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HOMOTOPY CLASSES OF ELLIPTIC TRANSMISSION
PROBLEMS OVER C∗-ALGEBRAS

G. KHIMSHIASHVILI

Abstract. The topological aspects of B.Bojarski’s approach to Rie-
mann–Hilbert problems are developed in terms of infinite-dimensional
grassmanians and generalized to the case of transmission problems
over C∗-algebras. In particular, the homotopy groups of certain
grassmanians related to elliptic transmission problems are expressed
through K-groups of the basic algebra. Also, it is shown that the
considered grassmanians are homogeneous spaces of appropriate op-
erator groups. Several specific applications of the obtained results to
singular operators are given, and further perspectives of our approach
are outlined.

1. Introduction. The aim of the paper is to compute the homotopy groups
of certain geometric objects over C∗-algebras which are relevant to the ho-
motopy classification of abstract elliptic transmission problems introduced
by B. Bojarski [1] as natural generalizations of the classical Riemann–Hilbert
problems for analytic vector-functions [2]. As was later realized by the au-
thor [3], the whole issue fits nicely into Fredholm structures theory [4] or,
more precisely, into the homotopy theory of operator groups started by R.
Palais [5] and developed by M. Rieffel [6] and K. Thomsen [7].

Similar geometric objects appear in loop groups theory, K-theory, and
the geometric aspects of operator algebras, and have recently gained con-
siderable attention [8], [9], [10], [11]. This circumstance, and especially
discussions with B. Bojarski about certain aspects of the Fredholm theory
for transmission problems, encouraged the author to reexamine the geomet-
ric approach to transmission problems in the spirit of recent developments
in the K-theory of operator algebras.

Recall that in 1979 B. Bojarski formulated a topological problem which
appeared important in his investigation of the so-called Riemann–Hilbert
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transmission problems [1]. This problem was later solved independently in
[12] and [13] (cf. also [8]). Moreover, these results were used in studying
several related topics of global analysis and operator theory [10], [14], [15].

An important advantage of the geometric formulation of elliptic trans-
mission problems in terms of Fredholm pairs of subspaces of a Hilbert space
given in [1] was that it permitted various modifications and generalizations.
Thus it became meaningful to consider similar problems in more general
contexts [12]. Along these lines, the author was able to develop the main
part of Fredholm structures theory in the context of Hilbert C∗-modules
[3], which led to some progress in the theory of generalized transmission
problems [15], [16].

This approach will also enable us to investigate below the case of trans-
mission problems over an arbitrary C∗-algebra. Clearly, it gives a wide
generalization of the above-mentioned results, since they correspond to the
case in which the considered algebra is taken to be the field of complex
numbers C. Moreover, it enables one to investigate further elliptic problems
associated with abstract singular and bisingular operators over C∗-algebras.

It should be noted that our generalized setting may be regarded as the
investigation of the homotopy classes of families of elliptic transmission
problems parameterized by a (locally) compact topological space X. In fact,
this corresponds to considering transmission problems over the algebra of
continuous functions on the parameter space C(X), which is also a very
special case of our results.

To make the presentation concise, we freely use the terms and construc-
tions from several previous papers on related topics ([1], [3], [9], [11]). An
exhaustive description of the background and necessary topological notions
is contained in [1], [8] and [17].

2. Transmission problems and grassmanians. We pass now to the
precise definitions needed to present B. Bojarski’s geometric approach to
transmission problems [1]. Basically, we use the same concepts as in [1],
but sometimes in a slightly different form adjusted for the case of Hilbert
C∗-modules.

Let A be a unital C∗-algebra. Denote by HA the standard Hilbert module
over A, i.e.,

HA =
{

{ai}, ai ∈ A, i = 1, 2, . . . :
∞
∑

i=1

aia∗i ∈ A
}

. (1)

Since there exists a natural A-valued scalar product on HA possessing usual
properties [18], one can introduce direct sum decompositions and consider
various types of bounded linear operators on HA. Denote by B(HA) the
collection of all A-bounded linear operators having A-bounded adjoints.
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This algebra is one of the most fundamental objects in Hilbert C∗-modules
theory [9], [18], [19].

