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NUMERICAL SOLUTIONS TO THE DARBOUX PROBLEM
WITH THE FUNCTIONAL DEPENDENCE

7. KAMONT AND H. LESZCZYNSKI

ABSTRACT. The paper deals with the Darboux problem for the equa-
tion Dyy2(2,y) = f(2,9, 2(c,y)) Where 2(, ) is a function defined by
2(z,y)(t:8) = z(z + 1,y + 5), (t,8) € [~ap, 0] X [~bo,0]. We construct
a general class of difference methods for this problem. We prove the
existence and uniqueness of solutions to implicit functional difference
equations by means of a comparison method; moreover we give an er-
ror estimate. The convergence of explicit difference schemes is proved
under a general assumption that given functions satisfy nonlinear es-
timates of the Perron type. Our results are illustrated by a numerical
example.

§ 1. INTRODUCTION

Given any two metric spaces X and Y, we denote by C(X,Y) the class
of all continuous functions from X into Y. Take a,b > 0 and ag, by € R4,
Ry =[0,400). Define

E= (070’] X (Oab]a EO = ([_a07a] X [7b07b])\E
and B = [—ag, 0] X [~bg,0]. Given a function z : E° U E — R and a point
(z,y) € E, we define the function z(,,) : B — R by
2oy (t,8) = 2(x+t,y +5), (t,s)€B. (1)

Suppose that f : E x C(B,R) — R and ¢ : E° — R are given functions.
(Here F is the closure of E.) Consider the Darboux problem

Dzyz(xvy) = f(xvyv Z(m,y))a (x,y) € F, (2)
2(z,y) = ¢(x,y) for (a,y) € EY, (3)
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where Dgyz = 86%3274' We consider classical solution to problem (2), (3). A

function v € C(E°UE, R) is regarded as a solution of (2), (3) if D,,v exists
on E, Dyyv € C(E, R), and v satisfies (2), (3). Sufficient conditions for the
existence and uniqueness of a solution to (2), (3) are given in [1], see also
[2].

For a few recent years, a certain number of papers concerning numerical
methods for functional partial differential equations have been published.

Difference methods for nonlinear parabolic functional differential prob-
lems were considered in [3]-[5]. The main problem in these investigations is
to find a difference approximation which is stable and satisfies consistency
conditions with respect to the original problem. A method of difference
inequalities or simple theorems on linear recurrent inequalities are used in
the investigation of stability.

The semidiscretizations in space variables of linear parabolic Volterra
integral-differential equations (the method of lines, Galerkin or collocation
techiques) lead to large systems of stiff ordinary integral-functional equa-
tions. The analysis of spatial and temporal disretizations of linear integral-
functional parabolic problems has received considerable attention during
the last years [6]-[11]. Most of these contributions seem to focus on the
convergence theory. There are very few numerical studies.

Difference methods for first order functional differential equations with
initial or initial-boundary conditions were studied in [12], [13]. The proofs
of the convergence were based either on functional difference inequalities
or on a general theorem on error estimates for approximate solutions to
functional difference equations of the Volterra type with initial or initial-
boundary conditions and with unknown function of several variables.

The convergence of difference methods for functional hyperbolic systems
in the Schauder canonic form was studied in [14].

For further biblioghaphical information concerning numerical methods
for functional partial differential equations we suggest to see the survey
papers [15] and [13].

The paper is organized as follows. In Section 2 we construct a general
class of difference schemes for (2), (3). This leads to implicit functional
difference problems. The existence and uniqueness of solutions to such
problems are considered in Section 3. The comparison method of investiga-
tion of functional difference equations is used. The next section deals with
a theorem on the convergence of explicit difference schemes with nonlinear
estimates for given functions. We assume that increment functions satisfy
nonlinear estimates of the Perron type with respect to the functional vari-
able. In Section 5, we establish an error estimate for implicit difference
methods. We give a numerical example.

Differential equations with a deviated argument and integral-differential
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problems can be obtained from (2), (3) by a specification of given operators.

§ 2. DISCRETIZATION

Given any two sets X and Y, we denote by F[X,Y] the class of all
functions defined on X and taking values in Y. We will denote by N and
Z the sets of natural numbers and integers, respectively.

We construct a mesh in E° U E in the following way. Suppose that
(h,k) € (0,a] x (0,b] stand for steps of the mesh. Write

h k
z; =th, y; = jk, $i+%:ih+ yj+%:jk+§7 i,j €Z.

