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ON PERIODIC SOLUTIONS OF NONLINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

I. KIGURADZE AND B. PŮŽA

Abstract. Sufficient conditions are established for the existence and
uniqueness of an ω-periodic solution of the functional differential
equation

dx(t)
dt

= f(x)(t),

where f is a continuous operator acting from the space of n-dimen-
sional ω-periodic continuous vector functions into the space of n-
dimensional ω-periodic and summable on [0, ω] vector functions.

1. Statement of the Problem and Basic Notation

Let n be a natural number, ω > 0, and f : Cω(Rn) → Lω(Rn) be a
continuous operator. Consider the vector functional differential equation

dx(t)
dt

= f(x)(t). (1.1)

A vector function x : R → Rn is called an ω-periodic solution of equation
(1.1) if it is absolutely continuous, satisfies (1.1) almost everywhere on R
and

x(t + ω) = x(t) for t ∈ R.

In the second section of this paper, using the principle of a priori boun-
dedness we establish new sufficient conditions for the existence and unique-
ness of an ω-periodic solution of equation (1.1). In the third section we
give corollaries of the main results for the vector differential equation with
deviating arguments

dx(t)
dt

= f0
(

t, x(t), x(τ1(t)), . . . , x(τm(t))
)

, (1.2)
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where f0 : R × R(m+1)n → Rn satisfies the local Carathéodory conditions
and is ω-periodic in the first argument, i.e., satisfies the equality

f0(t + ω, x0, x1, . . . , xm) = f0(t, x0, x1, . . . , xm) (1.3)

for almost all t ∈ R and for all xk ∈ Rn (k = 0, 1, . . . ,m). As for τk : R → R
(k = 1, . . . ,m), they are measurable and such that

(τk(t + ω)− τk(t))/ω (k = 1, . . . , m) are integer numbers. (1.4)

The above-mentioned propositions strengthen the earlier results on pe-
riodic solutions of systems of ordinary differential equations and functional
differential equations of types (1.1) and (1.2) (see [1–23] and the references
cited therein).

Throughout this paper, use will be made of the following notation:
Rn is the space of all n-dimensional column vectors x = (xi)n

i=1 with the
elements xi ∈ R (i = 1, . . . , n) and the norm

‖x‖ =
n

∑

i=1

|xi|.

Rn×n is the space of all n×n-matrices X = (xik)n
i,k=1 with the elements

xik ∈ R (i, k = 1, . . . , n) and the norm

‖X‖ =
n

∑

i,k=1

|xik|.

Rn
+ =

{

(xi)n
i=1 ∈ Rn : xi ≥ 0 (i = 1, . . . , n)

}

.

Rn×n
+ =

{

(xik)n
i,k=1 ∈ Rn×n : xik ≥ 0 (i, k = 1, . . . , n)

}

.

If x, y ∈ Rn and X, Y ∈ Rn×n, then

x ≤ y ⇐⇒ y − x ∈ Rn
+, X ≤ Y ⇐⇒ Y −X ∈ Rn×n

+ .

x · y is the scalar product of the vectors x and y ∈ Rn.
If x = (xi)n

i=1 ∈ Rn and X = (xik)n
i,k=1 ∈ Rn×n, then

|x| = (|xi|)n
i=1, |X| = (|xik|)n

i,k=1,

sgn(x) = (sgn xi)n
i=1.

det(X) is the determinant of the matrix X.
X−1 is the matrix inverse to X.
r(X) is the spectral radius of the matrix X. E is the unit matrix.
C([0, ω];Rn) is the space of all continuous vector functions x : [0, ω] → Rn

with the norm
‖x‖C = max

{

‖x(t)‖ : 0 ≤ t ≤ ω
}

.
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Cω(Rn) with ω > 0 is the space of all continuous ω-periodic vector func-
tions x : R → Rn with the norm

‖x‖Cω
= max

{

‖x(t)‖ : 0 ≤ t ≤ ω
}

;

if x = (xi)n
i=1 ∈ Cω(Rn), then

|x|Cω
= (‖xi‖Cω

)n
i=1.