As is well known, B(HA) is a Banach algebra and it is useful to con-
sider also its group of units GB = GB(HA) and the subgroup of unitaries
U = U(HA). For our purpose it is important to have adjoints, which, as
shown in [19], is not the case for an arbitrary bounded operator on the
Hilbert A-module HA. In particular, for this algebra we have an analog of
the polar decomposition [19], which implies that GB(HA) is retractable to
U(HA). Thus these two operator groups are homotopy equivalent, which is
important for our consideration.

Compact linear operators on HA are defined to be A-norm limits of finite
rank linear operators [19]. Their collection is denoted by K(HA).

Recall that the main object of B. Bojarski’s approach in [1] is a special
group of operators associated with a fixed direct sum decomposition of a
given complex Hilbert space. With this in mind, we fix a direct sum decom-
position of Hilbert A-modules of the form HA = H+ + H−, where H+ and
H− are both isomorphic to HA as A-modules. As is well known, any oper-
ator on HA can be written as a (2× 2)-matrix of operators with respect to
this decomposition (see formula (5)). We denote by π+ and π− the natural
orthogonal projections defined by this decomposition.

Introduce now the subgroup GBr = GBr(HA) of GB(HA) consisting of
operators whose off-diagonal terms belong to K(HA). Let Ur = Ur(HA)
denote the subgroup of its unitary elements. To relate this to transmission
problems, we must have an analog of the so-called special grassmanian in-
troduced in [8]. In fact, this is nearly equivalent to working with Fredholm
pairs of subspaces which were first used in this context by B. Bojarski [1].
To do the same in our generalized setting, some technical preliminaries are
needed.

Recall that there is a well-defined notion of a finite rank A-submodule of
a Hilbert A-module [18]. This enabled A. Mishchenko and A. Fomenko to
introduce the notion of a Fredholm operator in a Hilbert A-module by re-
quiring that its kernel and image be finite-rank A-submodules [18]. It turns
out that many important properties of usual Fredholm operators remain
valid in this context, too. Thus, if the collection of all Fredholm operators
on HA is denoted by F (HA), then there exists a canonical homomorphism
ind = indA : F (HA) −→ K0(A), where K0(A) is the usual topological
K-group of the basic algebra A [17].

This means simply that Fredholm operators over C∗-algebras have indices
obeying the usual additivity law. In the sequel, we will freely refer to the
detailed exposition of these results in [9].

Granted the above technicalities, we can now introduce a special grassma-
nian Gr+ = Gr+(HA) associated with the given decomposition. It consists
of all A-submodules V of HA such that the projection π+ restricted on V
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is Fredholm while the projection π− restricted on V is compact. Using the
analogs of the local coordinate systems for Gr+(HC) constructed in [8], we
can verify that Gr+(HA) is a Banach manifold modelled on the Banach
space K(HA). For our purpose it suffices to consider Gr+ as a metrizable
topological space with the topology induced by the standard one on the
infinite grassmanian Gr∞(A) (see formula (4)).

Now the problem that we are interested in is to investigate the topology
of Gr+(HA) and GBr(HA). Note that for A = C this is the problem
formulated by B. Bojarski in [1].

Our main results are as follows.

Theorem 1. The group GBr(HA) acts transitively on Gr+(HA) with
contractible isotropy subgroups.

Theorem 2. All even-dimensional homotopy groups of Gr+(HA) are
isomorphic to the index group K0(A) while its odd-dimensional homotopy
groups are isomorphic to the Milnor group K1(A).

Of course, the same statements hold for the homotopy groups of
GBr(HA), since by Theorem 1 these two spaces are homotopy equivalent.
We formulate the result for Gr+(HA) because it is the space of interest for
transmission problems theory.

The homotopy groups of GBr(HA) were first computed by the author
in 1987 [3] without mentioning grassmanians. Later, similar results were
obtained by S. Zhang [11] in the framework of K-theory. The contractibility
of isotropy subgroups involved in Theorem 1 was previously established only
for A = C [8].

In proving Theorem 1, we will obtain more precise information on the
structure of isotropy subgroups. It should also be noted that the con-
tractibility of isotropy subgroups follows from a fundamental result on C∗-
modules called the generalization of Kuiper’s theorem for Hilbert C∗-mo-
dules, which was obtained independently by E. Troitsky [20] and J. Mingo
[9]. Particular cases of Theorem 2 for various commutative C∗-algebras A
may be useful to construct classifying spaces for K-theory.

