing in
time or evolving in space, or both flowing in time and evolving in space.
In that case one is faced with the problem of understanding the variability
character of this process in the sense whether it evolves in one and the same
mode or there exists some moment (or several moments or some domain)
after which a different mode of behavior sets in, that is to say, after which
“the mode changes.” For example, when studying chronologically arranged
archaeological data collected from a specific locality, one is interested in
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finding out whether any abrupt change in the culture occurred there, and if
it did, then after which moment. When studying a literary text, one is con-
cerned with determining the identity of the author of the text or detecting
“inserts” of other authors. The problem of determining the moment and
place of the change in the seismic conditions in a certain area is an example
of identifying the change in the mode both in time and in space.

The statistical “change-set” problem or, as otherwise termed, the “mode-
change” problem serves as good model for describing and solving the above-
mentioned problems. The mode-change problem consists of two parts:

(i) testing the hypotheses on the existence of a change-set and
(ii) constructing a “sufficiently good,” say, consistent estimator for the

change-set if the latter exists.
The exact formulation of this problem for random signed measures is

given in Section 3 and for the intensity of compound Poisson random mea-
sures in Section 4.

Set-indexed empirical processes, partial-sum processes, Brownian pro-
cesses, Lévy (infinitely divisible) processes, compound Poisson processes,
compound point processes, etc., — all these are examples of random signed
measures.

Here one of the ways for solving the mode-change problem is indicated
using the results of the fundamental papers by Dudley [1–4], Adler et al. [5,
6], and Bass and Pyke [7–9] devoted to the investigation of the set-indexed
random processes. These results are stated as preliminaries in the greater
part of Section 2.

2. Preliminaries

Let B be the Borel σ-field formed by subsets of some compact Γ ⊂ Rd,
say, Γ = Id, where Id = [0, 1]d, d ≥ 1, and let A be a subfamily of B, A ⊂ B,
satisfying the following conditions:

(a) A is a collection of closed subsets of Γ;
(b) A is closed with respect to the metric

dL(A,B) = |A4B|, A, B ∈ A,

where | · | denotes the Lebesgue measure, A4B = (A ∩B) ∪ (A ∩B) is the
symmetric difference, and A = Γ\A;

(c) for each δ > 0 there is a finite subset Aδ (δ-net) of A such that
whenever A ∈ A there exists B ∈ Aδ with A ⊂ B0 ⊂ B ⊂ Aδ, where B0 is
the interior of B with respect to the relative topology on Γ and Aδ is the
open δ-neighborhood of A;

(d) there are constants K > 0 and r ∈ (0, 1) such that for a sufficiently
small δ > 0 we have H(δ) ≤ Kδ−r, where H(δ) = ln(]A∗δ) is the entropy
and ]A∗δ is the cardinality of the smallest δ-net A∗δ of A.
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The family of closed convex sets in Id, d > 1, for which r = (d − 1)/2
with d = 2, is an example of A covered by the above conditions (see [2]).

The conditions (a)–(c) imply that A is a compact separable and complete
and, in particular, totally bounded under the metric dL. The condition (d)
will be discussed below (see Remark 2.5).

Definition 2.1. A function X : A → R is said to be outer continuous
with inner limits at A ∈ A if

(i) A ⊂ An ∈ A, dL(A,An) → 0 implies X(An) → X(A) as n →∞;
(ii) An ∈ A, An⊂A0, dL(A, An)→0 implies the existence of lim

n→∞
X(An).

Let D(A)={X :A → R such that X is outer continuous with inner limits
at each A ∈ A}.

Remark 2.1. The space D(A) is the intersection of the space D(A) from
[8] and the space of cadlag functions from [6].

By analogy with [8] and [9] the metric on D(A) is defined by

dD(X, Y ) = dL
(

G(X), G(Y )
)

,

where G(X) is a graph of the function X, i.e., the closure of the set
{(A,X(A)), A ∈ A} with respect to the metric

ρ
(

(A1, r1), (A2, r2)
)

= dL(A1, A2) + |r1 − r2|

on A × R. The metric dD is a pseudometric on D(A). We shall identify
the functions X and Y for dD(X, Y ) = 0. (Note, for example, that for
a ∈ [−1, 1] the functions Xa(t) = sin( 1

t ), t ∈ (0, 1], Xa(0) = a, are all
identified by dD).

Remark 2.2. Since the metric dL is weaker than the Hausdorff metric dH

considered in [8, 9], the above metric dD is also weaker than its analog in
the same papers.

For the space D(A) the σ-field F = G−1(BG) is induced by the graph
function G(·) and the Borel σ-field BG generated by the family G of closed
subsets of A× R.

A weak convergence of probabilities Pn on (D(A),F) to the probability
P is denoted by Pn

w−→ P and understood in the usual sense: if
∫

fdPn −→
∫

fdP for all functionals f continuous and bounded on D(A) with respect
to the metric dD. If {Xn}n≥0 is a sequence of set-indexed random processes
whose sample functions are from the space D(A) a.s., then Xn is said to
converge weakly to X0 (denoted by Xn

w−→ X0) if the distribution laws of
Xn converge weakly to those of X0.

