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TO THE PROBLEM OF A STRONG DIFFERENTIABILITY
OF INTEGRALS ALONG DIFFERENT DIRECTIONS

G. LEPSVERIDZE

ABSTRACT. It is proved that for any given sequence (on,n € N) =
T'o C T, where T is the set of all directions in R? (i.e., pairs of ortho-
gonal straight lines) there exists a locally integrable function f on R?
such that: (1) for almost all directions ¢ € I'\I'g the integral ff
is differentiable with respect to the family Bg, of open rectangles
with sides parallel to the straight lines from o; (2) for every direction
on € I'g the upper derivative of f f with respect to Ba,,, equals +00;

(3) for every direction o € T the upper derivative of f | f] with respect
to Bas equals +oo.

§ 1. STATEMENT OF THE PROBLEM. FORMULATION OF THE MAIN
RESULT

Let B(x) be a differentation basis at the point z € R™ (see [1]). The
family {B(z) : x € R™} is called a differentiation basis in R™.

For f € Li.(R™) and x € R™ let us denote respectively by Dg(f)(x)
and Dg(f)(z) the upper and the lower derivative of the integral [ f with
respect to B at x [1]. When these two derivatives are equal their common
value is denoted by Dp(f)(z) and the basis B is said to differentiate [ f if
the relation Dp(f)(x) = f(z) holds almost everywhere.

Let By denote the differentiation basis in R™ consisting of all n-dimen-
sional open intervals, and Bs(z) be the family of sets from Bs containing
x.

Let o be the union of n mutually orthogonal straight lines in R™ (n > 2)
which intersect at the origin. The set of such unions will be denoted by
['(R™). Elements of this set will be called directions. Note that I'(R?)
corresponds in the one-to-one manner to the interval [0, T) (see [2]).

For a fixed direction o we denote by Ba, the differentiation basis in I'(R"™)
which is formed by all n-dimensional open rectangles with the sides parallel
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to the straight lines from o. If By, differentiates f f at x, then the integral
[ f is said to be strongly differentiable with respect to o at .

The following problem was proposed by Zygmund (see [1], Ch. IV): Given
a function f € L(R?), is it possible to choose a direction o such that [ f
would be strongly differentiable with respect to o?

Let W(R™) (n > 2) denote a class of locally integrable functions on
R™ whose strong upper derivatives Dp,_ (f)(x) are equal to +oc almost
everywhere along each fixed direction 0. When solving Zygmund’s problem,
Marstrand [3] showed that the class W (IR?) is not empty, and thus his answer
to the above stated problem was negative. A stronger result was obtained
by Lépez Melero [4] and Stokolos [5].

In connection with Zygmund’s problem we had the following question
[2]: Given a pair of directions oy and o9 differing from each other, does
there exist an integrable function f such that the integral [ f is strongly
differentiable a.e. with respect to o1 and strongly differentiable with respect
to o9 on the null set only? Theorems 1 and 2 from [2] give a positive answer
to this question.

It is known ([1], Ch. III) that if [|f] is strongly differentiable almost
everywhere, then the same holds for [ f. Papoulis [6] showed that the
converse proposition does not hold in general. Namely, there exists an inte-
grable function f on R? such that the integral [ f is strongly differentiable
almost everywhere, while [ |f] is strongly differentiable on the null set only.
Zerekidze [7] has obtained a stronger result from which it follows that for
every function f from W(R"™) there exists a measurable function g such
that | f| = |g| and [ g is strongly differentiable almost everywhere along all
directions. In other words, changing the sign of the function on some set, we
can improve the differentiation properties of the integral in all directions.

There arises a question whether the following alternative holds: Given
function f from W(R?), can the differentiation properties of the integral
| [ after changing the sign of the function be improved in all directions or
they do not improve in none of them?

The following theorem gives a negative answer to this question and
strengthens the results of Papoulis [6] and Marstrand [3].

Theorem. Let the sequence of directions (04,)22 ¢ be given. There exists
a locally integrable function f on R? such that:

(1) for almost all directions o (o # o,, n € N),

Dp,, (f)(x) = f(z) ae;
(2) for every direction o, (n € N),

Dg,,, (f)(x) =400 a.e;
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(3) for every direction o,

Dp,, (If)(x) = +o0 a.e.

Remark. If the sequence (0,)52; consists of a finite number of directions,
then in item (1) instead of ”for almost all directions” it should be written
“for all directions”.