The solution of B. Bojarski’s original problem is now immediate (cf. [9],
[12], [13]).

Corollary 1. Even-dimensional homotopy groups of the collection of
classical Riemann–Hilbert problems are trivial while odd-dimensional ones
are isomorphic to additive group of integers Z.

Note that the nontriviality of these groups can be interpreted in terms of
the so-called spectral flow of order zero pseudo-differential operators, which
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has recently led to some interesting developments by B. Booss and K. Wo-
jciechowsky [10] sheding new light on the Atiyah-Singer index formulas in
the odd-dimensional case.

Similar results hold for abstract singular operators over A (for the defi-
nition of abstract singular operators see [21] and [3]).

Corollary 2. Homotopy groups of invertible singular operators over a
unital C∗-algebra A are expressed by the relations (where n is natural and
arbitrary)

π0 ∼= K0(A), π1 ∼= Z⊕ Z⊕K1(A);

π2n ∼= K0(A), π2n+1 ∼= K1(A).
(2)

Specifying this result for the algebras of continuous functions one can,
in particular, compute the homotopy classes of invertible classical singular
integral operators on arbitrary regular closed curves in the complex plane
C (see [21], [3] for the precise definitions).

Corollary 3. If K ∈ C is a smooth closed curve with k components,
then homotopy groups of invertible classical singular integral operators on
K are expressed by the relations (where n is natural and arbitrary):

π0 ∼= Z, π1 ∼= Z2k+1; π2n = 0, π2n+1 ∼= Z. (3)

As shown in [15], this information also enables one to find homotopy
classes and index formulas for the so-called bisingular operators. The lat-
ter can be defined by purely algebraic means, starting from the algebra of
abstract singular operators. One is thus led to the notion of a bisingular
operator over a C∗-algebra and to the description of homotopy classes of
elliptic bisingular operators. The notion was introduced in [15] and the
description of index ranges follows from the results of this paper.

Corollary 4. Abstract elliptic bisingular operators over a C∗-algebra A
are homotopically classified by their indices taking values in K0(A). The
index homomorphism is an epimorphism onto K0(A).

As is well known, the usual bisingular operators correspond to certain
pseudo-differential operators on the two-torus T2 [22]. In a similar manner,
one may recover some of the known results on homotopy groups of invertible
pseudodifferential operators over other two-surfaces [16].

One can also obtain an index formula for abstract bisingular operators
in terms of homotopy classes of their operator-valued symbols which can
be described by Theorem 2. For brevity, the results concerning the index
formulas for bisingular operators will not be presented here.

Theorem 1 will be proved in the next section, when developing the nec-
essary geometric constructions over C∗-algebras. The outlines of proofs of
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Theorem 2 and the corollaries are given in separate sections. In the conclu-
sion, we give some remarks on related results and further applications.

3. More on operators in Hilbert C∗-modules. It is standard in C∗-
algebras theory to identify subspaces with projections. Thus direct sum
decompositions of the type described in Section 2 correspond to the so-
called infinite grassmanian over A which can be written as

Gr∞(A) =
{

p ∈ B(HA) : p = p2 = p∗ and p ∼ Id ∼ Id− p
}

, (4)

where “∼” denotes the Murray-von Neumann equivalence between projec-
tions [17].

Fixing such a decomposition is equivalent to fixing a projection with
image and kernel being A-modules of infinite rank. Having fixed such a
projection p which will play the role of the projection π+ introduced above,
one can readily verify the useful characterization of GBr.

Lemma 1. GBr(HA) = {x ∈ B(HA) : xp − px ∈ A ⊗ K(H)}, where
K(H) stands for the ideal of compact operators in the usual separable com-
plex Hilbert space H.