27
Denote by Iy the set of all (h,k) € (0,a] x (0,b] such that there exist
My, Ng € N such that Myh = ag, Nok = bg. We assume that Iy # @ and
there is a sequence {(hn,kn)}, (hn,kn) € Ip, such that lim, oo (hn, kn) =
(0,0). For (h,k) € Iy we put Zpn, = {(wi,y;) : i,j € Z}, and EY). = Zpg N
E°, Enx = Zp, N E. There are M, N € N such that Mh < a < (M + 1)h,
Nk <b< (N +1)k. Let

Ape ={(z5,y;): 0<i<M-1,0<j<N-—1}.
Using the above definitions of M and N, we have
Ene = {(zs,y;): 1<i<M,1<j<N}.

Let K,L € Z be fixed and assume that —My < K <1, —Ny < L < 1.
Write
Dy = {(z5,yj) : =My <i< K, =Ny <j < L}.

For z € F[EY, U Ep, R] we write 2(59) = 2(x4,y;), (zi,y;) € EY, U Epg. In
the same way we define w7 for w € F[Dys, R].

We will need a discrete version of the restriction operator given by (1).
Ifz:E?LkUEhk—>Rand0§i§M—1,0§j§N—1thenthefunction
2i,j] * Dne — R is defined as follows:

2[4t 8) = z(xs +t,y; +5), (t,8) € Dpg.

We consider the difference operator & given by
5200) = L [LGHLatD) L) Gt 4 6],
Suppose that
Fpk : Apg X F[Dpi, R] = R, ¢ni: B, — R

are given functions. Consider the problem

5203 = Fhk(aci,yj,z[i’ﬂ), (xi,95) € Ank, (4)

2(B1) = (Z)Ej,’cj) for (z;,y;) € Epy. (5)
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Remark 2.1. If K =1 and L = 1 then problem (4), (5) turns out to be
an implicit difference method. If K < 0 or L < 0, then problem (4), (5)
represents a simple functional difference equation of the Volterra type. It is
obvious that in this case there exists exactly one solution upy, : E9, U Epy —

R of (4), (5).

Example 1. Suppose that /' : Ex R — R and ¢ : [0,a] — R, ¥ :
[0,b] — R are given functions. We assume that ¢(0) = ¢(0). Put a9 = 0,
bo =0 and f(z,y,w) = F(z,y,w(0,0)), (z,y,w) € E x C(B, R). Then (2),
(3) reduces to the classical Darboux problem

Dyyz(z,y) = F(z,y,2(2,y)), (z,y) € E, (6)
z(x,0) = p(x) for z €[0,a], z(0,y) =1(y) for y € [0,b]. (7)

One of the implicit difference schemes for (6), (7) takes the form
520 — F(%Jﬁ%,yﬁ%, Z(Z(m) FRNCES W) RN CHES I Z(z+1d+1)))’

(T4, Y5) € Ank,
2(10) — o(x;) for 0 <i < M, 2(09) — P(y;) for 0 <j < N.

The most natural explicit difference method for (6), (7) takes the form
5Z(l7j) = F("E“ Yjs Z(i’j))7 (3717?/;) S Ahk;

with the above boundary condition.

Example 2. Suppose that ag < 0, bg < 0. For the same F we put
o) = F (e [otitds). (o) < B x C(B.)
B
Then problem (2), (3) is equivalent to the integral-differential equation
Duysles) = F(wn. [ se bty 4 9)duds), wper.
B

with boundary condition (3). Now, we construct an explicit difference
method for (8), (3). Let
Bny = {(zi,yj) D =My <i<0, -Ny<j< 07}_

We define the operator Thy : F[Bpk, R| — F[B, R] in the following way.
Suppose that w € F[Bp, R| and (t,s) € B. Then there is (z;,y;) € Bhk
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such that ¢ <0, j <0 and z; <t <211, ¥; <5 < yjp1. We put

- t—x; s —Y;
Thaw(t,s) = w1 - 222 ) 1 - 22
hew(t, s) = w - - +
4ottt LT 5 T Y

h k

1 pi+19) ¢ ;sz [1 _ s *kyj} 4

i t—x;71 $—y;
(4,5+1) [1 _ ’} Y ) 9
+w W . (9)
It is easy to see that Thy : F[Bpk, R] — C(B, R). We assume that Dy =
By, i.e., K =0, L = 0. We will approximate solutions to problem (8), (3)
by means of solutions to the equation

§52(63) — F(aji,yj7/Tth[i7j] (t, s)dt ds), (l’i,yj) € Ak, (10)
B

with boundary condition (5).
Example 3. Suppose that
F:ExR—R, ¢o:E—R, v:E—R, ¢:E°—>R
are given functions, and
—ag < p(x,y) —x <0, —by <(z,y)—y<0 for (z,y) € E.
Let

f(‘rvva) = F(&y,w(cp(az,y) - x,1/1(x,y) - y)), (mava) € E x C(BVR)

Then problem (2), (3) reduces to the differential equation with a deviated
argument

Dmyz(xay) = F(:c,y,z(cp(:c,y),z/)(z,y))bzg), (xay) € Ea

with boundary condition (3). It is easy to construct difference methods for
the above equation using the ideas from Example 2. Further examples of
the operator F}y are given in Sections 4 and 5.