From [8] we have the following proposition:
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Proposition 2.1. Xn
w−→ X0 if:

(i) PXn
A1,...,Ak

that are finite-dimensional distributions of Xn converge to
those of X0 for all finite k and A1, . . . , Ak ∈ A∗, where A∗ is a dense subset
of A with respect to dL;

(ii) the sequence {Xn}n≥1 is tight, that is to say, for all ε > 0 there exists
a compact subset F ε of D(A) such that

inf
n

P{Xn ∈ F ε} ≥ 1− ε.

Definition 2.2. The mapping X : B × Ω → R is a random measure
(r.m.) if:

(i) X(A, ·) is a random variable (r.v.) for each A ∈ B;
(ii) X(·, ω) is a finitely additive measure on B a.s.

Let the restriction of the r.m. X to A ⊂ B be also denoted by X. Define
var (X(A), A ∈ A) as total variation of X with respect to (Γ,B).

On account of Theorem 8.2 from [9] we have the following criterion for a
sequence of r.m.’s to be tight:

Proposition 2.2. A sequence of r.m.’s {Xn(A), A ∈ A}n≥1 is tight if
for any ε > 0 there exist positive numbers Mε, δε, an integer-valued function
N(δ), and a positive-valued function h(δ) such that the conditions

sup
n

P
{

Xn ∈ F
ε
k

}

< ε/3, k = 1, 2, 3,

are satisfied for the following three subsets of D(A):

F ε
1 =

{

X : var
(

X(A), A ∈ A
)

≤ Mε

}

,

F ε
2 =

{

X : every element of G(X) is within a distance ≤ δε

from some (Ai, X(Ai)), i = 1, . . . , N(δε), with respect to ρ
}

,

F ε
3 =

{

X : sup
Ai⊂B⊂Ah(δε)

i

|X(B)−X(Ai)| < δε, i = 1, . . . , N(δε)
}

(A1, . . . , AN(δε) ∈ A is some δε-net of A possibly depending on X).

Definition 2.3. A r.m. X is called a Lévy r.m. if:
(i) it has independent increments, i.e., r.v.’s X(A1), . . . , X(Ak) are inde-

pendent for pairwise disjoint sets A1. . . . , Ak ∈ B;
(ii) it is stochastically continuous, i.e., for any sequence An ∈ B and all

ε > 0 we have P{|X(An)−X(A0)| > ε} → 0 whenever dL(An, A0) → 0 for
an arbitrary set A0 ∈ B.

From [5–7] we have the following two propositions:
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Proposition 2.3. If a Lévy r.m. actually exists, then the logarithm of
its characteristic functions can be expressed for each A ∈ B by

ln E
{

eiuX(A)} = Ψ(1)
A (u) + Ψ(2)

A (u), (2.1)

where

Ψ(1)
A (u) = iuM(A)− (1/2)u2V (A), (2.2)

Ψ(2)
A (u) =

∫

|x|<1
(eiux − 1− iux)ν(A, dx) +

+
∫

|x|≥1
(eiux − 1)ν(A, dx) (2.3)

and M is a real-valued function on B continuous in the metric dL, V is a
finite nonnegative measure on Γ, absolutely continuous with respect to the
Lebesgue measure; for all A ∈ B, ν(A, ·) is a positive measure on R with
ν(Γ, {0}) = 0 and satisfying

∫

(x2 ∧ 1)ν(Γ, dx) < ∞;

for every Borel set B ⊂ R with a positive distance to {0}, ν(·, B) is a non-
negative finite Borel measure on Γ, absolutely continuous with respect to the
Lebesgue measure.

Proposition 2.4. There exists a set-indexed process with independent
increments and logarithm of the characteristic function of form (2.1). More-
over, this process has a version which is a Lévy r.m. on B.

Remark 2.3. From (2.1)–(2.3) it is clear that every Lévy r.m. X can
be expressed as the sum of the independent Gaussian r.m. XG and the
non-Gaussian Lévy r.m. XG, i.e., X = XG + XG.

Definition 2.4. The Lévy r.m. is P -homogeneous with real numbers µ,
σ > 0 and the Lévy measure ν(dx) and called the Lévy (P, µ, σ, ν)-r.m. if
for each A ∈ B the logarithm of its characteristic function (2.1) has the
form

ln E
{

eiuX(A)} = P (A)
{

iuµ− σ2u2/2 +

+
∫

|x|<1
(eiux − 1− iux)ν(dx) +

∫

|x|≥1
(eiux − 1)ν(dx)

}

, (2.4)

where P is some probability measure on B, absolutely continuous with re-
spect to the Lebesgue measure.
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According to Remark 2.3 the Lévy (P, µ, σ)-r.m. is the Gaussian r.m. if
ν ≡ 0 and it is the Brownian P -r.m. if, additionally, µ = 0, σ 6= 0. If ν 6≡ 0
and µ = σ = 0, then it is the non-Gaussian (P, ν)-r.m.

Definition 2.5. For α ∈ (0, 2) the non-Gaussian (P, ν)-r.m. is called
the Lévy (P, α)-stable r.m. if ν is the stable Lévy measure of the exponent
α having the form

ν(dx) =

{

c1x−(1+α)dx, x > 0,
c2|x|−(1+α)dx, x < 0,

(2.5)

where c1, c2 are positive finite constants.