Corollary. There is a function f € Lioe(R?) such that:

(a) the integral [|f| is strongly differentiable a.e. in none of the direc-
tions;

(b) for almost all irrational directions the integral [ f is strongly differ-
entiable a.e., while for the rational directions it is strongly differentiable on
the null set only.

§ 2. AUXILIARY ASSERTIONS. PROOF OF THE MAIN RESULT

Before passing to the formulation of auxiliary assertions let us introduce
some notation and definitions.

For the set G, G C R?, OG is assumed to be the boundary of the set G
and G its closure. By E we denote the unit square in R2.

Given a natural number n, let us construct two collections of straight
lines: x =en ! andy =en~', e=0,1,...,n, which define the rectangular
net ™ in the unit square F and divide it into open square intervals E},
k=1,2,...,n%, with sides of length n~1.

For the rectifiable curve ¢ denote by d(c) its length.

The set of measurable functions on R™ taking only the values —1 and 1
will be denoted by S(R™).

For the measurable set G, G C R2, the number A\, 0 < A < 1, and the
direction o, denote by H(x,,A) the union of all those open rectangles R
from Bs, for which

IR|! / Xe@)dy = A,
R

where x. is the characteristic function of the set G. If, moreover, o is a

standard direction, then the set H?(x,A) will be denoted by H (x., A).
Furthermore, for the interval I = (0,e1) X (0, e2) and the numbers A and

c(0<A<1,1<c¢< o0) we define the interval Q(I, A, ¢) as follows:

Q(I,\c) = [—c)flel,(l—kc/\*l)el} X [—62,262].
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Let o be a fixed direction and let f € Lj,.(R™). In the present work we
consider the following maximal Hardy—Littlewood functions:

Mg, f(z)= swp |R™ / £ (y)ldy,
) R

REB2, (x

My, f@) = sw (R [ )
R

REB3,(x)

The validity of the following two assertions can be easily verified.

Lemma 1. Let 0 < £ < 1 and n. = 9~ 1. Let, moreover, c be a conti-
nuous rectifiable curve in the unit square E and let d(c) < 1. Then for every
natural number n, n > n., the following relation holds:

’U E}| <e,

keTy

where T, is a collection of those natural numbers for which the square E}}
from the rectangular net E™ intersects with the curve c.

Lemma 2. Let oy be a fized direction from T'(R?). Let I°' be a rectangle
from Bas, and B be a circle (on the plane). Then:

(1) }H"l (ch,l,)\)| > A Hn( A Y|, 0< A< 1;

(2) for every direction o,

|H (x5, A)| > A In(A"Y)[Bl, 0<Ax<27h.

Lemma 3 (Zerekidze [7]). Let € > 0. There exists a function s €
S(R™) such that
’/s(w)dn‘ <&,
S

where 7y is an arbitrary interval in R™ and dn is the Lebesgue linear measure
on .

Lemma 4 ([2]). Let I = (0,e1) x (0,e2) and let o be an arbitrary non-
standard direction from T'(R?). There ezists a number (o), 1 < c(o) < oo,
such that for every A\, 0 < A < 1,

H(x;,A) C Q(I, A, c(0)).
If, moreover, c(oc)A\"te; < eq, then
[H7 (¢, V)| < 9c()A 1],

Proof of the theorem. The proof of the theorem is divided into several parts.
1°. We define some auxiliary sets.
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For any natural n > 2 denote
I"={cel(R?:0<a(o) < 9~ (n+1) n~thu
U{o e D(R?) :m27! — 27T . p~t < q(0) < w271 },1
cn =sup{c(o) : 0 € D(R*)\["},

n—1 n—1
B, = max { exp(c,n?2%"); 2( Z n1Bn, + Z )\nl) }7 (1)

ny=2 ny=2

Ao =2(na + S (i, + ) (2)

ni =2

Let I = (0,€?) x (0,€3) be the interval for which
ey = c,n2"Bpe’.

Assume
Q" = QU", (2 B) ", cn).

Denote by Q*™ the interval with the same center of symmetry as Q™ but
with edges four times larger. Next, for e = 1,2,...,n denote by I, Q7,
and Q" those rectangles from By, which are obtained from the intervals
I™, Q", and @Q*" by rotation with respect to the center of symmetry (the
centers of symmetry of the intervals I, Q™, and Q*™ coincide).

