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CHARACTERIZATION OF A REGULAR FAMILY OF
SEMIMARTINGALES BY LINE INTEGRALS

R. CHITASHVILI† AND M. MANIA

Abstract. A characterization of a regular family of semimartingales
as a maximal family of processes with respect to which one can define
a stochastic line integral with natural continuity properties is given.

According to the characterization of semimartingales by the theorem of
Bichteler–Dellacherie–Mokobodzki (see [1],[2]) the class of semimartingales
is the maximal class of processes with respect to which it is possible to
define stochastic integrals of predictable processes with sufficiently natural
properties, more exactly: an adapted cadlag process X = (Xt, t ≥ 0) is a
semimartingale if and only if for every sequence of elementary predictable
processes (Hn, n ≥ 1), which converges uniformly to 0, the corresponding
integral sums

Jt(Hn) =
∑

i≤n−1

Hn
i (Xt∧ti+1 −Xt∧ti)

converge to 0 in probability for each t ≥ 0.
The aim of this paper is to give an analogous characterization for a regular

family of semimartingales XA = (Xa, a ∈ A) (see Definition 1 below) as a
maximal family of processes relative to which one can define a stochastic
line integral (along predictable curves u : Ω × [0,∞[→ A) with natural
continuity properties.

Let on probability space (Ω,F , P ) with filtration F = (Ft, t ≥ 0), satisfy-
ing the usual conditions, a family XA = ((X(t, a), t ≥ 0), a ∈ A) of adapted
cadlag processes be given, where (A,A) is a compact metric space with the
metric r and Borel σ-algebra A. Denote by S,Mloc,M2

loc,Aloc,V classes
of semimartingales, local martingales, locally square integrable martingales,
processes of locally integrable variations and processes of finite variations
(on every compact), respectively.
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For some λ > 0 let

X̃a,λ
t =

∑

s≤t

∆Xa
s I(|∆Xa

s |>λ).

If Xa is a semimartingale then the process Xa − X̃a,λ is a special semi-
martingale with the canonical decomposition

Xa − X̃a,λ = Ma,λ + Ba,λ,

where Ba,λ is a predictable process of finite variation and Ma,λ is a local
martingale. Moreover, |∆Ba,λ| ≤ λ, |∆Ma,λ| ≤ 2λ and hence Ma,λ ∈M2

loc
(see, e.g., [2]).

Definition 1. We say that a family XA = (Xa, a ∈ A) is a regular
family of semimartingales if it satisfies the following conditions:

(A) the process Xa = (X(t, a), t ≥ 0) is a semimartingale for every a ∈ A;
(B) there exists λ > 0, a predictable, increasing process K = (Kt, t ≥ 0)

which dominates the characteristics of semimartingales (Xa−X̃a,λ, a ∈ A),
i.e.,

〈Ma,λ,Ma,λ〉 � K, Var(Ba,λ) � K

on every [0, t], for each a ∈ A;
(C) the Radon–Nicodým derivative ϕ(a, b) = d〈Ma,λ − M b,λ〉/dK (re-

spectively, g(a) = dBa,λ/dK) is a continuous function of (a, b) (respectively,
of a) for almost every couple (ω, t) with respect to the measure µK , where
µK is the Doleans measure of K; a function ∆Xa

t is continuous in proba-
bility uniformly on every compact;

(D) for each t ∈ R+ a.s.

t
∫

0

sup
a∈A

ψs(a, a)dKs +

t
∫

0

sup
a∈A

|gs(a)|dKs +

+
∑

s≤t

sup
a∈A

|∆Xa|I(supa∈A |∆Xa|>λ) < ∞.

For m ∈M2
loc denote by H(a,m), f(a,m) and ψ(a, b) the derivatives

d〈Ma,λ, m〉
dK

,
d〈Ma,λ,m〉

d〈m,m〉
,

d〈Ma,λ,M b,λ〉
dK

,

respectively. It was proved in [3] that condition (C) implies the existence of
µK -a.e.(µ〈m〉-a.e., respectively) continuous in a modification of the function
H(a,m) (respectively, f(a,m)) and such a version will be considered.
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Let us introduce the classes U and ̂U of predictable processes taking
values in A and in Q(A), respectively, where Q(A) is the space of all prob-
abilities on A. Assume that Q(A) is provided with the Levy–Prokhorov
metric.

Denote by U0 the class consisting of elements of U taking values in some
finite subset A0 of A and by ̂U0 the class of elements of ̂U taking values in
the set of probability measures concentrated in some finite subset of A, i.e.,
for which there exists a finite set A0 ⊂ A such that ut(ω, A0) = 1 for each
(ω, t).