L([0, ω]; Rn) is the space of all vector functions x : R → Rn with
summable on [0, ω] elements and with the norm

‖x‖L =

ω
∫

0

‖x(t)‖ dt.

Lω(Rn) is the space of all ω-periodic vector functions x : R → Rn with
summable on [0, ω] elements and with the norm

‖x‖Lω
=

ω
∫

0

‖x(t)‖ dt.

Lω(R+) =
{

x ∈ Lω(R) : x(t) ≥ 0 for t ∈ R
}

;

Lω(R−) =
{

x ∈ Lω(R) : x(t) ≤ 0 for t ∈ R
}

.

Lω(Rn×n) is the space of all matrix functions X : R → Rn×n with
elements from Lω(R).

If Z : R → Rn×n is an ω-periodic continuous matrix function with
columns z1, . . . , zn, and g : Cω(Rn) → Lω(Rn) is a linear operator, then
by g(Z) we understand the matrix function with columns g(z1), . . . , g(zn).

2. Periodic Solutions of Equation (1.1)

Throughout this section, f : Cω(Rn) → Lω(Rn) is assumed to be a
continuous operator such that

f∗(·, ρ) ∈ Lω(R+) for ρ ∈ ]0,+∞[ ,

where

f∗(t, ρ) = sup
{

‖f(x)(t)‖ : x ∈ Cω(Rn), ‖x‖Cω
≤ ρ

}

.

We introduce
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Definition 2.1. Let β be a positive number. We say that an operator
p : Cω(Rn)×Cω(Rn) → Lω(Rn) belongs to the class V n

ω (β) if it is continuous
and satisfies the following three conditions:

(i) p(x, ·) : Cω(Rn) → Lω(Rn) is a linear operator for any arbitrarily
fixed x ∈ Cω(Rn);

(ii) there exists a nondecreasing in the second argument function α :
R × R+ → R+ such that α(·, ρ) ∈ Lω(R) for ρ ∈ ]0, +∞[ , and for any
x, y ∈ Cω(R) and for almost all t ∈ R the inequality

‖p(x, y)(t)‖ ≤ α(t, ‖x‖Cω
)‖y‖Cω

holds;
(iii) for any x ∈ Cω(Rn) and q ∈ Lω(Rn), an arbitrary ω-periodic solution

y of the differential equation

dy(t)
dt

= p(x, y)(t) + q(t) (2.1)

admits the estimate

‖y‖Cω
≤ β‖q‖Lω

. (2.2)

Definition 2.2. We say that an operator p : Cω(Rn) × Cω(Rn) →
Lω(Rn) belongs to the set V n

ω if there exists β > 0 such that p ∈ V n
ω (β).

Theorem 2.1. Let there exist a positive number ρ0 and an operator
p ∈ V n

ω such that for any λ ∈ ]0, 1[ an arbitrary ω-periodic solution of the
differential equation

dx(t)
dt

= (1− λ)p(x, x)(t) + λf(x)(t) (2.3)

admits the estimate

‖x‖Cω
≤ ρ0. (2.4)

Then equation (1.1) has at least one ω-periodic solution.

Proof. For arbitrary x ∈ C([0, ω];Rn), we denote by vω(x) the vector func-
tion defined by the equality

vω(x)(t) = x(t− jω) +
t− jω

ω
[x(0)− x(ω)] for jω ≤ t < (j + 1)ω (2.5)

(j = 0, 1,−1, 2,−2, . . . ),

and for any x and y ∈ C([0, ω];Rn) we set

p̃(x, y)(t) = p(vω(x), vω(y))(t), l(x, y) = y(ω)− y(0), (2.6)

˜f(x)(t) = f(vω(x))(t).
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Obviously, vω : C([0, ω]; Rn) → Cω(Rn) is a linear bounded operator, while
˜f : C([0, ω];Rn) → L([0, ω]; Rn) and p̃ : C([0, ω]; Rn) × C([0, ω]; Rn) →
L([0, ω];Rn) are continuous operators. Moreover, the restrictions on [0, ω]
of ω-periodic solutions of equations (1.1) and (2.3) are respectively solutions
of the differential equations

dx(t)
dt

= ˜f(x)(t) (2.7)

and

dx(t)
dt

= (1− λ)p̃(x, x)(t) + λ ˜f(x)(t) (2.8)

with the periodic boundary condition

x(ω) = x(0), (2.9)

and vice versa the periodic extension of an arbitrary solution of problem
(2.7), (2.9) (problem (2.8), (2.9)) is an ω-periodic solution of equation (1.1)
(equation (2.3)). Consequently, for any λ ∈ ]0, 1[ , an arbitrary solution of
problem (2.8), (2.9) admits estimate (2.4).