8 3. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF FUNCTIONAL
DIFFERENCE PROBLEMS

The existence and uniqueness of a solution of problem (4), (5) is investi-
gated by the comparison method. This method is based on the association
of the operator Fj; with another operator opi, which is followed by thor-
ough analysis of a comparison equation. If the latter equation possesses
adequate properties, then problem (4), (5) has exactly one solution which
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is the limit of a sequence of successive approximations. We obtain the sim-
plest case of the operator oy, corresponding to equation (4) if the function
Fy satisfies the Lipschitz condition. The comparison problem is linear in
this case.

The following property of the operator ¢§ is important:

Lemma 3.1. Problem (4), (5) is equivalent to

i—1 j—1
20D = 1k ST Fur(@p o 200) + 05 + 0hy —oig” . (11)
pn=0r=0
1<i<M, 1<j<N,

We omit the simple proof of the lemma.
Let nuy E;OLk U Epr — R be a function given by

e (z,y) = ong(z,y) for (z,y) € E?Lk‘ and npi(z,y) =0 for (z,y) € Fpg.

We define a sequence {z,,}, z, : EY, U Ep — R, in the following way:

Z(()i,j) _ ﬁ;(zizéj) for (zi,y;) € Ef. U Epy, (13)
and
i—1j-1
Z£LZ+J1) = hk Z Z Frk (s Yo (20) (o)) + ¢§j’;0) + ¢§3€7j) B 53;0)’ 14
n=0v=0

1<i<M, 1<j<N,
sl = o) for (wiyy) € BY (15)
where n =0,1,2,....
We prove that, under suitable assumptions on the function Fjy, the se-
quence {z,} converges to the unique solution of problem (4), (5).
For w € F(Dp, R) we put

Hw||hk = max{|w(i’j)| : (J}i,yj) S th}.
For the above w we define the function |w|px : Dpx — Ry by
|w|hk(zvy) = |w(z,y)|, ({Z?,y) € th-

We will consider a comparison function opy : Apx X F[Dpk, Ry] — R4
coresponding to the function Fjy.

Assumption H;. Suppose that

19 for each (x,y) € Ap the function opr(z,y,:) : F[Dpg, Ry] — Ry is
nondecreasing, and opi(z,y, Onr) = 0 for (x,y) € Apk, where Op(z,y) =0
for (x,y) € Dp,



NUMERICAL SOLUTIONS TO THE DARBOUX PROBLEM "

20 for (z,y,w) € Apg X F[th,R], w e F[th,R] we have
| Fri (2, y, w) — Fr(z,y,0)| < ope(w,y, |w —0[n), (16)

30 there exists a function gy, : EY, U Epr, — R4 which is a solution to
the problem

i—1j—1

w®) > pk Z Z Tk (T Yo, Wip,w)) + ﬁgli’;j)’ (17)
pn=0rv=0
1<i<M, 1<j<N,
Wid) — |¢Ej;€j)| for (zs,y;) € Epy, (18)

with the function 7, satisfying the condition

i—1 j—1

m?) > nk Z Z | Pk (0 Yy (g )| +
pn=0rv=0
1,0 0,7 0,0
1501+ 1o + o3, (19)

where 1 <i< M,1<j<N,
49 the function w(z,y) =0, (z,y) € EP). U Epy, is the unique solution to
the problem

i—1 j—1

w9 = hkz Zahk(xu7yu’w[u,y])a 1<i<M, 1<j<N, (20)
pn=0r=0

w(i’j) =0 for (xi,yj) € Egk (21)

in the class of functions satisfying the condition 0 < w(z,y) < gur(x,y),
(,9) € Bk

Theorem 3.2. If Assumption Hy is satisfied then there exists a solution
Z: B U Epi, — R of problem (4), (5). The solution is unique in the class
of functions z : Egk U Enr — R satisfying the condition

|Z(x’y)| < ghk(xvy) Jor (‘Tvy) € Ehk.
Proof. Consider the sequence {g,}, gn : EY; U Epp — Ry given by