Let Ud (respectively, ̂Ud) be the class of piecewise constant functions
consisting of elements u ∈ U (respectively, ̂U) such that for some finite
sequence of (deterministic) moments t1 < t2 < ... < tN , ut = uti for ti <
t ≤ ti+1 and uti is a Fti-measurable random variable taking values in A
(respectively, in Q(A)).

Let U0
d = U0 ∩ Ud and ̂U0

d = ̂U0 ∩ ̂Ud.
It is convenient to denote the elements of U and ̂U by the same symbols,

since every element u ∈ U can be considered as a degenerate element of
̂U . So we shall use the shortened notation: u = (ut(ω), t ≥ 0) for u ∈ U ,
u = u(C) = (ut(ω), t ≥ 0) = (ut(ω,C), t ≥ 0), C ∈ A for u ∈ ̂U , while
the symbol H(u,m) for u ∈ U will be used instead of the exact notation
(Ht(ω, ut,m), t ≥ 0); the symbols f(u,m), ϕ(u, v), g(u) are understood in a
similar way. For u ∈ ̂U , we sometimes use the expressions g(s, us),Hs(us,m)
instead of

∫

A gs(a)us(da),
∫

A Hs(a,m)us(da), respectively.
If the family of semimartingales XA satisfies conditions (A), (B), (C),

(D) then for each u ∈ U (respectively, for each u ∈ ̂U) one can define a
stochastic line integral (respectively, a generalized stochastic line integral)
with respect to the family of semimartingales (Xa, a ∈ A) along the curve
u = (ut, t ≥ 0) as

t
∫

0

X(ds, us) =

t
∫

0

M(ds, us) +

t
∫

0

gs(us)dKs +
∑

s≤t

(X(s, u(s))−

−X(s−, u(s))I(|X(s,u(s))−X(s−,u(s))|>λ), t ≥ 0 (1)
(

resp.,

t
∫

0

X(ds, us) =

t
∫

0

M(ds, us) +

t
∫

0

∫

A

gs(a)us(da)dKs +

+
∑

s≤t

∫

A

∆Xa
s I(|∆Xa

s |>λ)us(da), t ≥ 0
)

, (2)

where (
∫ t
0 M(ds, us), t ≥ 0) (see [3],[4]) is a unique element of the stable

space of martingales L2(MA) generated by the family MA = (Ma,λ, a ∈ A)
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such that

〈

·
∫

0

M(ds, us), m
〉

t
=

t
∫

0

Hs(us,m)dKs (3)

(

resp.,
〈

·
∫

0

M(ds, us),m
〉

t
=

t
∫

0

∫

A

Hs(a,m)us(da)dKs

)

(4)

for every m ∈ L2(MA) (we recall that Hs(a, m) = d〈Ma,λ,m〉s/dKs).
The stochastic line integral defined above does not depend on the choice

of λ, on the choice of a dominating process K (if for them conditions (A),
(B), (C), (D) are fulfilled) and posseses the following properties:

(1) for each u ∈ U0 (respectively, for each u ∈ ̂U0)

t
∫

0

X(ds, us) =
∑

a∈A0

t
∫

0

I(us=a)X(ds, a)

(

resp.,

t
∫

0

X(ds, us) =
∑

a∈A0

t
∫

0

us(a)X(ds, a)
)

and for every u ∈ Ud (respectively, for every u ∈ ̂Ud)

t
∫

0

X(ds, us) =
∑

i

[X(ti+1 ∧ t, uti)−X(ti ∧ t, uti)],

(

resp.,

t
∫

0

X(ds, us) =
∑

i

∫

A

[X(ti+1 ∧ t, a)−X(ti ∧ t, a)]uti(da)
)

;

(2) for ut = u1
t I(t<τ) + u2

t I(t≥τ)

t
∫

0

X(ds, us) =

t∧τ
∫

0

X(ds, u1
s) +

t
∫

t∧τ

X(ds, u2
s);
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(3) for each u ∈ U (respectively, for each u ∈ ̂U)

∆

t
∫

0

(X(ds, u(s)) = X(t, u(t))−X(t−, u(t))

(

resp., ∆

t
∫

0

(X(ds, u(s)) =
∫

A

(X(t, a)−X(t−, a))ut(da)
)

;

(4) for each u ∈ U (respectively, for each u ∈ ̂U)

〈

∫

M(ds, u(s)),
∫

M(ds, u(s))
〉

t
=

t
∫

0

ψs(us, us)dKs

(

resp.,
〈

∫

M(ds, u(s)),
∫

M(ds, u(s))
〉

t
=

t
∫

0

∫

A

ψs(a, a)us(da)dKs

)