On the other hand, it follows from the condition p ∈ V n
ω and equalities

(2.6) that the pair of operators (p̃, l) is compatible in the sense of Definition 1
from [14].

Thus we have shown that for problem (2.7), (2.9), all the conditions of
Theorem 1 from [14] are fulfilled, which guarantees the solvability of this
problem. However, according to the above-said, the existence of an ω-
periodic solution of equation (1.1) follows from the solvability of problem
(2.7), (2.9).

Corollary 2.1. Let there exist β > 0 and p ∈ V n
ω (β) such that for any

x ∈ Cω(Rn) almost everywhere on R the inequality

‖f(x)(t)− p(x, x)(t)‖ ≤ γ(t, ‖x‖Cω
) (2.10)

holds, where γ(·, ρ) ∈ Lω(R+) for 0 < ρ < +∞, and

lim sup
ρ→+∞

1
ρ

b
∫

a

γ(t, ρ) dt <
1
β

. (2.11)

Then equation (1.1) has at least one ω-periodic solution.

Proof. By (2.11) there exists ρ0 > 0 such that

β

ω
∫

0

γ(t, ρ) dt < 1 for ρ ≥ ρ0. (2.12)
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Let x be an ω-periodic solution of (2.3) for some λ ∈ ]0, 1[ . Assume

δ(t) = f(x)(t)− p(x, x)(t).

Then
dx(t)

dt
= p(x, x)(t) + λδ(t)

and, as follows from (2.10), the vector function δ satisfies almost everywhere
on R the inequality

‖δ(t)‖ ≤ γ(t, ‖x‖Cω
),

whence, owing to p ∈ V n
ω (β), we have

‖x‖Cω
≤ β

ω
∫

0

‖δ(t)‖ dt ≤ β

ω
∫

0

γ(t, ‖x‖Cω
) dt.

From this inequality, by virtue of (2.12), follows estimate (2.4).
If now we take into account Theorem 2.1 the validity of the corollary will

become obvious.

Corollary 2.2. Let for any x ∈ Cω(Rn), inequality (2.10) be fulfilled
almost everywhere on R, where γ(·, ρ) ∈ Lω(R+) for 0 < ρ < +∞, and
p : Cω(Rn)×Cω(Rn) → Lω(Rn) is a continuous operator such that p(x, ·) :

Cω(Rn) → Lω(Rn) is linear and
ω
∫

0
p(x,E)(s) ds is a nonsingular matrix for

an arbitrarily fixed x ∈ Cω(Rn). Let, moreover, there exist matrices A and
B ∈ Rn×n

+ such that

r(A + BA2) < 1, (2.13)
ω

∫

0

|p(x, y)(s)| ds ≤ A|y|Cω
,

∣

∣

∣

∣

[

ω
∫

0

p(x, E)(s) ds
]−1

∣

∣

∣

∣

≤ B (2.14)

for any x and y ∈ Cω(Rn) and the function γ satisfies condition (2.11),
where β = ‖(E −A−BA2)−1(E + BA)‖. Then equation (1.1) has at least
one ω-periodic solution.

Proof. By virtue of Corollary 2.1, to prove Corollary 2.2 it suffices to es-
tablish that for any x ∈ Cω(Rn) and q ∈ Lω(Rn) an arbitrary ω-periodic
solution y of equation (2.1) admits estimate (2.2).