The above-mentioned (2×2)-matrix representation of x ∈ B(HA) can be
rewritten as

x =
(

x11 x12
x21 x22

)

, (5)

where x11 = pxp, x12 = px(1− p), x21 = (1− p)xp, x22 = (1− p)x(1− p).
It is obvious now that GBr(HA) is ∗-isomorphic to the group of units of

the C∗-algebra consisting of (2×2)-matrices over B(HA) whose off-diagonal
entries are the elements of A⊗K(H). Further, from the existence, additiv-
ity, and stability properties of the Fredholm index (see diagram (6) below)
it follows that, for x ∈ GBr(HA), both x11 and x22 should be Fredholm
operators with the opposite indices, which is important for the sequel.

Using simple algebraic identities for such (2×2)-matrices (explicitly writ-
ten in [8] for matrices over B(H)), and the fact that K(HA) is an ideal in
B(HA), it is easy to verify that if such a (2 × 2)-matrix is applied to an
element V of Gr+(HA), then the restriction to V of the first projection
π+ is transformed into x11π+ + x12 and thus remains Fredholm, while the
restriction to V of the second projection gives x22π− + x21 and remains
compact. This means that xV is again in Gr+(HA) and we have proved

Lemma 2. The restricted linear group GBr(HA) acts on the special
grassmanian Gr+(HA).
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Now, it is evident that to determine the isomorphy class of stability
subgroups it is sufficient to identify it for a “coordinate submodule” H+

in GBr(HA). It readily follows from the existence of polar decompositions
that the latter subgroup is homotopy equivalent to the isotropy subgroup
of H+ in the restricted unitary group Ur(HA) (which acts on Gr+(HA) as
a subgroup of GBr(HA)).

Analyzing the description of a similar isotropy subgroup in the case of
the usual Hilbert space given in [8], one easily finds that in view of the above
technical results for Hilbert C∗-modules the same conclusion holds in our
case, too.

Lemma 3. The stability subgroup of H+ in Ur(HA) is isomorphic to
U(H+)× U(H−).

Recall that the latter group is contractible according to the result of E.
Troitsky and J. Mingo [9], [20].

To prove Theorem 1 it remains to check the transitivity, which is the
most delicate part of the proof. We will use the method of proof from [8]
adapted to our situation. Note that Fredholm operators with vanishing
indices can be transformed into invertible ones by a compact perturbation.
The corresponding statement for Hilbert C∗-modules is contained in the
so-called fundamental commutative diagram of Fredholm structures theory.
In our case it has the form

GB(HA) −−−−→ F0(HA) −−−−→ F (HA) −−−−→ B(HA)




y





y





y





y

GB/GK −−−−→ G0 −−−−→ G −−−−→ B(HA)/K(HA)

(6)

Here F (HA) and F0(HA) stand for semigroups of all Fredholm operators
and those with the zero index, respectively. G denotes the group of units
of the factor-algebra B(HA)/K(HA) and G0 its identity component. The
right vertical arrow is the Calkin factorization and the left one is the factor-
homomorphism on the factor-group below. The upper arrows are inclusions.

The commutativity of this diagram is well known to experts and follows
from the facts established in [18] and [19] (cf. also [9]). Also, it is a standard
verification that the left lower corner horizontal arrow is a homeomorphism.
In topological terms, the latter fact means that G0 is the classifying space
for the K-functor [17] and its homotopy groups are isomorphic to the cor-
responding K-groups of the basic algebra. This conclusion is explained in
full detail in [9].

Let us now return to our situation and take an A-submodule V belonging
to the special grassmanian Gr+(HA). By definition, there exists a Fredholm
operator T ∈ B(H+,H−) such that V is its graph, i.e., is the set of points
(x, Tx) with respect to the given decomposition of HA.



460 G. KHIMSHIASHVILI

To prove the transitivity of action, it is sufficient to obtain a (2 × 2)-
matrix M ∈ GBr(HA) of the form described above such that M(H+) = V .
For this, we consider first the diagonal matrix diag(T, T ∗), where T ∗ is the
adjoint operator of T . From the additivity property of the Fredholm index it
follows that this matrix has the zero index when considered as an element of
B(HA). Considering its class in the space of (2× 2)-matrix over the Calkin
algebra B/K, one sees that it is invertible. Thus our diagram shows that
this matrix can be turned into the invertible one by a compact perturbation.
In other words, there exist compact off-diagonal terms x21, x12 such that
our diagonal matrix completed with such entries becomes invertible as an
operator on HA. This already implies the existence of the desired matrix
M . One could also finish the proof arguing as in [8], Ch. 6.