;

(5) if un → u µK-a.e. (in the sense of weak convergence of values in the
space of probabilities Q(A) if un ∈ ̂U), then for each t ∈ R+

sup
s≤t

∣

∣

∣

∣

t
∫

0

X(ds, un
s )−

t
∫

0

X(ds, us)
∣

∣

∣

∣

→ 0, n →∞

in probability.
The stochastic line integral was introduced by Gikhman and Skorokhod in

[5] for continuous process K and for the derivative d〈Ma−M b〉/dK = ϕ(a, b)
which is continuous with respect to a, b uniformly in (ω, t).

Let H be a space of predictable processes H bounded by unity of the
form

H =
∑

i≤n−1

HiI]ti,ti+1],

where t1 < t2 < · · · < tn and Hi ∈ Fti .

Definition 2 ([6]). A family of processes ((Xa, t ≥ 0), a ∈ A) satisfies
the U.T. (uniform tightness) condition if for each t > 0 the set

(
t

∫

0

HsdXa
s ,H ∈ H, a ∈ A

)

is stochastically bounded.

We shall use the following statements proved by Mémin and Slomiński
[7].
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Proposition 1 ([7]). A family of semimartingales ((Xa
t , t ≥ 0), a ∈ A)

satisfies the condition U.T. if and only if there exists λ > 0 such that for
each t ∈ R+

1. the family Var(X̃a,λ)t, a ∈ A) is stochastically bounded;
2. the family ([Ma,λ,Ma,λ]t, a ∈ A) is stochastically bounded;
3. the family Var(Ba,λ)t, a ∈ A) is stochastically bounded.

Remark. This proposition was proved in [7] for A = {1, 2, . . . }. For an
arbitrary set A this statement is proved without any changess. Note that
since Ma,λ is a local martingale with bounded jumps, the Lenglart inequal-
ity implies that condition 2 is equivalent to the stochastic boundedness of
the family (〈Ma,λ,Ma,λ〉t, a ∈ A) (see [8]).

Proposition 2 ([7]). Let ((Xn
t , t ≥ 0), n ≥ 1) be a sequence of semi-

martingales satisfying the condition U.T. and let Xn converge to some pro-
cess X in probability uniformly on every compact. Then the limiting process
X is also a semimartingale and, moreover, for each t > 0

sup
s≤t

|Mn,λ
s −Mλ

s | → 0, n →∞, (5)

sup
s≤t

|Bn,λ
s −Bλ

s |, n →∞ (6)

in probability, where Mλ (respectively, Bλ) is a martingale part (respectively,
the part of finite variation) of the semimartingale X −

∑

∆XI(∆X>λ).

Let us consider now a family XA = (Xa, a ∈ A) of cadlag adapted
processes and for each piecewise constant function u from ̂U0

d , associated
with a subdivision 0 = t0 < t1 < · · · < tn < ∞, define a new stochastic
process

Jt(u,XA) =
∑

i

∫

A

[X(ti+1 ∧ t, a)−X(ti ∧ t, a)]uti(da) (7)

which takes the form

Jt(u, XA) =
∑

i

[X(ti+1 ∧ t, uti)−X(ti ∧ t, uti)] (8)

for functions u from the class Ud.
It is easy to see that if XA is a family of semimartingales, the process

(Jt(u,XA), t ≥ 0) defined by expressions (8),(7) coincides with the stochas-
tic line integral and with the generalized stochastic line integral, respec-
tively.
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Theorem 1. Let XA = (Xa, a ∈ A) be a family of adapted cadlag pro-
cesses. If for each sequence (un, n ≥ 1) ∈ ̂U0

d converging uniformly to some
u ∈ ̂U (in the sense of weak convergence of values in the space of probabili-
ties Q(A)) the corresponding integral sums Jt(un, XA) are fundamental in
probability for every t, then the difference Xa −Xb is a semimartingale for
each pair a ∈ A, b ∈ A.

Proof. Let, for each sequence (un, n ≥ 1) ∈ ̂U0
d converging uniformly to

some u ∈ ̂U ,

|Jt(un, XA)− Jt(um, XA)| → 0, n →∞, m →∞,

in probability (for each t ∈ R+). We must show that Xa−Xb ∈ S for each
a, b ∈ A. To prove this, we use the same idea as in the proof of the theorem
of Bichteler–Dellacherie–Mokobodzki which consists in the following: the
continuity of the functional J and the semimartingale property are invariant
under an equivalent change of measure and it is sufficient to construct a law
Q equivalent to P such that the process Xa − Xb be a quasimartingale
relative to the measure Q.