If c1 = c2 = c, then we say that the Lévy (P, α)-stable r.m. X is
symmetric with logarithm of characteristic function having the form

ln E
{

eiuX(A)} = −cP (A)|u|α, α ∈ (0, 2). (2.6)

If α ∈ (1, 2), then EX(A) exists, and for the symmetric Lévy (P, α)-
stable r.m. EX(A) ≡ 0. Note that the converse statement is also valid,
that is to say, if EX(A) ≡ 0, then the Lévy (P, α)-stable r.m. is symmetric.

If the Lévy measure ν is concentrated at a single point x0, i.e., if

ν(dx) = λdδ(x− x0), (2.7)

where λ > 0 and δ(·) is the Dirac measure, then the non-Gaussian (P, ν)-
r.m. is the Poisson P -r.m. π with the intensity J(A) = Eπ(A) = λP (A).

Let {xn}n≥1 be a sequence of independent identically distributed (i.i.d.)
r.v.’s not depending on the sequence of Poisson P -r.m.’s {πn(A), A ∈ A},
n ≥ 1, with λ = n for each n = 1, 2, . . . . Then

Kn(A) =
∑

i≤πn(A)

xi (2.8)

is called the compound Poisson P -r.m. Its intensity is equal to

Jn(A) = EKn(A) = naP (A), (2.9)

if Exi = a. Note that the compound Poisson P -r.m. can also be written in
the form

Kn(A) =
∑

i≤πn(Γ)

xiIA(ξi), (2.10)

where ξi are d-dimensional r.v.’s not depending on xi and πn(Γ) and having
the distribution P and IA(ξi) = I{ξi ∈ A}, where I{·} is the indicator
function.

Under certain conditions compound Poisson r.m.’s can be approximated
by compound point r.m.’s, namely, it is easy to prove
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Proposition 2.5. If the conditions (a)−(d) are applied to the subfamily
A and r.v.’s xi lie in the domain of normal attraction of the stable law of
the index α ∈ (1, 2), then the three normalized r.m.’s

(

πn(Γ)
)−1/α ∑

i≤πn(Γ)

(xi − a)IA(ξi),

n−1/α
∑

i≤πn(Γ)

(xi − a)IA(ξi), n−1/α
∑

i≤n

(xi − a)IA(ξi), A ∈ A,

converge weakly to the same limit as n →∞.

When the domain of the Lévy (P, µ, σ, ν)-r.m. X is the whole Borel σ-
algebra, then its sample functions are not all bounded as a rule. A question
arises here how its domain A ⊂ B should be restricted for its sample func-
tions to be bounded and continuous or to be at least elements of the space
D(A) a.s. The following propositions from [1, 2, 7–9] give the answer to
this question.

Proposition 2.6. Let the entropy H of the subfamily A ⊂ B satisfy the
condition

∫ 1

0

(

H(x)/x
)1/2

dx < ∞. (2.11)

Then the sample functions of the Lévy (P, µ, σ, ν)-r.m. X(A), A ∈ A, are
continuous with respect to the metric dL a.s. if and only if it is the Gaussian
(P, µ, σ)-r.m.

Therefore the sample functions of the non-Gaussian (P, ν)-r.m. are dis-
continuous a.s.

Remark 2.4. If condition (2.11) is not satisfied for the entropy H of A,
then according to [4] sample functions of the Gaussian (P, µ, σ)-r.m. X(A),
A ∈ A, may not even be bounded.

Proposition 2.7. If the Lévy measure ν is such that
∫

(

|x| ∧ 1
)

ν(dx) < ∞, (2.12)

then the sample functions of the non-Gaussian (P, ν)-r.m. belong to the
space D(B) a.s. (i.e., no entropy condition is required).

Thus according to (2.5) and (2.7) the sample functions of the Lévy (P, α)-
stable r.m. X(A) with α < 1 and of the Poisson P -r.m. π(A), A ∈ B, are
elements of the space D(B) a.s.
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Proposition 2.8. Let the entropy H of the subfamily A ⊂ B satisfy the
condition

∫ 1

0

(

H(x)/x
)1−1/α

dx < ∞, (2.13)

where α ∈ (1, 2); then the sample functions of the Lévy (P, α)-stable r.m.
X(A), A ∈ A, belong to the space D(A) a.s.

Proposition 2.9. Let there be positive constants K, r such that for the
entropy H of the subfamily A ⊂ B the condition

H(x) ≤ Kx−r (2.14)

is satisfied for sufficiently small x > 0. Then the sample functions of the
non-Gaussian (P, ν)-r.m. X(A), A ∈ A, belong to the space D(A) a.s.

Remark 2.5. If in condition (2.14) we additionally require that r < 1,
then conditions (2.11) and (2.13), too, will be fulfilled for the entropy H.
Thus according to Remarks 2.3 and 2.4 the condition (d) above ensures
the belonging of the sample functions of the Lévy (P, µ, σ, ν)-r.m. X(A),
A ∈ A, to the space D(A) a.s.

Let us assume that in the sequel the subfamily A ⊂ B will always be
subjected to the conditions (a)–(d) above. We shall consider the Lévy
(P, µ, σ, ν)-r.m. L(A), A ∈ A, with EL ≡ 0. By analogy with Dudley
[3] we introduce

Definition 2.6. The r.m.