90 = Gni>
and
i—1j—1
g =0k >N ok (@ v, (gn) ), 1<P<M, 1< <n, (22)
=0 =0

g =0 for (zi,y;) € BN, (23)
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where n =0,1,2,.... We prove that
gn"!‘l(x’y) Sgn(x,y) fOI' (.Z',y) 6Ehk7 7’7/20,1,2,... ) (24)
Jim_gn(2,y) =0, (2,9) € Enk, (25)
lzn (2, )| < Gpp(zy), (z,y) € Epg, n=0,1,2,..., (26)
|zntr(2,y) — 20(2, )| < gn(2,y), (2,9) € Epg, n,r=0,1,2,.... (27)

It follows from condition 3% of Assumption H; that g1(z,y) < go(w,y) for
(z,y) € Epg. Assume that, for fixed n € N, we have g,(z,y) < gn—1(2,9),
(z,y) € Epk. It follows from the monotonicity of op with respect to the
functional variable and from (22) that gn41(z,y) < gn(2,y) for (x,y) € Enp.
Then we have (24) by induction on n € N.

Since 0 < g, (z,y) for (x,y) € Epk, n € N, there exists

g(z,y) = lim gn(z,y), (2,y) € Enk-

It follows from (22), (23) that g is a solution to problem (20), (21). Condi-
tion 4° of Assumption H; implies g(z,y) = 0 for (z,y) € Ens.

Now we prove (26). This relation is obvious for n = 0. If we assume that
|zn (2, ¥)| < Gni(z,y), (z,y) € Epk, then we deduce from (16), (19) and the
monotonicity of oy that

i—1 j—1
7(11+J1)| < hkzz | Fri (@, o, (20) 1)) — Fak (@, Yo, (k) )| +

pn=0r=0
i—1 j—1

+ hk Z Z |Fhk LpsYv, 77hk [1,v] ’ + |¢(l O)| + |¢(OJ)| + |¢§3€70)| =
pn=0rv=0
i—1 j—1

< hkz Zghk('r/uyV7 (ghk)[lh’/]) +

pn=0r=0
ZO 1, 7,
+ 10001+ o8 | + 163 |+ T <70,

where 1 <i < M, 1< j < N;and it is seen that inequality (26) is obtained
by induction on n € N.

We prove (27) by induction on n € N. Estimate (27) for n = 0 follows
from (26). If we assume that for fixed n € N we have

(0,0

1209 0D < gD (24,y;) € Bug, 7=0,1,2,...,

then, applying (14), (16), (22) and the monotonicity of oy, we get

i—1 j—1

o = Al <30S I Fuk s s (o)) =
pn=0rv=0



NUMERICAL SOLUTIONS TO THE DARBOUX PROBLEM 79

- Fhk(x;nyln (Z")[M,V])‘ S
i—1 j—1

< hk Z Z Ohk (fpa Yv, |(Zn+r)[u,y] - (Zn)[u,u] |hk) <

pn=0rv=0
i—1 j—1

< hk Z Z Uhk(xpa Yus (gn)[u,u]) - gfzzfl)a

pn=0r=0

which completes the proof of assertion (27).
It follows from (25), (27) that there is z : EY, U Epx — R such that

Z(z,y) = lm zu(2,y), (2,9) € Ep. U Enp.

Relations (14), (15) imply the function Z is a solution to problem (11), (12).

Suppose that @ : EY, U Ep, — R is another solution to problem (11),
(12), and that |a(z,y)| < gpu(x,y) for (z,y) € Epg. Then we obtain by
induction on n € N the relation

[a(z,y) — zn(x,y)| < gn(z,y) for (x,y) € Epk, n=0,1,2,....

It follows from (25) that @ = Z, which completes the proof of Theorem
1.2. O

Now, we prove a result on the global uniqueness of solution to (11), (12).

Lemma 3.3. Suppose that Assumption Hy is satisfied and the function
O(z,y) =0 for (x,y) € EY, U Epy is the only solution of the problem

i—1j—1

W) < hkz Zahk(x#,yy,w[“,y]), 1<i<M, 1<j<N, (28)
pn=0rv=0

w1 =0 for (xi,y;) € EY,. (29)

Then the solution Z : EY;, U Epi, — R to problem (11), (12) is unique.

Proof. 1f z, u : E}),, U Ep, — R are solutions to (11), (12), then @ =z — @
satisfies (28), (29), and the assertion follows. [

Now, we give sufficient conditions for the uniqueness of the solution w = 0
to problem (28), (29).