The possibility of constructing such a measure Q is based on the following
lemma whose proof one can find in [1].

Lemma 1. Let G be a bounded convex set of L0(P ). Then there exists
a measure Q equivalent to P , with bounded density, such that

sup
γ∈G

EQγ ≤ C < ∞,

where L0(P ) is the space (of classes of equivalence) of finite random vari-
ables provided with the topology of convergence in probability.

Let us take as G the image of the set ̂U0
d under the mapping Jt. Evidently,

G is a convex (as an image of a convex set) and bounded subset of L0(P ).
Therefore, applying Lemma 1 for G = Jt(̂U0

d ) and using expression (8) for
Jt(u,XA), we obtain

EQ
∑

i

[X(ti+1 ∧ t, uti)−X(ti ∧ t, uti)] ≤ C (9)

for each u ∈ U0
d .

Let ũ be a function from U0, associated with the subdivision 0 = t0 <
t1 < · · · < tn < ∞, such that

ũi =











a if EQ[X(ti+1 ∧ t, a)−X(ti ∧ t, a)/Fti ] ≥
≥ EQ[X(ti+1 ∧ t, b)−X(ti ∧ t, b)/Fti ]

b otherwise
.
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From (9) we have

EQJt(ũ,XA) = EQ
∑

i

EQ[X(ti+1 ∧ t, ũi)−X(ti ∧ t, ũi)/Fti ] =

= EQ
∑

i

[I(EQ[X(ti+1,a)−X(ti,a)/Fti ]≥EQ[X(ti+1,b)−X(ti,b)/Fti ])
EQ ×

×[X(ti+1 ∧ t, a)−X(ti ∧ t, a)/Fti ] +

+I(EQ[X(ti+1,a)−X(ti,a)/Fti ]<EQ[X(ti+1,b)−X(ti,b)/Fti ])
EQ ×

×[X(ti+1 ∧ t, b)−X(ti ∧ t, b)/Fti ] =

= EQ
∑

i

EQ[X(ti+1 ∧ t, a)−X(ti ∧ t, a)/Fti ] ∨ EQ ×

×[X(ti+1 ∧ t, b)−X(ti ∧ t, b)/Fti ] ≤ C. (10)

On the other hand, since the family Y A = (−Xa, a ∈ A) satisfies the same
continuity property as the family XA, using for the family Y A an inequality
analogous to (9), we have, for each fixed a and b ∈ A,

EQ
∑

i

[−X(ti+1 ∧ t, a) + X(ti ∧ t, a)] =

= −EQ
∑

i

EQ[X(ti+1 ∧ t, a)−X(ti ∧ t, a)/Fti ] ≤ C, (11)

and

−EQ
∑

i

EQ[X(ti+1 ∧ t, b)−X(ti ∧ t, b)/Fti ] ≤ C. (12)

Therefore it follows from (10), (11), (12) and from the equality |x − y| =
2max(x, y)− x− y that

EQ
∑

i

|EQ[X(ti+1∧t, a)−X(ti∧t, a)−(X(ti+1∧t, b)−X(ti∧t, b))/Fti ]| ≤ C.

Thus

sup
t1<···<tn

EQ
∑

i

|EQ[X(ti+1 ∧ t, a)−X(ti ∧ t, a)−

−(X(ti+1 ∧ t, b)−X(ti ∧ t, b))/Fti ]| ≤ C

for each t ∈ R+, hence Xa − Xb is a quasimartingale with respect to the
measure Q, and according to Girsanov’s theorem the process Xa −Xb will
be a semimartingale relative to the measure P .

The following theorem gives a characterization of a dominated family of
semimartingales:
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Theorem 2. Let the conditions of Theorem 1 be satisfied. Then for each
b ∈ A the family (Xa−Xb, a ∈ A) is a dominated family of semimartingales,
i.e., for each fixed b ∈ A the family (Xa−Xb, a ∈ A) satisfies condition (B)
of Definition 1.

Proof. According to Theorem 1 the process Xa − Xb is a semimartingale
for each a, b ∈ A. Let us prove that for every fixed b ∈ A the family of
semimartingales (Xa −Xb, a ∈ A) is dominated.