L(A) = L(A)− P (A)L(Γ), A ∈ A, (2.15)

is called the Lévy (P, µ, σ, ν)-bridge.

If L is the Gaussian (P, 0, σ)-r.m., then L is the Brownian (P, σ, )-bridge
and denoted by LG. If L is the non-Gaussian (P, ν)-r.m., then due to the
fact that its sample functions are discontinuous a.s. the r.m. (2.15) is called
the Lévy broken (P, ν)-bridge and denoted by Lb. Thus, generally speaking,
L = LG + Lb, where LG and Lb are independent of each other.

It is clear that L is a stochastically continuous r.m. but without inde-
pendent increments. Note that L(∅) = L(Γ) = 0.

One can easily prove the following two propositions:

Proposition 2.10. Let {Ln}n≥1 be the sequence of Lévy (P, µ, σ, ν)-
r.m.’s with Pn

w−→ P0, µn −→ µ0, σn −→ σ0, νn
w−→ ν0 as n → ∞, and

let L0 be the Lévy (P0, µ0, σ0, ν0)-r.m.; then Ln
w−→ L0.

Remark 2.6. When Γ = [0, 1], A = {[0, t], 0 ≤ t ≤ 1}, and Pn is the
Lebesgue measure, a similar proposition was proved by Skorokhod [10].
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Let {Xn}n≥1 be the sequence of r.m.’s with EXn ≡ 0, and {∆n(A) −
E∆n(A), A ∈ A}n≥1, be the sequence of Lévy (Pn, µn, σn, νn)-r.m.’s with
Pn

w−→ P0, µn −→ µ0, σn −→ σ0, νn
w−→ ν0, and nonnegative E∆n be of

order nβ as n →∞ (β > 0) and E∆n(·)/E∆n(Γ) w−→ Q(·), where Q is some
probability measure on Γ. These two sequences are independent of each
other. Consider the sequence of r.m.’s {Yn}n≥1 where Yn = Xn +εn∆n and
εn ↘ 0 as n →∞.

Proposition 2.11. If Xn
w−→ L, where L is the Lévy (P0, µ, σ, ν)-r.m.

with EL ≡ 0 and εn is asymptotically equivalent to {E∆n(Γ)}−1, then

Xn(·)− Pn(·)Xn(Γ) w−→ L(·)

and
Yn(·)− Pn(·)Yn(Γ) w−→ L(·) +M(·),

where L is the Lévy (P0, µ, σ, ν)-bridge and M = Q− P0.

3. The Mode-Change Problem in a General Form

Let {Xn(A), A ∈ A}n≥1 and {∆n(A), A ∈ A}n≥1, be two independent
sequences of r.m.’s with sample functions from the space D(A) a.s. Consider
two probability spaces (D(A), F , Pkn), k = 0, 1, where P0n and P1n are
induced by Xn and Xn + εn∆n, respectively, with εn ↘ 0 as n →∞.

The mode-change problem can be stated in a general form as follows: On
account of the realizations of some observed r.m.’s ˜Xn(A), A ∈ A, we have:

(i) to test the null hypotheses

H0n : ˜Xn(A) d= Xn(A)

against the alternatives

H1n : there exists some change-set C ∈ A, such that ˜Xn(A) d= Xn(A) +
εn∆n(A ∩ C)

( d= denotes the equality of the distribution laws);
(ii) to construct a consistent estimator ̂Cn for the change-set C.
The consistency of the estimator is understood in the sense that dL( ̂Cn,C)

→ 0 in probability as n → ∞. The mode-change problem reduces to the
classical change-point one when Γ = [0, 1] and A = {[0, t], 0 ≤ t ≤ 1},
C = (t0, 1], where t0 is the unknown change-point.

Remark 3.1. One can formulate the mode-change problem with C not
necessarily from A, but in that case it is not quite clear how the consis-
tency of the estimator should be determined for the change-set. In such a
situation one should evidently take into consideration each time the specific
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character of the class A. In the classical change-point problem this ques-
tion is set aside, since here the structure of the class A does not affect the
understanding of the consistency of the estimator for the change-point.

Remark 3.2. The mode-change problem reduces to that of testing the
hypotheses when the change-set C = Γ and to that of goodness of fit when
C = ∅.

From our point of view, to solve the mode-change problem we have to
study the asymptotic behavior of an object such that it will be possible
not only to distinguish between the hypotheses H0n and H1n but also to
construct a consistent estimator for the change-set C.

In the case of the existence of E0Xn = λn 6≡ 0 and E1∆n = δn 6≡ 0, where
Ek denotes the mathematical expectation when the hypotheses Hkn, k =
0, 1, are valid, we think that such an object is the observed r.m. ˜Xn which
is normalized in an appropriate manner and is centered by the conditional
expectation, i.e., we have

Tn(A) = n−γ
{

˜Xn(A)− E0
[

˜Xn(A)
∣

∣ ˜Xn(Γ)
]

}

, A ∈ A, γ > 0. (3.1)

Then for our purpose it appears sufficient to center by the linear re-
gression an(A) ˜Xn(Γ) where the set-function an(A) is determined from the
condition

E0
[

an(A) ˜Xn(Γ)
]

= E0

[

E0
[

˜Xn(A)
∣

∣ ˜Xn(Γ)
]

]

.