Lemma 3.4. Suppose that the function opi satisfies the conditions:
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1° for each function A\ny : Enp — R there exists a solution to the problem

i—1j—1

w(#) > hk Z Z k(T ps Yo W[/W]) + )‘S’;j)’ (30)
pn=0rv=0
1<i<M, 1<j<N,
w®) =0 for (zi,y;) € Epy, (31

20 the function w = 0 is a unique solution to problem (20), (21).
Under these assumptions, the function ©(z,y) = 0, (z,y) € EY, U Epy,
is the only solution to problem (28), (29).

Proof. Suppose that @ : EY), U Epr, — R, is a solution to problem (28),
(29). Consider the sequence {wy,}, wy : EY, U Epx — Ry given by

(i) wo is a solution of (30), (31) for Apx = @,

(ii) if wy, is a given function then

i—1j—1
W =0k TN onwp g, @a)pa), 1<i<M, 1<j <N, (32)
1=0v=0
wT(LZJfl) =0 for (z;,y;) € Epy. (33)

‘We obtain

W(x,y) <wp(x,y) for (z,y) € Epg, n=0,1,2,...,
0 <wpii(z,y) <wg(z,y) for (z,y) € Epg, n=0,1,2,....

The above relations can be proved by induction on n € N.
Let @ : EY, U Epr, — R4 be defined by

w(z,y) = lim w,(z,y).

It follows from (32), (33) that @ = 0. Since @ < w, the assertion follows. [

§ 4. CONVERGENCE OF DIFFERENCE METHODS WITH NONLINEAR
ESTIMATES FOR INCREMENT FUNCTIONS

In this section we consider the particular case of the set Dy. We assume
that K =0, L = 0. We will use the following comparison lemma:

Lemma 4.1. Suppose that K = 0 and L = 0 in the definition of Dpy
and

19 the function Gy, : Apk, X F[Bpk, R] — R is non-decreasing with respect
to the functional variable,
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20 the functions u,v : EY, U Ep, — R satisfy the relations

i—1 j—1

u(i’j) — hk Z Z Ghi (I/u Yu,s u[u,u]) <

pn=0rv=0
i—1 j—1

< 'U(i’j) — hk Z Z Ghk (x;u Yv, U[M,u])a

pn=0rv=0
whenever 1 <1< M, 1< j < N; and w®D) < i) on E,(;k.
Then u(»7) < v(B3) for (xiy;) € Enk.
We omit the simple proof of the lemma.
Denote by = the class of all functions « : [y — R4 such that

lim  «a(h,k)=0.
(h,k)—(0,0)

Assumption H,. Suppose that K =0, L =0 and
1° conditions 19, 29, 49 of Assumption H; are satisfied,
20 the solution W(z;,y;) =0, (xi,y;) € EY\. U Epy, of the problem

0w = opy (s, yjywis ), (T0Y5) € Anky (34)
W) =0 for (zi,y5) € E’gk’

is stable in the following sense: if wpy : E,?k U Epx — Ry is the solution of
the problem

8w = gy (i, Y, wiig) +alh k), (z6,y5) € An, (35)

w®) = ag(h, k) for (zi,y;) € By, (36)

where «, o € E then there is 8 € = such that w,(f,;j) < B(h, k) for (z;,y,) €

Theorem 4.2. Suppose that Assumption Hy is satisfied, and
19wy, © EY. U Epy, — R is a solution to problem (4), (5) and there is
ag € Z such that

1609 — @8I < ag(h, k) for (z4,y;) € B (37)

20 v: E°UE — R is a solution to problem (2), (3) and v is of class C,
on E;

39 the following compatibility condition is satisfied: there is & € Z such
that

|Fhk(xi7yja (Uhk)[i,j]) - f(xhyjav(zi,yj))’ < &(h,k), (38)
(7i,95) € Ak,
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where the function vy, is the restriction of the function v to the set EJ, U
Ehk,
Under these assumptions there exists 3 € = such that

luéil;j) — U;(f;;j)’ < B(h, k), (7i,95) € Eng. (39)
Proof. Let T'py : Apr — R be defined by
511%?) = Frp(zs, v, (Vnr)fig) + F;f;;j)7 (%i,y5) € Apg- (40)
It follows from assumption 2° that there is o;; € Z such that
60557 = Do) | < ar(hy k), (2i,5) € Ang. (41)