Assume

H;‘:H"e(xln,ﬂ;l)UQZ”7 e=12,...,n,
as =1/2, an:rn,l(M”_l )_1, n > 2.

Mnp—1
The sets HY (e = 1,2,...,n) are compact. We use Lemma 1.3 from
[1] and cover almost the whole unit square E by the sequence of non-
intersecting sets Hi}, j = 1,2,..., homothetic to H{" such that all sets
HY; are contained in the unit square and have a diameter less than a,. By
applying a similar treatment to the sets H', e = 2,...,n, we obtain
‘E\jf:legj — 0, diam(H}) <an, e=1,2,...,n, j=1,2,.... (3)

Let P (e=1,2,...,n,j=1,2,...) denote the homothety transforming
the set Hy' to H;. Assume

Igy = PG(10), Qg = P5(Q0) Qe = P5(QC")-

IFor the direction &, the number 0 < a < 5 is defined as the angle between the
positive direction of the axis ox and the straight line from o lying in the first quadrant

of the plane.
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Denote by b,, the circle with center at the point (27%,27!) and of radius
Tn, 0 <7, < 1. Choose a number r,, so small that the conditions r,, < r,_1
and H(x,, ,A,') C E are fulfilled.

n

For the direction ¢ denote the set H7(x, ,A,"') by h™(c) and for the
standard direction use the notation h™ = H(x, ,A;'). Let my, be a fixed

natural number satisfying the condition

Let M{',M3,..., My, ~be a collection of natural numbers such that
MpP < My < --- < MP . Let us consider the rectangular nets EM

EMs . EMm.. Denote by . (k=1,2,...,mp, i =1,2,...,(M")?) the
homothety transforming the unit square E to the square EZM ¥ from the
rectangular net EM¢ . Assume (o € T'(R?)),

By = qy;(bn), ri(0) = qpi(h" (o)),
(M,

Gio) =" U (o),

n)Z

k—1
Q2(0) = kluzlGil (0), k>1,

Qv n—1 Mnq n1 k—1 n
plo)= U, W2, G, (o) U W2 Gk (o), n>2,
k—1
0 => (M})? k>1,
k1=1

n—1 Mny

k—1
=Y (MY (ME)?, > 2,

n1=2k;=1 ko=1
wi = 2r, M, k> 1,
wp =20p sup {|E\QZ(U)|_1}

oel'(R?)
Choose numbers M}}, k = 1,2,...,m,, increasing so rapidly that the
relation
M > max {20, d(OR"); 9wiis Myt k™ (5)

is fulfilled.

2°. We shall construct the function sought for.

Let B;T be the circle with the same center as By, and a twofold larger
radius. Assume

At ={1,2,...,(M7)*},
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Z:{’ EMkm(E\<k 1 (M7)?

U Bkm)) 7&@} (k=2,...,m).
Let S, € S(R?). The functions vy, g, and f, will be defined for n =
2,3,..., as follows:

ﬂnzlen :E, gn —/\S ZZXB"
e=1j=1 k=1i€A}
fr(@) = gn(z) + n(2).
The index function is defined as the series f(x)

z :OOZZO:z fa(z).
Let us prove that f € L(R?). We have ||f[l1 <> ory (Itnllt + lgnllr)
First we estimate ||¢y]|1. Using Lemma 2(a) and formula (1), we obtain

[nlls <071 (B82) YD Baln(Ba)| 1] <

e=1 j=1
n

n~H(Ba) ) u HY,

e=1

=nln"'(3,) <27

Similarly, applying Lemma 2(b) and relations (1), (2), (4) we have

My
lgnlly <~ (Z Z Aatn(Aa)|BE 1) <
k=1 i=1
<In"' )M |ha| < 277

The two latter relations yield the desired inclusion

3°. Here we shall prove that for almost all directions o (o # oy, n € N)
the integral [ f is strongly differentiable a.e
a

(a) Let us first estimate the maximal function M}, g,
sets

. Introduce the
k=1i€Ay

and let p, =

k=1icA7p
pmy (M2
By Lemma 3 we can assume that

Sup‘/sn dn‘<r 2"\ pn m”)_1

(6)

where v is an arbitrary interval of an arbitrary straight line in R? and dn is
the Lebesgue measure on
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Let us show that for every direction o and for all  from R?\B*" the
inequality
Mg, gn(z) <27", n=2,3,.... (7)

is fulfilled. This inequality will be proved only for the case where o is a
standard direction, since the general case has a similar proved.