Evidently, for every u ∈ ̂U0
d and b ∈ A the process (Jt(u,XA) − Xb

t ,
t ≥ 0) is a semimartingale. One can show that the family of semimartingales
(J(u,XA)−Xb, u ∈ ̂U0

d ) satisfies the condition U.T. (for each fixed b ∈ A),
i.e., the set

(
t

∫

0

Hsd(Js(u,XA)−Xb
s), u ∈ ̂U0

d ,H ∈ H
)

(13)

is stochastically bounded for every t ∈ R+.
It follows from the continuity property of the functional J that the set

(Jt(u,XA), u ∈ ̂U0
d ) and hence the set (Jt(u,XA) − Jt(v, XA), u, v ∈ ̂U0

d ),
is stochastically bounded for each t ∈ R+. Therefore it is sufficient to show
that for each H ∈ H and u ∈ ̂U0

d there exists a pair u1, u2 ∈ ̂U0
d such that

t
∫

0

Hsd(Js(u,XA)−Xb
s) = Jt(u1, XA)− Jt(u2, XA). (14)

Without loss of generality we can assume that the function H ∈ H has the
same intervals of constancy as the function u.

For H =
∑

i≤n−1 HiI]ti,ti+1] and u(ω, t, da) =
∑

i≤n−1 ui(ω, da)I]ti,ti+1]
let us define

u1(ω, t, da) =
∑

i≤n−1

(H+
i (ω)ui(ω, da) + (1−H+

i (ω))εb
ω,t(da))I]ti,ti+1],

u2(ω, t, da) =
∑

i≤n−1

(H−
i (ω)ui(ω, da) + (1−H−

i (ω))εb
ω,t(da))I]ti,ti+1],

where H+ = max(H, 0), H− = −min(H, 0) and εb is the measure concen-
trated at the point b ∈ A for each ω, t.

It is easy to check that for u1, u2 defined above equality (14) is true and
hence the family of semimartingales (J(u,XA) − Xb, u ∈ ̂U0

d ) satisfies the
condition U.T.

Denote by Y a (respectively, by J(u, Y A)) the difference Xa−Xb (respec-
tively, J(u,XA)−Xb). Since b is fixed, we omit (for convenience) the index
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b (e.g., we write Y a instead of Y a,b and Ma,λ instead of Ma,b,λ below). Let

Ỹ a,λ
t =

∑

s≤t

∆(Y a
s )I[|∆(Y a

s )|>λ],

X̃u,λ
t =

∑

s≤t

∆(Js(u, Y A))I[|∆(Js(u,Y A))|>λ],

and let

Y a
t − Ỹ a,λ

t = Mλ(t, a) + Bλ(t, a),Mλ(·, a) ∈Mloc, Bλ(·, a) ∈ Aloc,

Jt(u, Y A)− Ỹ u,λ
t = Mu,λ(t) + Bu,λ(t),Mu,λ ∈Mloc, Bu,λ ∈ Aloc,

be the canonical decomposition of the special semimartingales Y a − Ỹ a,λ

and J(u, Y A)− Ỹ u,λ, respectively.
Since Y a ∈ S (for any a ∈ A), one can write the process J(u, Y a) in the

form

Jt(u, Y A) =
∑

a∈A0

t
∫

0

I(us=a)d(Y a
s )

for each u ∈ U0
d and it is easy to see that for each u ∈ U0 (the more so for

each u ∈ U0
d , but not for each ̂U0

d )

Ỹ u,λ
t =

∑

a∈A0

ntt0I(us=a)dỸ a,λ
s .

Therefore the uniqueness of the canonical decomposition of the special semi-
martingales implies that for every u ∈ U0

d

Mu,λ = J(u,MA), Bu,λ = J(u,BA), (15)

where

Jt(u,MA) =
∑

i

(Mλ(ti+1 ∧ t, uti)−Mλ(ti ∧ t, uti)) =

=
∑

a∈A0

t
∫

0

I[us=a]dMλ,a
s ,∈M2

loc,

Jt(u,BA) =
∑

i

(Bλ(ti+1 ∧ t, uti)−Bλ(ti ∧ t, uti)) =

∑

a∈A0

t
∫

0

I[us=a]dBλ,a
s ,∈ Aloc,
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and an easy calculation shows that the square characteristic of the martin-
gale J(u,MA) is equal to

〈J(u,MA)〉t =
∑

a∈A0

t
∫

0

I[us=a]d〈Mλ,a〉s.