Therefore
an(A) = λn(A)/λn(Γ),

and instead of the r.m. Tn from (3.1) we can consider

Zn(A) = n−γ
{

˜Xn(A)−
(

λn(A)/λn(Γ)
)

˜Xn(Γ)
}

, A ∈ A. (3.2)

Obviously, E0Zn ≡ 0 and E1Zn(A) = n−γεnδn(C)Mn(A), whereMn(A) =
δn(A ∩ C)/δn(C)− λn(A)/λn(Γ).

If δn and λn are nonnegative or nonpositive measures on A and for the
normalized measures Pn(A) = λn(A)/λn(Γ) and Qn(A ∩ C) = δn(A ∩
C)/δn(C) the condition

Qn(A ∩ C) > Pn(A ∩ C)

is fulfilled for all A ∈ A for which A∩C 6= ∅, then the set-functionMn(A) =
Qn(A∩C)−Pn(A) has the unique maximum which is attained only on the
change-set C. Indeed, for all A 6= C we have

Mn(C)−Mn(A) =

= Qn
(

C\(A ∩ C)
)

− Pn
(

C\(A ∩ C)
)

+ Pn(A ∩ C) > 0. (3.3)
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By the same argument it is clear that Mn attains its minimum only on the
complement to the change-set C and Mn(C) = −Mn(C). Therefore the
form of E1Zn(A) is the key to constructing a consistent estimator for the
change-set C.

Remark 3.3. From the above reasoning it is clear why the observed r.m.
˜Xn should not be centered by E0 ˜Xn. Though for the r.m.

Yn = n−γ(

˜Xn − E0 ˜Xn
)

(3.4)

we have E0Yn ≡ 0 and E1Yn(A) = n−γεnδn(C)Qn(A ∩ C), the change-set
C is not the unique set of attaining the maximum for Qn(A ∩ C). Any set
A ∈ A containing C is also a set of attaining the maximum.

Let E0Xn = λn and E1∆n = δn exist, λn and δn being nonnegative or
nonpositive measures on A, both being of order nβ (β > 0) as n →∞. The
normalized measures Pn

w−→ P , Qn
w−→ Q where the probability measures P

and Q are absolutely continuous with respect to the Lebesgue measure and

Q(A ∩ C) > P (A ∩ C) (3.5)

for all A ∈ A for which A ∩ C 6= ∅.
Further assume that the sequence of r.m.’s {n−γ(Xn − λn)}n≥1 (0 <

γ < β) satisfies the conditions of Proposition 2.2 and for all finite k ≥ 1
and A1, . . . , Ak ∈ A∗ (A∗ is a dense subset of A) their finite-dimensional
distributions PA1,...,Ak

n converge to those of some Lévy (P, µ, σ, ν)-r.m. L
with EL ≡ 0. The r.m.’s n−γ(∆n − δn) are the Lévy (Pn, µn, σn, νn)-r.m.’s
with Pn

w−→ P , µn → µ0, σn → σ0, νn
w−→ ν0, as n → ∞, where σ0 > 0, µ0

are real numbers and ν0 is some Lévy measure.
Under the above assumptions one way of solving the mode-change prob-

lem is via the following two theorems:

Theorem 3.1. If n−γεn|δn(C)| → 1 as n →∞, then under the hypothe-
ses H0n:

Yn
w−→ L, Zn

w−→ L

and under the alternatives H1n:

Yn
w−→ L + m, Zn

w−→ L+M in the case δn > 0

and
Yn

w−→ L−m, Zn
w−→ L−M in the case δn < 0,

where L is the Lévy (P, µ, σ, ν)-bridge and

m(A) = Q(A ∩ C), M(A) = Q(A ∩ C)− P (A), A ∈ A.
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Theorem 3.2. If nβ−γεn →∞ as n →∞, then the estimators

̂Cn =

{

arg maxA∈A Zn(A) if δn > 0,
arg minA∈A Zn(A) if δn < 0

and
C ′n = arg maxA∈A |Zn(A)| (if the sign of δn is unknown)

are consistent estimators for the change-set C.

Example. Consider the classical change-point problem:
Let x1, . . . , xn be independent observations on the r.v. ξ distributed with

the density ˜f(x). On account of these observations we have:
(i) to test the null hypothesis

H0 : ˜f(x) = f(x)

against the alternative:

H1 : there exists a change-point 1 < r0 < n or t0 = r0/n such that
x1, . . . , xr0 are observations on the r.v. distributed with the den-
sity ˜f(x) = f(x) while xr0+1, . . . , xn are observations on the r.v.
distributed with the density ˜f(x) = fn(x) = f(x) + εnhn(x) where
εn ↓ 0 and hn → h0 in some sense as n →∞;

(ii) to construct a consistent estimator for the change-point if the latter
exists.

This problem can be reduced to the mode-change problem for random
measures provided that we take into account the following reasoning:

The probability density of the sum ξ + εn∆n of independent r.v’.s can
be written in the form f + εnAgn, where

Ag(x) = −
∫ [

y
∫ 1

0
f ′(x− εnyt)dt

]

g(y)dy,

f and gn are the probability densities of ξ and ∆n, respectively.
When g runs through a closed set G of probability densities with finite

first moments, the functions Ag will run through the closed family H∗ ⊂ H,
where H is a family of functions h with

∫

h(x)dx = 0 and finite
∫

xh(x)dx.
It is obvious that hn ∈ H.