By (2.5), from (2.1) we have

y(t) = y(0) + p1(x, y)(t) + q0(t), (2.15)
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where

p1(x, y)(t) =

t
∫

0

p(x, vω(y))(s) ds, q0(t) =

t
∫

0

q(s) ds. (2.16)

Therefore

y(t) = y(0) + p1(x, E)(t)y(0) + p1(x, p1(x, y))(t) + p1(x, q0)(t),

whence because of the ω-periodicity of y and the nonsingularity of the mat-
rix

p1(x,E)(ω) =

ω
∫

0

p(x,E)(s) ds

we obtain

y(0) = −
[

ω
∫

0

p(x,E)(s) ds
]−1

[

p1(x, p1(x, y))(ω) + p1(x, q0)(ω)
]

.

According to (2.14) and (2.16), the latter representation results in

|y(0)| ≤ B
(

A|vω(p1(x, y))|Cω
+ A|vω(q0)|Cω

)

≤
≤ B

(

A|p1(x, y)|Cω
+ A|q0|Cω

)

≤ BA2|y|Cω
+ BA|q|Lω

.

Taking this estimate into account, from (2.15) we find that

|y|Cω
≤ BA2|y|Cω

+ BA|q|Lω
+ A|y|Cω

+ |q|Lω

and
(E −A−BA2)|y|Cω

≤ (E + BA)|q|Lω
.

Hence by (2.13) we have

|y|Cω
≤ (E −A−BA2)−1(E + BA).

Thus estimate (2.2) is valid.

Corollary 2.2 deals with the case where

sup
{

1
1 + ‖x‖Cω

ω
∫

0

‖f(x)(t)‖ dt : x ∈ Cω(Rn)
}

< +∞,

whereas Corollary 2.1 covers the class of equations of type (1.1) for which the
last condition is violated. As an example, consider the integro-differential
equation

dx(t)
dt

= p1(t, x(t))

ω
∫

0

p2(s, x(s))x(s) dϕ(s) + p0(t, x(t)), (2.17)
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where the functions pi : R×R → R (i = 0, 1) satisfy the local Carathéodory
conditions and are ω-periodic in the first argument, p2 : [0, ω] × R → R is
continuous and ϕ : [0, ω] → R is nondecreasing.

Corollary 2.3. Let on [0, ω]×R the inequalities

σipi(t, x) ≥ δi(t) (i = 1, 2) (2.18)

be fulfilled, where σi ∈ {−1, 1} (i = 1, 2), δ1 : [0, ω] → R+ is a summable
function and δ2 : [0, ω] → R+ is a continuous function such that

δ =
(

ω
∫

0

δ1(s) ds
)(

ω
∫

0

δ2(s) dϕ(s)
)

> 0. (2.19)

Let further

lim sup
ρ→+∞

(

1
ρ

ω
∫

0

γ(t, ρ) dt
)

<
δ

1 + 3δ
,

where
γ(t, ρ) = max

{

|p0(t, x)| : |x| ≤ ρ
}

.

Then equation (2.17) has at least one ω-periodic solution.

Proof. Suppose

p(x, y)(t) = p1(t, x(t))

ω
∫

0

p2(s, x(s))y(s) dϕ(s).

By virtue of Corollary 2.1, to prove Corollary 2.3 it suffices to establish that
p ∈ V 1

ω ( 1+3δ
δ ).

Let x ∈ Cω(R), q ∈ Lω(R) and let y be an arbitrary ω-periodic solution
of the equation

dy(t)
dt

= p1(t, x(t))

ω
∫

0

p2(s, x(s))y(s) dϕ(s) + q(t).

Suppose
ω

∫

0

p2(s, x(s))y(s) dϕ(s) = c. (2.20)

Then

y(t) = y(0) + c

t
∫

0

p1(s, x(s)) ds +

t
∫

0

q(s) ds. (2.21)
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Therefore

c

ω
∫

0

p1(s, x(s)) ds +

ω
∫

0

q(s) ds = 0

and consequently

c = −
(

ω
∫

0

p1(s, x(s)) ds
)−1( ω

∫

0

q(s) ds
)

. (2.22)

If we substitute (2.21) in (2.20) and calculate y(0), then we obtain

y(0) =

= c
(

ω
∫

0

p2(s, x(s)) dϕ(s)
)−1[

1−
ω

∫

0

p2(s, x(s))
(

s
∫

0

p1(ξ, x(ξ)) dξ
)

dϕ(s)
]