Since the family of semimartingales (J(u, Y A), u ∈ ̂U0
d ) satisfies the condi-

tion U.T., it follows from Proposition 1 that the family of random variables
(〈Mu,λ〉t,Var(Bu,λ)t, Var(Ỹ u,λ)t, u ∈ ̂U0

d ) is stochastically bounded for each
t ≥ 0. Therefore from equality (15) we have

lim
N

sup
u∈U0

d

P (〈J(u,MA)〉t ≥ N) = 0, (16)

lim
N

sup
u∈U0

d

P (Var(J(u,BA))t ≥ N) = 0, (17)

and

lim
N

sup
u∈U0

d

P (Var(Ỹ u,λ)t ≥ N) = 0. (18)

Let for each t ∈ R+

KM
t = ess supu∈U0

d
〈J(u,MA)〉t,

KB
t = ess supu∈U0

d
|Jt(u,BA)|.

Evidently, KM
s ≤ KM

t , KB
s ≤ KB

t a.s. for each s ≤ t. Let us prove that
P (KM

t < ∞) = P (KB
t < ∞) = 1 for every t ∈ R+.

It follows from (16) and Lemma 1 that there exists a measure Q equivalent
to P , with bounded density, such that (for each t ∈ R+)

sup
u∈U0

d

EQ〈J(u,MA)〉t < ∞. (19)

Suppose that

Q(ess supu∈U0
d
〈J(u,MA)〉t = ∞) > α > 0. (20)

Then there exists some 0 ≤ s ≤ t for which (a.s.)

EQ(ess supu∈U0
d
(〈J(u,MA)〉t − 〈J(u,MA)〉s)/Fs) = ∞.

For each fixed s, t ∈ R+, s ≤ t, consider the family of random variables

GQ
s,t(u) = EQ(〈J(u, MA)〉t − 〈J(u,MA)〉s/Fs), u ∈ U0.
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This family satisfies the ε-lattice property (with ε = 0). Indeed, if u1, u2 ∈
U0

d then we define u3 ∈ U0
d by

u3 = IΩ×[0,s]v + ID×]s,t]u1 + IDc×]s,t]u2,

where D = {ω : Gs,t(u1) ≥ Gs,t(u2)} and v is an arbitrary element of U0
d ,

for which we have

Gs,t(u3) ≥ max(Gs,t(u1), Gs,t(u2)).

Therefore according to Lemma 16.11 of [9]

EQ(ess supu∈U0
d
(〈J(u,MA)〉t − 〈J(u,MA)〉s)/Fs) =

= ess supu∈U0
d

EQ(〈J(u,MA)〉t − 〈J(u,MA)〉s/Fs). (21)

Thus from (20) and (21) we have

ess supu∈U0
d

EQ(〈J(u,MA)〉t − 〈J(u,MA)〉s/Fs) = ∞ a.s.

which contradicts (19), since, according to the definition of ess sup (keeping
the lattice property for GQ in mind) there exists a sequence (un, n ≥ 1) ∈ U0

d
such that

EQ(〈J(un,MA)〉t − 〈J(un, MA)〉s/Fs) →∞ a.s.

The equality P (KB
t < ∞) = 1 is proved in a similar way.

Let us prove now that

〈Ma,Ma〉t � KM
t , t ∈ R+,

(Var Ba)t � KB
t , t ∈ R+,

for every a ∈ A.
Without loss of generality we can assume that the random variables KM

t
and KB

t are integrable for each t ∈ R+ (otherwise, one can use a localizing
sequence of stopping times (τn, n ≥ 1) with EKM

t∧τn
< ∞ for each n ≥ 1.

Such a sequence exists, since P (KM
t + BM

t < ∞) = 1 for each t ∈ R+, and
the processes KM ,KB are predictable).

Similarly to the above, we can show that for each fixed s, t ∈ R+, s ≤ t,
the family of random variables

Gs,t(u) = E(〈J(u,MA)〉t − 〈J(u, MA)〉s/Fs), u ∈ U0
d

also satisfies the ε-lattice property (with ε = 0) and equality (21) is also
valid, if we replace EQ by the mathematical expectation E with respect to
the basic measure P .
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Therefore using (21) we obtain

E(KM
t −KM

s /Fs) =

= E(ess supu∈U0
d
〈J(u, MA)〉t − ess supu∈U0

d
〈J(u,MA)〉s/Fs) ≥

≥ ess supu∈U0
d

E(〈J(u,MA)〉t/Fs)− ess supu∈U0
d
〈J(u,MA)〉s =

= ess supu∈U0
d

E(〈J(u,MA)〉t − ess supu∈U0
d
〈J(u,MA)〉s/Fs) ≥

≥ ess supu∈U0
d

E(〈J(u,MA)〉t − 〈J(u, MA)〉s/Fs) =

= E(ess supu∈U0
d
(〈J(u,MA)〉t − 〈J(u,MA)〉s)/Fs) ≥

≥ E(〈Ma〉t − 〈Ma〉s/Fs),

and hence the process (KM
t −〈Ma〉t, t ≥ 0) is a submartingale. Since every

predictable local martingale of finite variation is constant (see, e.g., [10]),
we conclude that the process (KM

t − 〈Ma〉t, t ≥ 0) is increasing for each
a ∈ A. Evidently, this implies that the measure d〈Ma〉t(ω) is absolutely
continuous with respect to the measure dKM

t (ω) for almost all ω ∈ Ω, i.e.,
〈Ma〉 � KM for each a ∈ A.