Let us fix a natural number n (n > 2), a point x from R*\B*", and a
interval R from Bg(x). We assume that RN B™ # @ and (k1,4) (1 <k <
My, 1 <i < (MJ)?) is a pair of natural numbers for which

RNBy, # 0. (®)
From the inclusion z € R?\ B*" we have
dist(z, By,;,) > dist(0B}",, B.i,) = ra(MP )™ > rp (M )7h
Taking also the inclusion « € R and (8) into consideration, we get
diam(R) > r,, (M )"

Let R = Ry X Ry. It follows from the last relation that at least for one
p (p = 1,2) the length of the interval R, is underestimated as follows:

|[Rply > 27 (M, )7 (9)
Without loss of generality we assume that p = 1. We have (see (9), (6))

IR| 1’/% dy‘<)‘|R|lzZ‘/5n W ( dy’<

k=1i€A}

< Al R[™ IZ > / /Sn Y1 Y2)Xr, (Y1, 92)X . (415 92) dylldyz

k=1 zEAkRz Ry

< Al Ba| " on sup’/sn(y)dn’ <27
ol
;

To complete the proof of relation (7) it remains to note that R € By(z)
and is arbitrary.

Let us now show that |B*| = 0, where B* = lim,,_, o, sup B*".

Indeed, using relations (4) and Lemma 2 (b), we obtain

Z|B*”|<Zﬁ Yn=Y(5,) Z Z An In(\)|B?| <

k=1 1i=1

< 422ﬂ;11n—1<6n> Z |h"| < 82:25;11n_1(ﬁn) < o0
n= k=1 n=
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Thus |B*| = 0, and hence for every x € R?\B* there exists a number p; ()
such that

r € RA\B*" for n > pi(z). (10)

This and inequality (7) imply that for every direction o and for all x from
R?\ B* the following relation is fulfilled:

Mg, gn(xz) <277 for n>pi(x). (11)

(b) We will now proceed to the estimation of Mp, v,. Taking into
account Lemma 4, we find that each one of the following inclusions are
fulfilled:

H (X;n, (n2"0) ™) € QU™ (n2"n) ", c(0)) € Q"
for o€ T(R*)\I™.

Without loss of generality, we assume that every direction o,, n € N, is
not standard. Suppose (k=1,2,...,n),

i ={o e T(®);|a(o) — a(ow)| < 27"V}

Since the rotation is a measure-preserving transformation and the centers of
symmetry of the intervals I™ and Q™ coincide, from the previous inclusion it
follows (by virtue of the homothety properties) that the following inclusions
hold:

H (X, (n2"3,)7") € Qfy for o€ r(®?)\ U 7, (12)
k=1,2,...,n, j=1,2,....

The definition of the rectangles Q¢; and Q7 immediately implies that for
every direction o there exists a rectangle E; (o) € By, possessing the prop-

erty
e; CEZ(0) C Q. (13)

We have [Q;}| = 16|Q¢;| < 144¢,3,2"n|1J;[. On the other hand, by
Lemma 2 (a) we have

[H7 (X, B2 )] 2 B (8|15 ] > cnn®2%" Bl 125 .
The last two relations imply

i < 144§:n_12_"zn:i|ng\ =
n=2

n=2 e=1j5=1

oo n
_ —1lo— I8
_144§2n 2 "El‘jglﬂgj
n= e

=1j=1°%

e=

< 144 Z 27" < 0.
n=2
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n oo
Hence |@Q*| = 0, where Q* = lim,,_, sup U1 'U1 (@
e=1j=

This in turn implies that for all points  from F\Q™* there exists a number
P5(x) such that

zeBE\ U UQm for n>Pyx). (14)
e=1 j=1
Further we have

‘GF"
e=1 €

n n

<Y => " nt2r =27

e=1 e=1

Consequently |T'| = 0, where I' = lim,,_, o, sup GlFQ.
o=

This implies that for every direction o from I'(R?)\T" there exists a num-
ber n(o) such that

o € T(R?)\ Ql I for n>n(o). (15)
Now let us show that if o € I'(R?)\I' and = € E\Q*, then
Mp, tn(z) <27" for n > Py(z,0), (16)

where Ps(z,0) = max { P2(z);n(0)}.