4. Proof of Theorem 2. The simplest way to verify Theorem 2 is as
follows. One notices that Proposition 6.2.4 of [8] suggests that GBr(HA)
should be homotopy equivalent to F (H+). This would already prove Theo-
rem 2 because from diagram (6) it follows that homotopy groups of F (HA)
are isomorphic with K-theory of A. In fact, it may be actually proved that
GBr(HA) is homotopy equivalent to F (H+), using a suitable modification
of the argument from [8], Ch. 6. However, in order to make this argument
rigorous one needs to develop a substantial portion of Hilbert modules the-
ory. For the sake of brevity, here we prefer another way, more algebraic in
spirit, which closely follows the lines of [11]. In doing so we will borrow
freely the concepts and results from [11] and [17].

Throughout this section we will use the identification of direct sum de-
compositions with projections and fix a p ∈ B(HA) with p = p2 = p∗.
Below we will omit some tedious details which are standard in the theory
of operator algebras and K-theory.

As was explained, it suffices to compute the homotopy groups of the
restricted linear group GBr(HA). Denote by GB0

r (HA) its identity com-
ponent. As is well known, in dealing with K-theory invariants, it is useful
to consider the conjugations by unitary operators. With this in mind, we
introduce the notation UpU∗ = {vpv∗ : v ∈ Ur(HA)} = {vpv∗ : v ∈
GBr(HA), vv∗ = v∗v = Id}. The following simple proposition is verified
using the standard techniques of K-theory (cf. [17]).

Lemma 4. U(upu∗)U∗ is the path component of UpU∗ containing upu∗.

One also has an equivalent description of the K0-functor which was al-
ready used in [19] and [9].

Lemma 5. For any such p ∈ Gr∞(A) the group K0(A) is isomorphic to
the fundamental group π1(UpU∗).
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Indeed, later we will produce an explicit isomorphism between these
two groups in terms of some partial isometries associated with elements
of GBr(HA), which plays an important role in the argument.

Following [11], a unitary operator x ∈ Ur(HA) will be called p-adapted
if both off-diagonal terms of the corresponding (2× 2)-matrix (see formula
(6)) are some partial isometries in A⊗K(H).

It is easy to calculate some associated projections needed in the sequel.

Lemma 6 ([11]). If x is a p-adapted unitary, then p−x11x∗11, p−x∗11x11,
(Id− p)− x22x∗22, (Id− p)− x∗22x22 are projections in A⊗K(H).

The following results from [11] amount to a partial isometry description
of the K-functor. Equivalent statements can be found in [19] and [17]. A
similar factorization for the case A = C was also used in [8].

Proposition 1. Any X ∈ GBr(HA) can be represented as

x = (Id + k) · diag(z1, z2) · u, (7)

where k ∈ A ⊗K(H), the second factor is invertible, and u is a p-adapted
unitary.

Recall that according to one of the basic constructions any partial isom-
etry b ∈ A⊗K(H) defines a class [bb∗] ∈ K0(A) [17]. The following propo-
sition follows from this construction and the equivalence relation in K0(A).

Proposition 2. The class

[u12u∗12]− [u21u∗21] ∈ K0(A) (8)

is independent of a p-adapted unitary u entering into a representation of a
given x ∈ GBr(HA) in form (7).

Now we are able to define the mappings giving the desired group isomor-
phisms. Our strategy is to consider the group GBr as a fibration over its
homogeneous space GBr/GK and, next, to compute the homotopy groups
of GBr/GK, since the homotopy groups of the fibre GK(HA), being the
standard participants in K-theory, are well known.

Observe first that representation (7) implies the equality of cosets x ·
GK(HA) = u·GK(HA) of the elements x and u with respect to the subgroup
GK(HA). By Lemma 5, for such u we have the following direct sum of
projections:

(p− u12u∗12)⊕ (u12u∗12). (9)
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As is well known, direct sums do not have any influence on the stable equiv-
alence relation involved in the definition of K0(A). In other words, it is
meaningful to assign to element (9) the class

[u12u12∗]− [u21u∗21] ∈ K0(A) (10)

A connection between the considered basic topological spaces is established
by

Lemma 7. Element (9) belongs to the subset UpU∗.