Indeed, suppose H is some bounded positive predictable process such
that E

∫ t
0 HsdKM

s = 0. Then

E

t
∫

0

Hsd〈Ma〉s + E

t
∫

0

Hsd(KM
s − 〈Ma〉s) = 0

implies that E
∫ t
0 Hsd〈Ma〉s = 0, since KM −〈Ma〉 is an increasing process.

In a similar way one can prove that

(Var Ba)t � KB
t , t ∈ R+,

for each a ∈ A. Thus the increasing process Kt = KM
t +KB

t dominates the
characteristics of semimartingales (Y a, a ∈ A).

Let XA = (Xa, a ∈ A) be a family of semimartingales and let for each
u ∈ ̂U0

J̄t(u,XA) =
∑

a∈A0

t
∫

0

us(a)dXa
s .

Evidently,

J̄t(u,XA) =
∑

a∈A0

t
∫

0

I(us=a)dXa
s

if u ∈ U0, and
J̄(u,XA) = J(u, XA)
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for every u ∈ ̂U0
d .

Theorem 3. XA is a regular family of semimartingales if and only if
for each sequence (un, n ≥ 1) ∈ ̂U0 uniformly converging to some u ∈ ̂U ,
the corresponding integral sums ̂Jt(un, XA) are fundamental in probability
uniformly on every compact.

Proof. The necessity part of the theorem is proved in [3].
Sufficiency. Let for each sequence (un, n ≥ 1) ∈ ̂U0 converging uniformly

to some u ∈ ̂U

sup
s≤t

| ̂Jt(un, XA)− ̂J(um, XA)| → 0 (22)

as n →∞, m →∞, for every t ≥ 0. We must show that the family of semi-
martingales XA is regular. Since J̄(u,XA) = J(u, XA) for every u ∈ ̂U0

d , it
follows from Theorem 2 that XA is a dominated family of semimartingales,
i.e., condition (B) of Definition 1 is satisfied.

Let us show that the family XA satisfies conditions (C), (D).
First we prove that there exists a µK-a.e. continuous modification of the

Radon–Nicodým derivative

ϕ(a, a′) = d〈Ma −Ma′〉/dK.

Let Am
0 = (am

1 , am
2 , . . . , am

i(m)) be a 1
m -net of the compact A. Suppose that

the function ϕ(a, a′) is separable (or we can choose such a version).
The function

ϕ∗(a, a′) = lim
m

sup
i:r(am

i ,a)≤ 1
m

sup
j:r(am

j ,a′)≤ 1
m

ϕ(am
i , am

j )

is upper continuous a.e. with respect to the measure µK and it is easy to
see that the µK-a.e. continuous modification of the derivative of ϕ(a, a′)
exists if and only if

ϕ∗t (ut, ut) = 0, 0 ≤ t < ∞,

µK -a.e. for all u ∈ U . Let there exist u ∈ U such that

µK [(ω, t) : ϕ∗(u, u) > 0] > 0.

We can construct two sequences (um, m ≥ 1), (vm,m ≥ 1) ∈ U0 (i.e., um

and vm are taking a finite number of values for each m), such that um →
u, vm → u uniformly and

ϕ(um, vm) → ϕ∗(u, u), µK − a.e, (23)

as m →∞.
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Put um
t (ω) = am

im(ω,t), v
m
t (ω) = am

jm(ω,t), where the indices am
im

and am
jm

are selected so that

r(am
im(ω,t), ut(ω)) ≤ 1

m
, r(am

jm(ω,t), ut(ω)) ≤ 1
m

and

ϕ(am
im(ω,t), a

m
jm(ω,t)) ≥ sup

i:r(am
i ,ut(ω))≤ 1

m

sup
j:r(am

j ,ut(ω))≤ 1
m

ϕ(am
i , am

j )− 1
m

.