−

−
(

ω
∫

0

p2(s, x(s)) dϕ(s)
)−1 ω

∫

0

p2(s, x(s))
(

s
∫

0

q(ξ) dξ
)

dϕ(s). (2.23)

Introduce the function

η(t) =
(

ω
∫

0

p1(s, x(s)) ds
)−1 t

∫

0

p1(s, x(s)) ds. (2.24)

Then from (2.21) and (2.22) we get

y(t) = y(0) +

t
∫

0

(1− η(t))q(s) ds− η(t)

ω
∫

t

q(s) ds.

On the other hand, taking into account (2.18) and (2.19), from (2.22)–(2.24)
we find

|y(0)| ≤
(1

δ
+ 2

)

‖q‖Lω
, 0 ≤ η(t) ≤ 1 for 0 ≤ t ≤ ω.

Therefore

‖y‖Lω
≤ |y(0)|+ ‖q‖Lω

≤ 1 + 3δ
δ

‖q‖Lω
,

which because of the arbitrariness of x ∈ Cω(R) and q ∈ Lω(R) results in
p ∈ V 1

ω ( 1+3δ
δ ).
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Theorem 2.2. Let for any x ∈ Cω(Rn) almost everywhere on R the
inequality

f(x)(t) · sgn(σx(t)) ≤ p0(t)‖x(t)‖+ γ(t, ‖x‖Cω
) (2.25)

be fulfilled, where σ ∈ {−1, 1}, p0 ∈ Lω(R), γ(·, ρ) ∈ Lω(R+) for 0 < ρ <
+∞,

ω
∫

0

p0(s) ds < 0 (2.26)

and

lim sup
ρ→+∞

1
ρ

(
t+ω
∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

γ(s, ρ) ds
)

<

<
∣

∣

∣

∣

exp
(

−σ

ω
∫

0

p0(ξ) dξ
)

− 1
∣

∣

∣

∣

uniformly with respect to t ∈ [0, ω]. (2.27)

Then equation (1.1) has at least one ω-periodic solution.

To prove this theorem, it is necessary to establish an a priori estimate of
nonnegative ω-periodic solutions of the differential inequality

σu′(t) ≤ p0(t)u(t) + γ(t, ‖u‖Cω
), (2.28)

where σ ∈ {−1, 1}, p0 ∈ Lω(R), and γ(·, ρ) ∈ Lω(R+) for 0 < ρ < +∞.
Note that by an ω-periodic solution of inequality (2.28) we mean an ab-

solutely continuous ω-periodic function u : R → R satisfying this inequality
almost everywhere on R.

Lemma 2.1. Let inequality (2.26) be fulfilled, and let there exist a non-
negative constant ρ0 such that

t+ω
∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

γ(s, ρ) ds <

<
∣

∣

∣

∣

exp
(

− σ

ω
∫

0

p0(s) ds
)

− 1
∣

∣

∣

∣

ρ for 0 ≤ t ≤ ω, ρ > ρ0. (2.29)

Then an arbitrary nonnegative ω-periodic solution u of (2.28) admits the
estimate

‖u‖Cω
≤ ρ0. (2.30)
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Proof. Let u be an arbitrary ω-periodic solution of the differential inequality
(2.28). Suppose

q(t) = u′(t)− σp0(t)u(t).

Then by Theorem 6.4 from [11] we find

u(t) =
[

exp
(

−σ

ω
∫

0

p0(s) ds
)

− 1
]−1 t+ω

∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

q(s) ds. (2.31)

On the other hand, owing to (2.28), the inequality

σq(t) ≤ γ(t, ‖x‖Cω
)

holds almost everywhere on R. If along with this inequality we take into
consideration inequality (2.26), then from (2.31) we obtain

u(t) ≤
∣

∣

∣

∣

exp
(

− σ

ω
∫

0

p0(s) ds
)

− 1
∣

∣

∣

∣

−1

×

×
t+ω
∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

γ(s, ‖x‖Cω
) ds for 0 ≤ t ≤ ω. (2.32)

Suppose now that estimate (2.30) is not valid. Then there exists a point
t0 ∈ [0, ω] such that

‖u‖Cω
= u(t0) > ρ0.