For the proof it suffices to observe that this statement follows from Propo-
sition 3.1 in [9] by which for any two projections r1, r2 ∈ A ⊗K(H) there
exists unitary w ∈ GK(HA) such that wpw∗ = (p− r1)⊕ r2.

By virtue of these lemmas we arrive at the basic correspondence giving
the desired isomorphism at the level of fundamental groups. Below it is
assumed that the base point of GBr is the identity, and that of UPU∗ is p.

Proposition 3. The maps defined by the relations

u ·GBr(HA) 7→ [(p− u12u∗12)⊕ u21u∗21]UpU∗ 7→
7→ [u21u∗21]− [u12u∗12] ∈ K0(A) (11)

are the bijections inducing the isomorphisms

π0(GBr)(= GBr(HA)/GK(HA)) ∼= π0(UpU∗) ∼= K0(A). (12)

Now the results concerning the computation of higher homotopy groups
can be formulated as follows (cf. [11]).

Proposition 4. For any natural n one has the isomorphisms

π2n+1(GBr(HA)) ∼= π2n+1(UpU∗) ∼= K1(A), (13)

π2n+2(GBr(HA)) ∼= π2n+2(UpU∗) ∼= K0(A). (14)

These isomorphisms can be verified by means of the long exact sequence
of homotopy groups associated with a natural operator fibration over UpU∗

with the contractible total space U∞(A) which is, as above, the group of
unitaries in the unitization of A⊗K(H).

To this end, we consider the map defined by u 7→ upu∗. Clearly, its fibers
are all isomorphic with the commutant of p in U , i.e., (p′)U = {u ∈ U∞(A) :
up = pu}. It is also simple to check that this map is a submersion and,
according to an infinite-dimensional generalization of Ehresmann’s theorem
[4], defines a locally trivial fibration with the fiber p′.

The long exact homotopy sequence of this fibration breaks, as usual, into
short exact sequences:

0 → πk+1(UpU∗) → πk(p′) → πk(U∞(A)) → 0. (15)
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Since the homotopy groups of the stabilized unitary group U∞(A) are
isomorphic to the K-groups of A, these exact sequences immediately imply
that π2n+2(UpU∗) ∼= K0(A) and π2n+1 ∼= K1(A). Recalling that UpU∗ is
weakly homotopy equivalent to GBr(HA), we obtain the desired conclusion.

Now Theorem 2 becomes an immediate consequence of Propositions 3
and 4.

5. Proofs of corollaries. We will make a few comments on the formula-
tions and proofs of the corollaries.

Corollary 1 is simply a special case of Theorem 2, where A = C(S1) is
the algebra of continuous functions on the unit circle, which is clear from
the interpretation of Riemann–Hilbert problems given in [14]. By a similar
reasoning, Corollary 3 follows from Corollary 2.

Corollary 2 can be proved by Theorem 2 using the scheme of [12], where
the same result for classical singular integral operators on closed contours
was derived from the solution of B. Bojarski’s original problem. To do this,
we need first to clarify which one of several possible definitions of abstract
singular operators (cf. [1], [21]) is actually appropriate in our setting.

We will use a modification of the approach of [21]. Fix an invertible
operator U ∈ GB(HA) with the properties:

1. Both operators U and U−1 have spectral radii equal to 1;
2. There exists a projector p ∈ GB(HA), p ∼ Id ∼ Id− p, such that

Up = pUp, Up 6= pU, pU−1 = pU−1p ; (16)

3. coker(U | im p) is an A-module of finite rank.
There are many such operators. For example, one may take the right

shift in the Z-graded Hilbert A-module and the projector on the “positive
halfspace” (these are the abstract counterparts of multiplication by the in-
dependent variable and the Hardy projector from the theory of classical
singular integral operators [21]). Denote by R(U) the C∗-subalgebra gen-
erated by U and U−1. It is trivial to verify that for any T ∈ R(U) the
commutator [T, p] = Tp− pT is compact, i.e., [T, p] ∈ K(HA).

Moreover, the information about A-Fredholm operators contained in di-
agram (6) enables one to apply the arguments from [21] and obtain a de-
scription of invertible elements in R = R(U).