Indeed, let us fix a direction o from T'(R?)\T', a point z from E\Q*
and a rectangle R from By, (x). Let n be a fixed natural number and
n > Py(z,0). Since 0 € T(R?))\I' and n > Py(x,0) > n(0), it follows from
(12), (13), and (15) that for all e, j (e =1,2,...,n, j =1,2,...) the chain
of inclusions

H (x,y, . (n2"B,)7) € QU € By(0) € QI a7

is fulfilled. Since x € F\Q* and n > Py(x,0) > Py(z), from (14) and (13)
we have

er\ U UQrce\ U UE"(0)
* 1j=17°¢ =1 jor @i\

e=

Let {j1,...,7s.} (e=1,2,...,n) be a set of natural numbers for which
|[RZ NI, > 0,i=1,2,...,8. If we observe that the set R’ N E7},
(i=1,2,...,8, e=1,2,...,n) is a rectangle from Bs, containing at least

one point from E\H(x,. ,(n2"3,)~") (see (17)), then we obtain

RN EY, (@) X (9)dy =

RGOE:ﬁ (o)

= |R7 B (o) R AL | < (n208,)

€Jj
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and consequently

|R7 NI | < (n2"3,) " |R7 N EY (o)

,e=1,2....,n, 1t=1,2,..., 8.

Next, since the rectangles QZ7', j = 1,2, ..., do not intersect for every fixed
(and hence the rectangles £ (o), j = 1,2,...), we have

(R”ﬂE” ))‘§|RU|, e=1,2,...,n.

=1
The two last relations yield

R7|- 1/% iy = R SOS R AT <

e=1j5=1

<ﬁ|RO’| liZnQnﬁn 1|RaﬂEn |f

e=1i=1

n
—1log—n|po|— i o n -n
— 127" R 1;‘1»51(}% NEy, (@) <27,

To complete the proof of (16), it remains to note that R € Bs,(x) and
is arbitrary.

(c¢) Let us show that for almost all directions o the maximal function
Mpg, [ is finite a.e. on R2. Suppose

P(z,0) = max{Pi(x); Px(x,0)}.

Fix a direction o from T'(R?)\I', a point z from E\(Q* U B*), and a
rectangle R from Ba, ().

We have
P(ro)
B7|- 1\/f | < 3 1 l/lfn )iy +
R / > <y>dy\ = a1 %) + e, )
Ro n=p(x;0)
and
P(z,0)
.’13 RU Z MBzgwn Z MBzggn
P(z,0) (z,0) P(%U)

< 3 Mol + Z lgallim < 37 (B + muda).

n=2
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Estimate now ag(xz, R?). Using the theorem on the passage to the limit
under the integral sign as well as relations (7) and (16), we obtain

wer) < 3 R [ @] <
P

n=p(z,0)+1
< Y (Mp,,Ya(x) + M, ga()) < 2.
n=p(z,0)+1

Hence

p(z,0)

|RU|_1’ /f(y)dy’ < Z (nBy +mpAp) +2 < oo
e n—2

Since the right-hand side of this inequality does not depend on a choice of
rectangles from Ba, (), we get

Mg, f(z) <oo, o €T(R*)\I', z€ E\(Q*UB").
Consequently for o € T'(R?)\I" and for x € E\(Q* U B*) we have
—00 < Dp, (f)(x) < Dp,, (f)(z) < +oo.

Using now the Besicovitch theorem on possible values of upper and lower
derivatives (see [1], Ch. V), we obtain (|I'| = |Q* U B*| = 0) and for almost
every direction o (o # oy, n € N) the relation Dp, (f)(z) = f(x) is fulfilled
a.e.

4°. Tt will now be shown that for every direction o5 (s € N) the strong
upper derivative of the integral [ f is equal to +oo a.e. on E.

To this end we fix a natural number s and notice that |Js| = 1, where

N”L
Js = lim,,_,oc sup .UlH"S (X;n » B t). Indeed,
j= sj

Ny,
1= lim sup U HJ;| < +

n— 00 j=1

, Ny o
lim sup .UlH”‘”‘ (X;n > Bn
j= sj

n—oo

= |JS‘ + |Q*| = |JS|~

+

N,
. *n
nlggo sup _ngsj
J_

Let D, = A DI, where D = {y € B D, 0, (fa)(y) = fu(y)}-

Since the basis By differentiates the integrals of the bounded functions
(see [1], Ch. III), it is evident that |D?| =1 for every n = 2,3,....
Let us fix a point « from J, N Ds\(Q* U B*) and prove that