Taking into account this fact and condition (2.29), from (2.32) we obtain
the contradiction

‖u‖Cω
< ‖u‖Cω

,

which proves the lemma.

Proof of Theorem 2.2. First of all it should be noted that by condition (2.27),
there exists a positive number ρ0 such that inequality (2.29) is fulfilled.

For any x and y ∈ Cω(Rn) suppose

p(x, y)(t) = σp0(t)y(t).

Then by Theorem 6.4 from [11], inequality (2.26) guarantees the condition

p ∈ V n
ω .

According to this fact and Theorem 2.1, to prove Theorem 2.2 it suffices
to establish that for any λ ∈ ]0, 1[ an arbitrary ω-periodic solution of the
differential equation

dx(t)
dt

= (1− λ)σp0(t)x(t) + λf(x)(t) (2.33)
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admits estimate (2.4).
Indeed, let x be such a solution. Suppose

u(t) = ‖x(t)‖.

Then by (2.25) from (2.33) we find

σu′(t) = x′(t) · sgn(σx(t)) =

= (1− λ)p0(t)‖x(t)‖+ λf(x)(t) · sgn(σx(t)) ≤
≤ p0(t)‖x(t)‖+ γ(t, ‖x‖Cω

) = p0(t)u(t) + γ(t, ‖u‖Cω
).

Consequently u is a nonnegative ω-periodic solution of the differential in-
equality (2.28). This function by Lemma 2.1 admits estimate (2.30). There-
fore x admits estimate (2.4).

Theorem 2.3. Let for any x and y ∈ Cω(Rn), almost everywhere on R
the condition

[f(x)(t)− f(y)(t)] · sgn
[

σ(x(t)− y(t))
]

≤
≤ p0(t)‖x(t)− y(t)‖+ γ0(t)‖x− y‖Cω

(2.34)

be fulfilled, where σ ∈ {−1, 1}, the function p0 ∈ Lω(R) satisfies inequality
(2.26) and the function γ0 ∈ Lω(R+) satisfies the inequality

t+ω
∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

γ0(s) ds <

<
∣

∣

∣

∣

exp
(

− σ

ω
∫

0

p0(ξ) dξ
)

− 1
∣

∣

∣

∣

for 0 ≤ t ≤ ω. (2.35)

Then equation (1.1) has one and only one ω-periodic solution.

Proof. From (2.34) and (2.35) we arrive at conditions (2.25) and (2.27),
where

γ(t, ρ) = γ0(t)ρ + ‖f(t, 0, . . . , 0)‖.
Therefore by Theorem 2.2, equation (1.1) has at least one ω-periodic solu-
tion x.

To complete the proof of the theorem, it remains to show that an arbit-
rary ω-periodic solution y of equation (1.1) coincides with x. Suppose

u(t) = ‖x(t)− y(t)‖.

Then by (2.34), u is a nonnegative ω-periodic solution of the differential
inequality (2.28), where

γ(t, ρ) = γ0(t)ρ.
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On the other hand, owing to (2.35), the function γ satisfies inequality (2.29),
where ρ0 = 0, whence by Lemma 2.1 it follows that u(t) ≡ 0. Consequently
x(t) ≡ y(t).

Example 2.1. Consider the integro-differential equation

dx(t)
dt

= σp0(t)x(t) + σ0

[

|p0(t)|
+∞
∫

−∞

p1(s)|x(s)| ds + p2(t)
]

, (2.36)

where σ and σ0 ∈ {−1, 1}, p1 : R → R+ is a summable function, while
p0 ∈ Lω(R−) and p2 ∈ Lω(R+) are functions different from zero on a set of
positive measure. Because of the restrictions imposed on p0 and p2,

t+ω
∫

t

|g(t, s)| |p0(s)| ds = 1 (2.37)

and
t+ω
∫

t

|g(t, s)|p2(s) ds ≥ δ, (2.38)

where

g(t, s) =
[

exp
(

− σ

ω
∫

0

p0(ξ) dξ
)

− 1
]−1

exp
(

σ

t
∫

s

p0(ξ) dξ
)

,

and δ is a positive constant. On the other hand, the operator

f(x)(t) = σp0(t)x(t) + σ0

[

|p0(t)|
+∞
∫

−∞

p1(s)|x(s)| ds + p2(t)
]

satisfies condition (2.34), where

γ0(t) = |p0(t)|
+∞
∫

−∞

p1(s) ds.