Proposition 5. Invertible operators are dense in R(U) and character-
ized by the condition that at least one of their restrictions on im p or
im (Id− p) is a semi-Fredholm operator.

Following [21], any operator of the form

T = Lp + Mq + C, (17)
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where q = 1− p, L, M ∈ R(U), C ∈ K(HA), is called an abstract singular
operator over A (associated with the pair (U,p)). Their collection will be
denoted by S(U).

This is a true generalization of the usual singular operators which are
obtained when A = C, U is the unitary operator of multiplication by an
independent variable in H = L2(S1), and p is the Hardy projector (for
details see [21]).

A standard application of the Gelfand spectrum theory provides symbols
of singular operators which are functions on the spectrum of U . Assuming
U to be unitary, it follows that with any operator T of form (17) one may
naturally associate a pair of continuous functions h(T ) = (h(L), h(M)) on
the unit circle. A symbol is called nondegenerate if both its components are
nowhere vanishing on S1. As usual, the index ind h(T ) of such a nonde-
generate symbol is defined as the difference of argument increments of its
components along S1. Thus we can now formulate the key characterization
of elliptic singular operators.

Proposition 6. An operator T ∈ S(U) of form (17) is Fredholm if and
only if its symbol is nondegenerate, i.e., both its coefficients L, M are in-
vertible operators.

After the above preparations, the proof runs in complete analogy with
that from [21]. To compute π∗(S(U)) over A one has only to compute
the homotopy groups of pairs of invertible operators in GR(U). The latter
group being homotopy equivalent to GBr(HA) with π+ = p, the answer is
provided by Theorem 2. Adding the groups from the latter theorem to the
homotopy groups of nondegenerate symbols computed in [15], one obtains
Corollary 2.

Finally, Corollary 4 can be obtained from Corollary 2 using the scheme of
[15], where this was done for the classical counterparts of our results. How-
ever, this requires a lot of technical preparation. In particular, one needs
to generalize the tensor product construction of conventional bisingular op-
erators from the algebra of pseudodifferential operators on the unit circle
(see [22]). These technicalities are rather tedious and require a separate
presentation.

6. Concluding remarks. Note that in the geometry of Hilbert C∗-mod-
ules there are some related topics which admit a nice presentation in terms
of special grassmanians and transmission problems. Part of these results
has already been indicated in [3].

Here we will discuss only one topic most closely related to the geometric
study of elliptic transmission problems [1], [11]. The point is that our The-
orem 2 suggests that there should exist a finer geometric structure of the
grassmanian Gr+(HA) expressed in terms of a stratification similar to the
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Birkhoff stratification by partial indices of invertible matrix-functions on
the unit circle [8], [23] which plays a prominent role in the classical theory
of transmission problems [14], [23].

Such a stratification can be constructed using the geometric language
developed in this paper. To this end, let us fix a path component Grγ of
the grassmanian Gr+(HA) corresponding to a certain element γ ∈ K0(A).
By Proposition 3 it is clear that γ is essentially the Fredholm index of the
projection π+ restricted to any element V of this component.

Since K0(A) is a group, it is reasonable to consider all pairs (α, β) ∈
K0×K0, where α−β = γ. For any pair denote by Bα,β the subset of all V
such that the following relations hold for classes in K0(A) (recall that any
projective A-module generates a class in K0(A)):

[kerπ+ | V ] = α, [coker π+ | V ] = β. (18)

Evidently, such a collection is a subset of the given component and one has

Grγ =
⋃

Bα,β . (19)

The path component Grγ being arbitrary, we obtain a natural decom-
position of the special grassmanian Gr+ which is similar to the classical
Birkhoff stratification [14], [23] (in fact, our decomposition is cruder, which
can be seen in the case of classical transmission problems with respect to
the unit circle). Of course, it is tempting to verify which properties of the
Birkhoff stratification are still valid in our generalized setting and to gener-
alize some of the results on its geometric structure obtained in the classical
case [14], [23]. We are now at the beginning of such an investigation but
certain results are already available of which we present only two.

Proposition 7. All Bα,β are Banach analytic subspaces of Gr+(HA) in
the sense of A. Douady [24].