For any given hn let us consider

H∗
n =

{

h : h ∈ H∗,
∫

xh(x)dx =
∫

xhn(x)dx
}

,

and find the function h∗n such that %(hn, h∗n) = infh∈H∗
n

%(hn, h), where % is
the metric in whose sense the convergence hn → h0 is considered.
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Instead of fn = f + εnhn we can consider f∗n = f + εnh∗n, where h∗n → h∗0
in the metric % and f∗n is the convolution of f with some gn ∈ G, which is a
quasisolution for the following Fredholm integral equation of the first kind:

Ag = hn. (3.6)

However, from the asymptoptic viewpoint there is no difference whether we
consider fn or f∗n as an alternative.

In this example Γ = [0, 1], A = [0, t], 0 ≤ t ≤ 1, and D(A) is in fact
the Skorokhod space D[0,1]. (In D(A) the metric dD is stronger than the
Skorokhod metric.) Using the observations x1, . . . , xn let us construct the
random measures, i.e., the processes

˜Xn(t) = ˜Xn([0, t]) =
∑

i≤nt

xi, t ∈ [0, 1].

On account of these processes we have:
(i) to test the null hypotheses

H0n : ˜Xn([0, t]) d= Xn([0, t])

against the alternatives

H1n : there exists some change-set (t0, 1] such that

˜Xn([0, t]) d= Xn([0, t]) + εn∆′
n

(

[0, t] ∩ (t0, 1]
)

,

where

Xn(t) = Xn([0, t]) =
∑

i≤nt

ξi, ∆′
n

(

[0, t] ∩ (t0, 1]
)

=
∑

nt0<i≤n

∆(i)
n ,

where ξ1, . . . , ξn,∆(1)
n , . . . , ∆(n)

n is the sequence of independent r.v’.s
with ξ1, . . . , ξn being distributed identically with the density f and
∆(1)

n , ..., ∆(n)
n being distributed identically with the density gn, which

is a quasisolution of equation (3.6);

(ii) to construct a consistent estimator for the change-set provided that
the latter exists.

If
∫

xf(x)dx = a 6= 0,
∫

xhn(x)dx = bn, n = 0, 1, 2, . . . , and bn → b0 6= 0
as n →∞, then

λn
(

[0, t]
)

= nat,

δn
(

[0, t] ∩ C
)

= nbn(t− t0)I{t > t0}, t ∈ [0, 1],

and
δn(C) = nbn(1− t0).



356 TS. HAHUBIA AND R. MNATSAKANOV

Therefore

Pn
(

[0, t]
)

= P
(

[0, t]
)

= t, P
(

[0, t] ∩ C
)

= I{t > t0}(t− t0),

Qn
(

[0, t] ∩ C
)

= Q
(

[0, t] ∩ C
)

= I{t > t0}(t− t0)/(1− t0).

Since t0 ∈ (0, 1), condition (3.5) is fulfilled automatically. All other required
conditions are also fulfilled here.

If the variances of r.v.’s x1 and ∆(1)
n are finite, then γ = 1/2, and pro-

cesses (3.4) and (3.2) take, respectively, the form

Y (1)
n (t) = n−1/2

∑

i≤nt

(xi − a),

Z(1)
n (t) = n−1/2

(
∑

i≤nt

xi − t
∑

i≤n

xi

)

= n−1/2
∑

l≤nt

(xi − xn),

where xn = n−1 ∑

i≤n xi.
If εn = O(n−1/2), then by Theorem 3.1, under the hypotheses H0n,

Y (1)
n

w−→ LG, Z(1)
n

w−→ LG

and, under the alternatives H1n,

Y (1)
n

w−→ LG + b0m, Z(1)
n

w−→ LG + b0M,

where LG is the Wiener process, LG is the Brownian bridge, and

m(t) = (t0 − t)I{t > t0},
M(t) = I{t > t0}(t− t0)/(1− t0)− t, t ∈ [0, 1].

The function M has the unique minimum only at the change-point t0, while
the maximum of the function m is attained all over the interval [0, t0]. (Note
that M(t0) = M([0, t0].) The set [0, t0] is a complement to the change-set
(t0, 1], and on which the function M has its minimum.)

If n1/2εn →∞, then by Theorem 3.2 the estimators

̂tn =

{

arg maxt∈[0,1] Z
(1)
n (t) if b0 < 0,

arg mint∈[0,1] Z
(1)
n (t) if b0 > 0

and

t′n = arg maxt∈[0,1] |Z(1)
n (t)|

are the consistent estimators for the change-point t0.

Remark 3.4. The statistics based on Y (1)
n and Z(1)

n are discussed in [11].
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If the variances of r.v.’s x1 and ∆(1)
n are infinite and these r.v.’s lie in the

domain of normal attraction of the stable law of an index α ∈ (1, 2), then
γ = 1/α and processes (3.4) and (3.2) take, respectively, the form

Y (2)
n (t) = n−1/α

∑

i≤nt

(xi − a),

Z(2)
n (t) = n−1/α

∑

i≤nt

(xi − xn), t ∈ [0, 1].