Since for each u, v ∈ U0

〈J̄(u,MA)− J̄(v,MA)〉t =

t
∫

0

ϕs(us, vs)dKs

we have

lim inf
m

E〈J̄(um, MA)− J̄(vm,MA)〉t = lim inf
m

E

t
∫

0

ϕs(um
s , vm

s )dKs ≥

≥ E

t
∫

0

ϕ∗s(us, us)dKs > 0 (24)

for some t ≥ 0. Since the family of semimartingales J̄(u,XA), ûU0) satisfies
the condition U.T. (the proof is similar to the corresponding assertion of
Theorem 2) and

sup
s≤t

|J̄s(un, XA)− J̄s(um, XA)| → 0,m, n →∞, (25)

it follows from Proposition 2 that

sup
s≤t

|J̄s(un,MA)− J̄s(um,MA)| → 0, m, n →∞, (26)

sup
s≤t

|J̄s(un, BA)− J̄s(um, BA)| → 0, m, n →∞, (27)

where

J̄(u,MA) =
∑

a∈A0

t
∫

0

I(us=a)dMa,λ
s , J̄(u,BA) =

∑

a∈A0

t
∫

0

I(us=a)dBa,λ
s

coincide with canonical decomposition terms of the special semimartingale
J̄(u, XA)−

∑

∆J̄(u,XA)I(|J̄(u,XA)|>λ) for each u ∈ U0.
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Obviously, (24) implies that the continuity condition (26) for J(u,MA)
with respect to u does not hold and therefore ϕ(a, a′) is continuous in (a, a′)
with respect to the measure µK .

The existence of a µK-a.e. continuous modification of the derivative
gt(a) = dB(t, a)/dKt is proved analogously.

Let us prove now that the family XA satisfies condition (D). Evidently,
for each u ∈ U0

〈J̄(u,MA)〉t =

t
∫

0

ψs(us, us)dKs

and it is easy to see that the µK-a.e. continuity of ϕ(a, a′) implies the µK-
a.e. continuity of the function ψ(a, b) along the diagonal (i.e., there exists
a µK -a.e. continuous modification of the function ψ(a, a)). Therefore

t
∫

0

sup
a∈A

ψs(a, a)dKs = ess supu∈U0〈J(u, MA)〉t < ∞ a.s.

for each t ∈ R+. The inequality

t
∫

0

sup
a∈A

gs(a)dKs < ∞

is proved in a similar way.
Since

∆Jt(u,XA) =
∑

a∈A0

I(us=a)(X(t, a)−X(t−, a)) = X(t, u(t))−X(t−, u(t)),

relation (18) can be rewritten as

lim
n→∞

sup
u∈U0

P{
∑

s≤t

|X(t, u(t))−X(t−, u(t))|I(|X(t,u(t))−X(t−,u(t))|>λ) > n} = 0,

which implies that

ess supu∈U0

∑

s≤t

|X(t, u(t))−X(t−, u(t))|I(|X(t,u(t))−X(t−,u(t))|>λ) < ∞

a.s. for each t ∈ R+.
Since the continuity property (22) of the functional J̄ implies that a

function ∆Xa
t is continuous with respect to a in probability uniformly on
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each [0, t] and A is a compact subset of some metric space we obtain that
∑

s≤t

sup
a∈A

∆|X(s, a)|I(supa∈A ∆|X(s,a)|>λ) =

= ess supu∈U

∑

s≤t

|X(t, u(t))−X(t−, u(t))|I(|X(t,u(t))−X(t−,u(t))|>λ) =

= ess supu∈U0

∑

s≤t

|X(t, u(t))−X(t−, u(t))|I(|X(t,u(t))−X(t−,u(t))|>λ) < ∞

a.s. for each t ≥ 0, and hence condition (D) is fulfilled.

Remark. A usual stochastic integral, evidently, corresponds to the case
X(t, a) = aX(t), a ∈ R, where X is a semimartingale. It is easy to see that if
u is a locally bounded predictable process then the usual stochastic integral
∫ t
0 usdXs satisfies relations (3), (4), and hence the stochastic integral u ·M

coincides (up to an evanescent set) with the stochastic line integral with
respect to the family of martingales (aM, a ∈ R) along the curve u.

Conversely, let X = (Xt, t ≥ 0) be an adapted continuous process and
consider the family XA = (aX, a ∈ R). For an elementary predictable
process u ∈ H

Jt(u,XA) =
∑

i

ui[X(ti+1 ∧ t)−X(ti ∧ t)]

and it follows from Theorem 1 that the continuity of the functional J(u) with
respect to the class {u ∈ U0

d : |u| ≤ 1} implies that the process X = X1−X0

is a semimartingale (since the process X0 = 0 is a semimartingale).
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