D, (f)(@) = +oc. (18)
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Since = € Jg, it is clear that there exists a sequence of pairs of natural
numbers (ng,i4)92; such that

HAS HUS(XI'ng aﬁ';ql>7 q= 1727 cee

siq

which by the construction of the sets H7=(x ra B ) implies that there

57,q

exists a rectangle R7* from Bg, () such that RJ* C H? R7< D Inq nd

527

R [ X @y = 5,0 =12 (19)

sig

Ts
R‘I

Without loss of generality we may assume that n, > p(z,s),¢=1,2,...,

where p(z, s) = max{p1(z); p2(x); s}. We have
[ (X fatw)ay+

-1 / fuly)dy = |R2e |1
RCs RC® n=2
o0

el [ (% @)ar+mg [ (3 faw)dy -

RZS p(x,s)<n<ng R;’S n=ng

= a1 (21, RY*) + az(z1, RY*) + az(w1, RYY). (20)

p(z,s)

|Rg*

Consider the limits lim,_. o a;(z, R7®), i=1,2,3,
(a) First let us show that the limit of a1 (z, Rg*) for ¢ — oo is equal to
f(z). Indeed, since x € E\Dy, diam(R7*) < an, \ 0, — 0o, we have

lim aq(z, R" Z hm RU*

q—00

/f (y)dy =
Ry

p(,s) p(z,s)

Z DBQ‘, fn Z fn

Let n > p(x, s). Then by (10) and (14) we have

ze E\(B"U U U Q) C E\supp(fn).
e=1j=1

Hence Zf;p(w s) fn(2) = 0 and consequently,

(21)

lim a4 (x, R” an

q—00
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(b) Let us now show that the values az(z, Rg*), ¢ = 1,2,..., are nonnega-
tive. We shall assume that {n : p(z,s) <n < ng} # @. Using the fact that
the functions 1, (n =2,3,...) are nonnegative, we obtain

w@ Rz Y B [ ey =

p(z,s)<n<ng Ros
q

— Z Z > IR 1/ n (W)X (W)X o (W)dy. (22)

p(x,s)<n<ng k=11€A}

It is sufficient to show that for k =1,...,m,, i =1,...,(M)? we have
BN Ry =@, p(z,s) <n<ng. (23)

Towards this end we fix the natural numbers n,k,i (p(z,s) < n < ng,
k=1,2,...,mp, i =1,2,...,(M")?). Since p1(x) < p(z,s) <n < ng, it is
obvious that z € E\B*" (see (10)) and

dist(x, BY;) > dist(OB;", BY) = (M) ™!

If, moreover, we recall that r, > r, _1 and M} < M&:;}l, then we
obtain

dist(z, BYy) > (Mgt )M,

:an
g—1 q

Y
On the other hand, R7* C H;Z and diam(Rg*) < an, (see (3)). Hence
diam(Rg*) < dist(x, BY;), and since = € R7*, we have R7* N BY; = @. Thus

(23) is valid and hence (see (22))
lim as(x, R7*) > 0. (24)

q—

(c) Let us show that as ¢ — oo the limit of the value ag(z, R*) is more
than unity. Using the theorem on the passage to the limit under the integral
sign as well as the fact that the function 1), is nonnegative, and relations

o0
—1 / oy (y)dy + Z |RZ*
R

az(x, Ry*) = | Ry

(19), (11),we have
! / faly)dy >
n=ng+1

LA ENOTEDS mﬂﬂ/%dy
R® "=

Nq

1-— i Mp,, gn(z) > 1— Z 27" q=1,2,....

n=ngyg n=ng

Y

>

Y
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Consequently,

lim az(z, R7*) > 1. (25)

q—00

Now we are able to establish (18). Indeed (see (20), (21), (24), (25)),

- / fy)dy = thg) (a1(z, RJ®) + az(x, R7*) +
R

lim |RJ®
q— 00 4

+as(z, RY*)) > f(z) + 1

and hence D, (f)(z) > f(z), z € J,\(Q*UB*UD) which by virtue of the
above-mentioned Besicovitch theorem implies that (|J,\(Q*UB*UD)| = 1)

Dp,, (f)(z) =+ ae. on E.