From the above inequality and from the compatibility condition (39) we
deduce that there is a € Z such that |F§Z,;J)| < a(h, k) for (z;,y;) € Ang.
Let whi = |upk — vpk|- Then the function wyy satisfies the relations

o i—1 j—1
Wit <0k TS on (@ Yo (Wht) ) + i jk alh, k), (42)
pn=0v=0
1<i<M, 1<j<N,
W < ag(h, k) for (z4,y;) € EY. (43)

Let @ : EY, U Epr, — R4 be a solution of the problem

i—1j-1
w(”) = hk Z Z O'hk(mllv Yu, (w)[%l’]) + aba(h’ k)7 (44)
pn=0r=0
1<i<M, 1<j<N,
w9 = ag(h,k) for (x;,y;) € Eny. (45)

Relations (42), (43) and Lemma 4.1 imply w}(f];j) < @,(f,;j) for (z;,y;) €
FEni. Now we obtain the assertion of our theorem from the stability of the
functional difference problem (34). O

Remark 4.3. If the assumptions of Theorem 4.2 are satisfied then we have
the following estimate for the error of approximate solutions to problem (2),

(3):

Jug?” = o[ @S (@) € B,
where the function @y, is the only solution to problem (44), (45) with g
given by (37), « = @ + a1, and @, a; are defined by (39), (41).
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Now, we consider problem (2), (3) and the difference method

52199 = f(xi,y5, Tanzgig)s (@6,95) € An, (46)
Z(Zvj) = ¢§:I,€J) for (Jf“y_]) € E}?k’

where the operator T}, is defined in Example 2. It is obvious that there
exists exactly one solution to problem (46).

Assumption Hjz. Suppose that the function f : E x C(B,R) — R is
continuous, and there is a function o : E x R, — Ry such that

19 ¢ is continuous, and o(x,,0) = 0 for (z,y) € E;

20 & is nondecreasing with respect to all variables and the function
w(z,y) =0, (x,y) € E is the unique solution to the problem

Dayz(@,y) = o(z,y,2(2,y)), (2,y) € E,
z(2,0) =0 for z €[0,a], 2(0,y)=0 for y < [0,b];
3% the estimate
[f (@, y, w) = f(,y,0)] < o2, y, [[w —w|5)
is satisfied on E x C(B, R).

Theorem 4.4. Suppose that Assumption Hs is satisfied, and

19 upy : BV, UER, — R is a solution to problem (46), and there is oy € =
such that estimate (37) holds;

20 v: EYUE — R is a solution to problem (2), (3), and v is of class C3
on E.

Then there is 3 € = such that

|u§f,;j) - Ugiéj)| < B(h, k), (xi,95) € Eng, (47)
where vy 18 the restriction of the function v to the set Egk U Eng.

Proof. We apply Theorem 4.2 in the proof of assertion (47). Put Dy = By
and

Fre(z,y,w) = f(@,y, Thew),  (2,y,w) € App X F[Dpi, R (48)
Then we have
| Fur (2, y, w) — Fui(z,y,0)| < o (z,y, | T (w — )| 3) =
= U(m,y, ||w — @Hhk) on Apg X F[Dpy, R].
Consider the problem
dw®) = o(x;,y;,w™), 0<i<M-—-1, 0<j<N-—1, (49)
w®) =0 for (z;,y;) € EY. (50)
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We prove that the solution @(z,y) = 0, (z,y) € EJ, U Epg, to the problem
5w(i’j) = J(xiayﬁw(i,j))? (Ihyj) € Ahkv w(i’j) =0 for (Ii?yj) € E2k7

is stable in the sense of condition 2° of Assumption Hs.
Let wpy : Egk U Epr — R4 be a solution to the problem

0w = o (25,5, 0 ) + a(h, k), (2i,y;) € Ang, (51)
w9 = qg(h, k) for (zi,y5) € Epy, (52)
where o oy € E. Consider the Darboux problem
Dyyz(w,y) = o(z,y, 2(2,y)) + a(h k), (z,y) € E,
2(2,0) = ag(h, k) for z €[0,a], 2(0,y) =ag(h,k) for y € [0,b].

)
Since there is 9 > 0 such that if h + &k < o, there is also a solution
znk : ' — R to the above problem, and

li ,y) =0 iforml E. 53
(h7k)Ln1(070) znk (2, y) uniformly on (53)
It follows from the monotonicity of o that for h+k < eq, (2;,y;) € Ank, we
have the relations

xi; Yj

250 = //[o(t,s,zhk(t, $)) + a(h, k)]dt ds + ao(h, k) >
0 0
i—1 j—1
> k>3 o (@ yo 2)) + alh, k)] + ao(h, k).
pn=0rv=0

Then the function zpy satisfies the difference inequality

i—1 j—1
20 > pk SN ot v, 2N alhy k)] + ao(hy k),
pn=0r=0

The function wy;. satisfies the equation

o i—1 j—1
o =0k 3" S 0@y @) + alh k)] + ao(h, k),
pn=0rv=0

1<i<M, 1<j<N.