Proposition 8. Decomposition (19) is a complex analytic stratification
of Gr+(HA) [24].

These results are of technical nature and require a big portion of the
Banach analytic geometry in the spirit of [24], which is completely irrelevant
to the present exposition. We give them only to indicate more connections
with nontrivial geometric problems one of which will be formulated below.

Note that a less precise version of Proposition 7 was obtained in the
classical case (A = C) by S. Disney [23]. The classical counterpart of
Proposition 8 was implicitly used by B. Bojarski [14] in his investigation of
the stability properties of partial indices.

We conclude with a purely geometric problem suggested by our construc-
tions, which leads to highly nontrivial homological computations even in the
classical case [23], [16]. Recall that a complex analytic subset of a complex
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Banach manifold has a well-defined cohomological fundamental class in the
cohomology of the ambient manifold [23]. A discussion of the orientation
classes for K-theory in [23] shows that the same is valid for extraordinary
cohomological theories like K-theory. Hence fundamental classes of Bα,β

are well defined and there arises a problem of computing them in terms of
K-theory. As was mentioned, some results for the classical case were ob-
tained in [16], but our knowledge of these fundamental classes is still very
poor.

An intriguing open problem is to construct a finer analytic stratification
of the special grassmanian Gr+(HA) similar to that in [8] to obtain more
topological invariants for transmission problems. There is some evidence
that this should be possible for commutative A.

Our constructions and results find a rather natural interpretation in
terms of Fredholm structures over A. Granted diagram (6), the basic no-
tions of this theory can be introduced as in [4]. Several important results
of Fredholm structures theory have direct analogs for structures over A. In
particular, a family of A-Fredholm operators parametrized by points of a
manifold M defines an A-Fredholm structure on M .

Applying this result to our restricted grassmanian Gr+(HA), one obtains
an A-Fredholm structure on it. Moreover, the Birkhoff strata Bα,β are the
Fredholm submanifolds with respect to this structure, and following [16]
one can introduce their Chern classes and express them as pull-backs of
universal classes carried by the classifying bundle for A-Fredholm structures.
An example of the results in this direction is given in [16].

Acknowledgments

The author acknowledges useful discussions with B. Bojarski, who en-
couraged him to continue work on these topics in the autumn of 1994, dur-
ing a Banach Center Semester on functional analysis and partial differential
equations.

A substantial part of this research was carried out during the author’s
long-term visit to the University of Lodz. It is the author’s pleasure to
express cordial thanks to all members of the Department of Theoretical
Physics for the warm hospitality and assistance during the whole period of
stay.

During the final period of work on this paper the author was supported
by Grant 1.8 of the Georgian Academy of Sciences.

References

1. B. Bojarski, Abstract linear conjugation problems and Fredholm pairs
of subspaces. (Russian) Differential and Integral equations. Boundary value



HOMOTOPY CLASSES 467

problems. (Russian) Collection of papers dedicated to the memory of Aca-
demician I. Vekua, 45–60, Tbilisi University Press, Tbilisi, 1979.

2. N. I. Muskhelishvili, Singular integral equations. (Russian) 3d ed.,
Nauka, Moscow, 1968.

3. G. Khimshiashvili, On the homotopy structure of invertible singular
operators. Complex Analysis and Applications’ 97. Proc. of Intern. Conf.,
230–234, Publishing House of the Bulgarian Academy of Sciences, Sofia,
1989.

4. J. Eells, Fredholm structures. Proc. Symp. Pure Math. 18(1970),
62–85.

5. R. Palais, On the homotopy type of certain groups of operators.
Topology 3(1965), 271–279.

6. M. Rieffel, Dimension and stable rank in the K-theory of C∗-algebras.
Proc. Lond. Math. Soc. 46(1983), 301–333.

7. K. Thomsen, Non-stable K-theory for operator algebras. K-theory
3(1990), 1–25.

8. A. Pressley and G. Segal, Loop Groups. Clarendon Press, Oxford,
1986.

9. J. Mingo, K-theory and multipliers of stable C∗-algebras. Trans.
Amer. Math. Soc. 299(1987), 397–411.

10. B. Booss and K. Wojciechowsky, Elliptic boundary problems for
Dirac operators. Birkhäuser, Basel, 1992.
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