5°. We shall prove that for every direction ¢ the strong upper derivative
of the integral [ |f| in the direction o is equal to +oo a.e. on E.
(a) Let us prove first that

lim sup ;@anZ(J)’ =1. (26)
Indeed, since
YD IGE@) =) malh"| = oo,
n=p k=1 n=p
for any p=2,3,..., we have
[TIIa-27"GRe)) =0
n=p k=1

and hence to prove (26) it is sufficient to show that

n—1 Mny n1 k " ‘
<
B\(,T, UG o), U 6G10)| <
n—1 mnl k
< [T ITa-276 @) [T (=276 () (27)
ni1=pk;=1 ko=1
for every fixed direction o and numbers n,p, k (n =2,3,...,p=2,...,n—1,

E=1,...,my).
The proof of this relation will be carried out by induction. Indeed,

[E\GY(0)| = 1 - |G(0)| < 1—27"GY(0)].
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Without loss of generality, we assume that n > 2, £ > 1 and

B\( " VU emoyu ey ()| <

ni=p k=1 kg1 2 =
n—1 Mny k—1

<TI T (-2 e @) I (1 -2 Y6y, (0))). (28)
n1=pk;=1 ko=1

Owing to this relation, we can prove (27). Assume

i M” n—1 Mn "y k—1 n
ai(o) = {z E7R N (nlu_pklg oG (o )uk;ilaGkQ(aD # @},
. . M,? n—1 Mn n k—1 n

as(o) = {2 BT C mu_p klulG (o )UkzLile2(a)},

as(0) = {1,2,...,(M,?) }\(a1(a) U as ().

For ni, klv ’il (’17,1 = 2,3,..., kl = 1,2,...,mn, ’L'1 = 1,2,....(M£11)2)
assume further

apla (@) = {i: B non, (o) £ 2.

Clearly, for every triple of natural numbers nq, ki, 41 (n1 = 2,3,...,
ki=1,2,....,m,, 11 =1,2,... .(M;Lll)?) it follows from the condition M;!! >
d(Oh™) (see (5)) and from the homothety that

d(On}Y; (o)) < (My1)~'d(on™) <1
which by the inequality M;" > 9w} (see (5)) and Lemma 1 implies

u B

. ny
i€ay (o)

< (wi) 7

This yields

1

U, B S OR@D) T < G0HB\RR() )T <
1€ai (o
1 k—1
<271 E\Q}(0)| < 2° ‘E\( U Gue)u U GZ2(0))‘.

ni1=p k1= 1 ko=1

On the other hand, it is easily seen that
n—1 m,, k—1
fond ™ n ‘
ZGaLZJ(O') nlu—p k= 1Gk1 ( ) U k2Lile2 (U)

From the last two relations we obtain

u EM ‘E\(

i€as(o)

(IR INTREAC)IE

ni1=p k;=1
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Now let us derive (27). The last relation and (28) (by virtue of the
homothety property) imply

‘E\( U

e u b oar ()| <
k1 kol k2 —=

ni=p k;=1
<|g n—1 Mnq na k—1 n M,:L n
<|B\([0, U Grou U 6L0)| - 9, B 6] <
n—1 Mnq k
< I I] -2 @) ] (1 —27YGr (o))
ni1=p k=1 ko=1

(b) Let us strengthen now relation (26) and show that

lim U U Zi(a)‘:l. (29)

n—oo k=11€A}

which will immediately follow from (26) if we prove that the equality

N o) = & U he) (30)
e R T
holds for any pairs of natural numbers n, p (n =2,3,...,p=1,2,...,my,).

Checking it inductively, we can see that it is fulfilled for p = 1.
Assume now that p > 1 and

p—1 (M()? p—1
hi; = hi.(o).
k=1 igl ki) kLle iELil;"' k(@)
Owing to this equality we can easily obtain (30). For this it is enough to
note that

y n n 3 n M;L *70 n
for i € {1,2,...,(M})*}\ Ay, since h7;(0) C E; * and B (o) C h; (o)
(k1 =1,2,...,p—1,i1 = 1,2,..., (M]")?).

(c) Establish that for every natural number n

gn(x) = Axpn(z), z€ R2. (31)

It is enough to show that for fixed n the circles B}, do not intersect. On
the one hand, to this end we can show that the equality

BLNBL, =@ (32)

is fulfilled for any pairs k, ¢ and ki, @1 (kK = 2,...,my, ¢ € A}, k1 =
L2, k=14 € A})).