This and equality (2.37) imply that if

+∞
∫

−∞

p1(s) ds < 1, (2.39)

then inequality (2.35) is fulfilled. In that case, by Theorem 2.3 equation
(2.36) has a unique ω-periodic solution.
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Show that if

+∞
∫

−∞

p1(s) ds ≥ 1, (2.40)

then equation (2.36) has no ω-periodic solution. Assume to the contrary
that it has a solution x. Then

x(t) = σ0

t+ω
∫

t

g(t, s)
[

|p0(s)|
+∞
∫

−∞

p1(ξ)|x(ξ)| dξ + p2(s)
]

ds.

Hence, taking into account (2.37), (2.38) and (2.40), we find

µ ≥ µ

+∞
∫

−∞

p1(ξ) dξ + δ ≥ µ + δ,

where µ = min{|x(t)| : t ∈ R}. The obtained contradiction shows that
equation (2.36) has no ω-periodic solution when condition (2.40) is fulfilled.

The example under consideration shows that in Theorem 2.2 (Theorem
2.3) it is impossible to replace the strict inequality (2.27) (the strict inequa-
lity (2.35)) by the nonstrict one.

Theorem 2.4. Let there exist ρ0 ∈ ]0,+∞[ , δ ∈ ]0, 1[ and σ ∈ {−1, 1}
such that for any x ∈ Cω(Rn) satisfying

‖x‖Cω
> ρ0, (2.41)

almost everywhere on the set
{

t ∈ R : ‖x(t)‖ > (1− δ)‖x‖Cω

}

(2.42)

the inequality

f(x)(t) · sgn(σx(t)) ≤ 0 (2.43)

is fulfilled. Then equation (1.1) has at least one ω-periodic solution.

Proof. By Theorem 2.1, to prove Theorem 2.4 it suffices to establish that for
any λ ∈ ]0, 1[ , an arbitrary ω-periodic solution of the differential equation

dx(t)
dt

= −σ(1− λ)x(t) + λf(x)(t) (2.44)

admits estimate (2.4).
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Assume to the contrary that for some λ ∈ ]0, 1[ equation (2.44) has an
ω-periodic solution x satisfying (2.41). Then there exist t0 ∈ ]0,+∞[ , t∗ ∈
]0, t0[ and t∗ ∈ ]t0,+∞[ such that

‖x(t0)‖ = ‖x‖Cω
, ‖x(t)‖ > (1− δ)‖x‖Cω

for t∗ ≤ t ≤ t∗.

Hence it is clear that [t∗, t∗] is included in (2.42). Therefore inequality (2.43)
is fulfilled almost everywhere on [t∗, t∗]. Consequently

σ
d‖x(t)‖

dt
= −(1− λ)‖x(t)‖+ λf(x)(t) · sgn(σx(t)) < 0

for almost all t ∈ [t∗, t∗].

Hence for σ = 1 (σ = −1) it follows that

‖x(t∗)‖ > ‖x(t0)‖ ( ‖x(t∗)‖ > ‖x(t0)‖ ).

But this is impossible because ‖x(t0)‖ = ‖x‖Cω
. The obtained contradiction

proves the theorem.

As an example, consider the nonlinear differential system

dxi(t)
dt

= −σl0(t)|xi(t)|λ sgn xi(t) + σf1i(t, x1(t), . . . , xn(t)) +

+ f2i
(

t, l1(x1)(t), . . . , ln(xn)(t)
)

(i = 1, . . . , n), (2.45)

where σ ∈ {−1, 1}, λ ∈ ]0, +∞[ , l0 ∈ Lω(R+), f1i and f2i : R × Rn → R
(i = 1, . . . , n) are ω-periodic in the first argument functions satisfying the
local Carathéodory conditions, and li : Cω(R) → Cω(R) (i = 1, . . . , n) are
linear bounded operators with norms ‖l1‖, . . . , ‖ln‖.