Here if εn = O(n−(1−1/α)), then according to Theorem 3.1, under the hy-
potheses H0n,

Y (2)
n

w−→ Lα, Z(2)
n

w−→ Lb

and, under the alternatives H1n,

Y (2)
n

w−→ Lα + b0m, Z(2)
n

w−→ Lb + b0M,

where Lα is the symmetric Lévy (P, α)-stable random process with P being
the Lebesgue measure on [0, 1], Lb is the broken bridge corresponding to
Lα, and the functions m and M are as above.

If n1−1/αεn → ∞, then by Theorem 3.2 the consistent estimators have
the same form as ̂tn and t′n.

Remark 3.5. These last results are novel for the change-point problem,
too.
Proof of Theorem 3.1. Under the hypotheses H0n

Yn(A) d= n−γ{

Xn(A)− λn(A)
}

,

Zn(A) d= n−γ{(

Xn(A)− λn(A)
)

− Pn(A)
(

Xn(Γ)− λn(Γ)
)}

and under the alternatives H1n

Yn(A) d= n−γ{

Xn(A)− λn(A)
}

+ εnn−γδn(C)Qn(A ∩ C),

Zn(A) d= n−γ{(

Xn(A)− λn(A)
)

− Pn(A)
(

Xn(Γ)− λn(Γ)
)}

+

+ εnn−γ{(

∆n(A ∩ C)− δn(A ∩ C)
)

− Pn(A)
(

∆n(C)− δn(C)
)}

+

+ εnn−γδn(C)
(

Qn(A ∩ C)− Pn(A)
)

.

Both under the hypotheses H0n and under the alternatives H1n the weak
convergence of Yn and Zn follows from Propositions 2.1, 2.2, 2.10, 2.11, and
by Remark 2.5 we have

εnn−γ{(

∆n(A ∩ C)− δn(A ∩ C)
)

− Pn(A)
(

∆n(C)− δn(C)
)}

→ 0

in probability uniformly on A.



358 TS. HAHUBIA AND R. MNATSAKANOV

Proof of Theorem 3.2. Assume that δn > 0. If nβ−γεn → ∞, then because
of the fact that the Lévy bridge L is bounded a.s. we have

Zn/εnnγδn(C) w−→M,

M is a continuous set-function on A and due to condition (3.5) it is proved
by analogy with (3.3) that M has the unique maximum at the change-set
C. Therefore by the fact that then arg maxA∈A(Zn(A)/εnn−γδn(C)) is a
continuous functional with respect to the metric dD in the space D(A) it
turns out that dL( ̂Cn, C) → 0 in probability. For δn < 0 the proof is similar.
Since M has the unique minimum only on the complement to the change-
set C and M(C) = −M(C) with C 6∈ A, there follows the consistency of
the estimator C ′n.

4. The Mode-Change Problem for the Intensity of Compound
Poisson Random Measures

Due to (2.8) and (2.9) the mode-change problem in terms of the mean
values for compound Poisson P -r.m.’s can be stated as follows:

On the basis of realizations of the observed compound Poisson Pn-r.m.’s
˜Kn(A), A ∈ A, we have

(i) to test the null hypotheses

H ′
0n : Pn(A) = P0(A), A ∈ A,

against the alternatives

H ′
1n : there exists some change-set C ∈ A such that

Pn(A) = P0(A) + εnδ1n(A ∩ C) + o(εn)δ2n(A ∩ C),

where εn ↘ 0 as n →∞ and {δkn}m≥1, k = 1, 2 are the sequences
of measures on A, which are absolutely continuous with respect
to the Lebesgue measure. The measures δ1n are nonnegative or
nonpositive and have a weak limit δ1, while δ2n are bounded;

(ii) to construct a consistent estimator ̂Cn for the change-set C.

Remark 4.1. Keeping in mind the representation of compound Poisson
Pn-r.m.’s in form (2.10), the foregoing statement of the mode-change prob-
lem concerns only the change occurring in the distribution of r.v.’s ξi.

Let the r.v.’s xi in the representation of the observed compound Poisson
Pn-r.m.’s in form (2.8) or (2.10) be in the domain of normal attraction of
the stable law of an index α ∈ (1, 2) with Exi = a 6= 0. Consider the objects

Y ′
n =

(

πn(Γ)
)−1/α(

˜Kn − E0 ˜Kn
)

(4.1)

and

Z ′n(A) =
(

πn(Γ)
)−1/α{

˜Kn(A)− P0(A) ˜Kn(Γ)
}

, A ∈ A. (4.2)
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According to (2.9) we have

E0 ˜Kn(A) = J0n(A) = naP0(A),

E1 ˜Kn(A) = J1n(A) = na
[

P0(A) + εnδ1(A ∩ C) + o(εn)δ2n(A ∩ C)
]

.