Indeed, it follows from the inclusion i € A} that one of the two cases
may take place:
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W) B 0B, = o
2) EM noByn, + @.
Obviously, relation (32) is fulfilled in Case (1). Let us consider Case (2).
The condition M} > wjl = 2r, ' M' | > 2r; ' M} (see (6)) implies
diam(EME) < 2(MP) ™ < (M) 1

K2

On the other hand, dist(0B;"; , B, ) = ro(M}) "
It follows from the last two estimates that in Case (2) we have EZIV e
B} ; = 9. To complete the proof of (31) note that By; C EZM" .

(d) Let us give some remarks which will be used in the sequel.

Remark 1. For every point = € supp(fn), n = 2,3,..., the following
inequality |fn(x)| > B, is fulfilled.

To prove this one should use (31) and (3).

Remark 2. Let m, my be arbitrary natural numbers and 2 < m < m;j.
We define the functions f™™ and f™ as follows:

@) =Y fale), M) =) fale).

Then the inequality |f™ ™ P(z)| > | fm™m*+P~1(z)| is fulfilled for every
natural p.
This statement easily follows from the previous remark and relation (31)

and (3).

Remark 3. Let m, mj be arbitrary natural numbers and 2 < m < m;.
Let, moreover, z € B™ and x € E\(B*UQ*). |f™(z)| > 27\, .

Indeed, since B*"* U 61 _OLj)l o D supp(fy), from relations (10) and (14)
e=1j=

we can conclude that if n > p(x), then
veB\(B"U U U Qi) ¢ B\supp(fy),
e=1j=1

where p(z) = max{p1(x); p2(x)}. On the other hand, the inclusion x € B™
implies that p(z) > my. Hence f™(z) = f™P®)(z) and by Remark 2 we
obtain
|fm(l‘)’ _ |fm’p(:r)(l,)’ > |fm7p(x)fl(z)| > |fm’m1(x)|.
Using now the inclusion o € B™| relations (31) and (1), we have

mlfl

@) 2 [ @) 2 o @)] = | DD fale)] 2
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my—1
> |G, (2))] = Yy (@) = D (Ynl@) + |gn(@)]) =
n=2
mi—1
> Ay — M1 By — Z (nﬂn + )\n) > 271/\m1~
n=2

(e) We can now prove that for every direction o the relation Dp,_ (|f])(z)
= +oo0 is fulfilled a.e. on E.

Let us fix the direction o and the number ¢, 0 < ¢ < 1. The natural
number m. can be defined from the condition |supp(f™¢)| < e. Suppose

h(o) = lim sup U U h%(0), T = E\(B*UQ").

n—o00 k=1i€A}
Let € h(o). Then there exists a sequence (1, kp,ip) (kp =1,2,...,my,
ip € AZ;’), such that = € hZ:ip (o), p=1,2,.... From this inclusion and

the construction of sets hZ;’lp (o) it follows that there exists a rectangle R
np

from By, (x) such that RS O B,”, , RS C Eif‘:kp and

kPiP,
RS A, / Xy )y =271, (33)
}%g kpip

We have (|T| =1)

B [ @y = 1B [ 157 W, @) (ds.
RU

kpip

Assume that n,, > m.. Then by Remark 3 we obtain

fe(y)| >27'N,,, yEB, NT, p=1,2,...,

kpip

which by virtue of (33) yields

R 1 @y > 2B, [, gz 2
RO

Ro PP
P P

Consequently, diam(R7) < Q(M;:)’l N\, 0.

D, (5™ o) = Jim [R7 0 [ 17 )y = 272,
RO

D

Suppose z. = {x € E : f™(x) = 0}. From the previous relation we
obtain
Dp,, (If™)(x) 227 > |f™ ()], 2 € h(o)Nz.
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Clearly, z. D E\supp(f™¢<) and hence |z.| > 1 —e. Thus (Jh(c) N z| =
|22 1),
|{z € B: D, (57 D(@) > /™ @)I}| > 1-e.

Using once again the Besicovitch theorem, we can conclude that
‘{x € E:Dp, (If™))(z) = +oo}‘ >1—c.

Further we have
D, (1)) Z D, (™ D) = 3 ol
n=2

Since || fullpe < o0 (n=2,3,...), the last two relations imply
{z € E: Dp,, (|f])(x) = +oo}| > 1—e.

Because of the fact that € is arbitrary, we get

{z € E: Dp,, (If) (@) = +o0}| = 1.
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