It follows from Lemma 4.1 that wif,j) < z}(:,j) for (xi,y;) € Epk. Thus the
stability of problem (49), (50) follows from condition (53).

Now, we prove the consistency condition for equation (48). We will use
the following property of the operator Ty ([12]): if w € F[B,R], w is of



NUMERICAL SOLUTIONS TO THE DARBOUX PROBLEM 85

class C® and wyy, is the restriction of w to the set Byy, then there is C > 0
such that

| Thrwne — wl| s < C(h? + K?).

It follows from the above property of T},;, and from assumption 2° that the
operator Fyy given by (48) satisfies condition (39) with @ € =. O

8 5. CONVERGENCE OF IMPLICIT DIFFERENCE METHODS

In this section, we consider a general class of difference problems con-
sistent with (2), (3) which satisfy Assumption H; and are convergent. We
formulate a functional difference equation.

Let K =1, L =1 in the definition of Dy;. We define the operator

Tk : F[Dng, R] — F[[—ag, h] X [—bo, k], R]

in the following way. Let w € F[Dpy, R] and (¢, s) € [—ag, h]x[—bg, k]. Then
there is (x;,y,) such that —My < i <1, =Ny < j < 1land z; <t < xi41,
Y; < J < yjt1. We define (Thrw)(t, s) as the right-hand side of formula (9).
Denote by Spy : F[Dpg, R] — F[B, R] the operator given by

(Shrw)(t, s) = (fhkw)<t + g s+ g) (t,s) € B.

The function Sp,w is the restriction of the function T, hiWw to the set [—ag +
& L) x [~by + %, £] which is shifted to the set B.
Consider problem (2), (3) and the difference equation

0209 = f(w1,y541, Snkig), 0<i<M—1, 0<j<N—1, (54)

with boundary condition (5).

Assumption Hy. Suppose that the function f : E x C(B,R) — R is
continuous and there is L € R, such that

|f(x7y,w)—f(x,y,ﬁ)|§Z||w—@||p on EXC(B7R)

Theorem 5.1. Suppose that Assumption Hy is satisfied and

199 : EYUE — R is a solution to problem (2), (3), and v is of class C*
onE,

20 abL < 1, and there is g € = such that inequality (37) holds true.

Then there exists exactly one solution upy, : EY, U Epg — R to problem
(54), (5), and there is C € Ry such that the following error estimate holds:

i o Cxayy(h? + k) + 200 (h, k
’uﬁllj) _ U(l,])’ < < y]( + ) +~ Oé()( )7 ((Eiayj) c Ehk~ (55)
1 —,lejL
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Proof. We put

Fur(@i yjw) = f(03,Yj401, Smew), (20,95, w) € Apg X F[Dyy, R).
Then Fjy, satisfies the Lipschitz condition with respect to the functional
variable with the constant L. Put

U(xa:%w) = ZHw”hkv (x?va) € Ahk? X F[th:aR-l‘]' (56)

Then equation (20) is equivalent to

i J
W) =hk> N L|wjp-to-ylle, 1<i<M, 1<j<N.

p=1lv=1

The above equation with boundary condition (21) is equivalent to the prob-
lem

w®) =0 for (z;,y;) € By

It follows from assumption 29 that problem (57) satisfies conditions 39, 4°
of Assumption H; and that the unique solution to problem (28) (29) with
o given by (56) is w(z,y) = 0. Then there exists exactly one solution
upk, : B, U Ep — R to problem (54), (5).

Let T'pi, : Apr — R be defined by

dupi! = F@ir 1,901, Snr(ne ) ) + i’ (@i,95) € Ane.