Hence γ = 1/α and β = 1 (compare with the general formulation in Sec-
tion 3). Since we are interested in the asymptotic behavior of r.m.’s (4.1)
and (4.2), by Proposition 2.5 it is sufficient to investigate the asymptotic
behavior of the r.m.’s

Y ′′
n (A) = n−1/α

[
∑

i≤n

xiIA(ξi)− naP0(A)
]

(4.3)

and

Z ′′n(A) = n−1/α
[
∑

i≤n

xiIA(ξi)− P0(A)
∑

i≤n

xi

]

. (4.4)

These equalities can be rewritten as

Y ′′
n = Ln + n1/2−1/αaVn (4.5)

and

Z ′′n(A) = Y ′′
n (A)− P0(A)Y ′′

n (Γ), (4.6)

where

Ln(A) = n−1/α
∑

i≤n

(xi − a)IA(ξi),

Vn(A) = n−1/2
∑

i≤n

[

IA(ξi)− P0(A)
]

.

Since the subfamilyA satisfies the conditions (a)–(d), according to [3], under
the hypotheses H ′

0n, we have Vn
w−→ LG, where LG is the Brownian P0-

bridge. Because of the fact that LG has bounded realizations a.s.

an1/2−1/α sup
A∈A

|Vn(A)| → 0 in probability. (4.7)

If εnn1−1/α|aδ1n(C)| → 1, then under the alternatives H ′
1n, n1/2−1/αaVn

converges in probability to m′ or −m′ depending on whether aδ1n(C) is
greater or smaller than 0, where the set-function m′(A) = δ1(A∩C)/δ1(C).

Both under the hypotheses H ′
0n and under the alternatives H ′

1n

Ln
w−→ Lα, (4.8)

where Lα is the Lévy (P0, α)-stable symmetric r.m. This fact is proved
using Proposition 2.1. The convergence of finite-dimensional distributions
of Ln to those of Lα and the tightness of the sequence {Ln}n≥1 both under
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the hypotheses H ′
0n and under the alternatives H ′

1n is proved quite similarly
to the proof of Proposition 5.1 in [8] and to the proof of the tightness of
the sequence of random processes from Example 6.3 in [9], respectively.
The only difference consists in that instead of the Lebesgue measure of sets
A ∈ A we should consider the measure P0 under the hypotheses H ′

0n and
the measure Pn(A) = P0(A) + εnδ1(A ∩ C) + o(εn)δ2n(A ∩ C) under the
alternatives H ′

1n.
Thus by (4.5)–(4.8) under the hypotheses H ′

0n we have

Y ′′
n

w−→ Lα, Z ′′n
w−→ Lb

and therefore by Proposition 2.6

Y ′
n

w−→ Lα, Z ′n
w−→ Lb,

where Lb is the Lévy broken (P0, α)-bridge.
Under the alternatives H ′

1n we have

Y ′′
n

w−→ Lα + m′, Z ′′n
w−→ Lb +M′ for aδ1 > 0

and
Y ′′

n
w−→ Lα −m′, Z ′′n

w−→ Lb −M′ for aδ1 < 0,

where the set-function M′(A) = δ1(A ∩ C)/δ1(C) − P0(A). Therefore by
Proposition 2.5 the r.m.’s Y ′

n and Z ′n will have the same asymptotic behavior
as Y ′′

n and Z ′′n , respectively.
If

δ1(A ∩ C)/δ1(C) > P0(A) (4.9)

for all A ∈ A with A∩C 6= ∅, then, as shown above, the unique maximum
of M′ is attained only on the change-set C.

Thus, in common with Theorems 3.1 and 3.2, the following two theorems
are valid.

Theorem 4.1. If εnn1−1/α|aδ1n(C)| → 1 for α ∈ (1, 2) as n →∞, then
under the hypotheses H ′

0n

Y ′
n

w−→ Lα, Z ′n
w−→ Lb

and under the alternatives H ′
1n

Y ′
n

w−→ Lα + m′, Z ′n
w−→ Lb +M′ for aδ1 > 0

and
Y ′

n
w−→ Lα −m′, Z ′n

w−→ Lb −M′ for aδ1 < 0.
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Theorem 4.2. If n1−1/αεn → ∞ for α ∈ (1, 2) as n → ∞, then by
condition (4.9) the estimators

̂Cn =

{

arg maxA∈A Z ′n(A) if aδ1 > 0,
arg minA∈A Z ′n(A) if aδ1 < 0

and

C ′n = arg maxA∈A |Z ′n(A)| (if the sign of aδ1 is unknown)

are consistent estimators for the change-set C.

Remark 4.2. If P0 is unknown, we should use the processes

̂Zn(A) = πn(Γ))−1/α
[

∑

i≤πn(Γ)

xiIA(ξ)− ̂Pn(A)
∑

i≤πn(Γ)

xi

]

,

where ̂Pn(A) = πn(A)/πn(Γ). The processes ̂Zn have the same asymptotic
behavior as the processes ̂Zn. Thus, the estimator

C ′′n = arg maxA∈A | ̂Zn(A)|

will also be consistent.

Remark 4.3. If xi are degenerate r.v.’s, in particular, xi ≡ 1, then ˜Kn(A)
are Poisson Pn-r.m.’s π̃n(A). The objects

n−1/2[π̃n(A)− nP0(A)
]

and n−1/2[π̃n(A)− P0(A)π̃n(Γ)
]

, A ∈ A,

weakly converge under the hypotheses H ′
0n to the Brownian P0-r.m. LG

and to the Brownian P0-bridge LG, respectively, and under the alternatives
H ′

1n to LG ±m′ and LG ±M′, respectively.
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