There is C € R, such that we have
(0017 = Dayo(aiy 3.y542)] < OW* + 1), (wi,;) € An,
and
| Tk (Vhi) (3,31 (£ ) = V(i) (1 8)| < C(R? + K2),
where (t,s) € [—ag,h] X [=bo, k], 0 <i < M —-1,0<j <N —1. Then

there is C € Ry such that |F§11,’CJ)| < C(h? + k?) for (zi,y;) € Apk. Let
Whk = Upk — Vpk- Obviously, the function wyy satisfies the inequalities

i—1 7—1

w1 < 1k ST ST [L(lwnk) sk + C(h2 + k2)] + 2a0(h, k),
pn=0rv=0

1<i<M, 1<j<N,

(.uh’i) < ag(h,k) for (z;,y;) € Egk,.
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The function

i Cziyi(h? 4+ k2) + 2a0(h, k
w}(ﬂ;]) — z y]( + )+~ Oéo( ) , (%,yj) c Ehk,
1 —,CCZij

&,(:];J) = 20[0(/1, k‘) for (Jﬁi,yj) S Egk?

satisfies the inequalities

i—1 75—1
W7 > 1k 30 ST (L) o s + C(B* + K2)] + 2a0(h, k),
pn=0rv=0

I<i<M, 1<j<N,
w®) > qg(h, k) for (zi,yj) € Epy.
Consequently, we obtain assertion (55) from Lemma 4.1. O

Numerical example. Define E = (0,1]x(0,1], E° = ([-3,1]x[5, 1])\E
and B = [—3,0] x [-£,0]. Consider the Darboux problem

Dyyz(z,y) =2(z +y) (2(x — 0.25,y — 0.25) — z(z,y)) —

0
—(ery)//z(x+t,y+s)dtdz+f(x,y), (58)

Nl
Nl

(z,y) € E,
2(z,y) =sin(l+z+y) for (z,y) € E°, (59)
where
fl@y) = (@ +y—Dsin(l+z+y) - (z+y)sin(z +y).
Let My, No, M, N be natural numbers which satisfy
Moh =0.5, Nok=0.5, M =2My, N =2Nj.

Assume that My and Ny are even numbers. Consider the difference equation
corresponding to equation (58)

029 = 2(x; 1 + ;4 1) (Snrz(i.5) (=025, =0.25) — Shiz(;.5(0,0)) —

0 0
— (@1 +Y11) / /Thkz(i,j)(tas)dtds+f(i’j)>

N
W=

0<i<M-1, 0<j<N-1.
Let mozéMo and n():%No. Then we have

Shkz(i.)(—0.25,-0.25) = I' [0, j],  Sprz(is(0,0) = IO, 4],
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where
](—)[i’j] — i(z(i—mod—no) 4 plimmotlj—no) 4
+ Z(i—m07j—no+1) + Z(’i—mo4‘17]4—77/0-‘1'1))7

1O, j] = i(z(i’j) G2 ) g L)Y

Let w € F(Bpg, R). Then
Tit1 Yj+1 bk
Ty (t, s)dt ds = == (w4 w4 4y (FLIHD)
T Yj

and consequently
0 0
/ / Tth(i)j)(t, s)dtds = I[i, j],

where

I[Z,J] = 7(2(7’_M07]_N0) + Z(l)]_NO) + Z(Z—MO)]) + Z(")])) +

Moy—1
4+ Z (Z(i*MovLi/yj—No) + Z(i—MoJri',j)) +
=1
No—1
4+ = Z (Z(i*Mo,j*NOﬂLj/) + Z(i7j*N0+j')) +

-

7=
Mo—1 No—1

+ hk Z Z Z(i—Mo-l-i/J—No-‘rjl).

ir=1 j'=1

We approximate the solution v : EY U E — R of problem (58), (59) by
means of solutions of the implicit difference equation

S+ L (L) _ (0d41) 4 () _
= —hk(z;y 1 +y; )15 +
+2hk(T;q 1+ yj41) (I(i)[iaj] 1 [i,5]) + hik £, (60)
0<i<M-1, 0<j<N-1,

with the boundary condition

29 = sin(1+x; +y;), (2i,95) € E?Lk' (61)
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The function v(z,y) = sin(1 +x + y), (z,y) € E° U E, is the solution to
problem (58), (59). Let up, : EY, U Epry — R be a solution to problem
(60), (61), and epg, = Vpg — Upk, Where upy is the restriction of the function
v to the set E}?,k U Eji. Some values of nglf) are listed in the table for
h=Fk=1073.

TABLE OF ERRORS

r=08)0 =08 =09 =095 r=1
y=080 1.32510~* 1.59710* 1.89810~* 2.22910~* 2.59310~*
y=0.85 1.58710~% 1.90510~% 2.24410~* 2.61810~* 3.02810~*
y=090 1.89810~* 1.24410~* 2.62710~* 3.04810~* 3.51010~*
y=0095 222910~* 2.61810~* 3.04810~* 3.52110~* 4.04110~*
y=1 259310~* 3.028107* 3.51010~* 3.64110~* 4.62510~*

The computation was performed by the computer IBM AT.
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