Set

µ(λ) =

{

λ− 1 for λ > 1
0 for λ ≤ 1

.

Theorem 2.4 implies

Corollary 2.4. Let on R×Rn the inequalities
n

∑

i=1

f1i(t, x1, . . . , xn) sgn xi ≤ l0(t)
[

η1

(
n

∑

i=1

|xi|
)λ

+ η0

]

, (2.46)

n
∑

i=1

|f2i(t, x1, . . . , xn)| ≤ l0(t)
[

η2

(
n

∑

i=1

|xi|
)λ

+ η0

]

(2.47)

be fulfilled, where ηi (i = 0, 1, 2) are positive constants such that

η1 + ‖li‖λη2 < n−µ(λ) (i = 1, . . . , n). (2.48)

Then system (2.45) has at least one ω-periodic solution.
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Proof. If we assume x(t) = (xi(t))n
i=1,

fi(x)(t) = −σl0(t)|xi(t)|λ sgn xi(t) + σf1i(t, x1(t), . . . , xn(t)) +

+ f2i
(

t, l1(x1)(t), . . . , ln(xn)(t)
)

(i = 1, . . . , n)

and
f(x)(t) = (fi(x)(t))n

i=1,

then system (2.45) will take form (1.1). On the other hand, taking into
account (2.46) and (2.47), the operator f satisfies the condition

f(x)(t) · sgn(σx(t)) ≤

≤ −l0(t)
n

∑

i=1

|xi(t)|λ + l0(t)
[

(η1 + ‖li0‖λη2)‖x‖λ
Cω

+ 2η0
]

,

where ‖li0‖ = max{‖l1‖, . . . , ‖ln‖}. Hence in view of the inequality

‖x‖λ ≤ nµ(λ)
n

∑

i=1

|xi|λ

we obtain

f(x)(t) · sgn(σx(t)) ≤

≤ −l0(t)
[

n−µ(λ)‖x(t)‖λ − (η1 + ‖li0‖λη2)‖x‖λ
Cω
− 2η0

]

. (2.49)

By virtue of (2.48), there exists δ ∈ ]0, 1[ such that

ε = (1− δ)λn−µ(λ) − η1 − ‖li0‖λη2 > 0.

Set
ρ0 = (2η0/ε)

1
λ .

Let x ∈ Cω(Rn) be an arbitrary vector function satisfying (2.41). Then
by (2.49) inequality (2.43) holds almost everywhere on set (2.42). Therefore
all the conditions of Theorem 2.4 are fulfilled, which guarantees the existence
of at least one ω-periodic solution of (2.45).

3. Periodic Solutions of Equation (1.2)

Throughout this section f0 : R×R(m+1)n → Rn is assumed to be a vector
function satisfying the local Carathéodory conditions and also condition
(1.3), while τk : R → R (k = 1, . . . ,m) are assumed to be measurable
functions satisfying condition (1.4).

For any x ∈ Cω(Rn) we assume that

f(x)(t) = f0
(

t, x(t), x(τ1(t)), . . . , x(τm(t))
)

.

Then the operator f : Cω(Rn) → Lω(Rn) is continuous. Therefore from
Corollary 2.2 and Theorems 2.2–2.4 we obtain the following propositions.
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Corollary 3.1. Let the inequality

∥

∥

∥f0(t, x0, x1, . . . , xm)−
m

∑

k=0

Pk(t, x0, x1, . . . , xm)xk

∥

∥

∥ ≤

≤ γ
(

t, ‖x0‖, ‖x1‖, . . . , ‖xm‖
)

be fulfilled on R × R(m+1)n, where Pk : R × R(m+1)n → Rn×n (k =
0, 1, . . . , m) are ω-periodic in the first argument matrix functions satisfying
the local Carathéodory conditions, and γ : R×Rm+1

+ → R+ is nondecreasing
in the last n arguments and ω-periodic in the first argument. Let, moreover,
there exist matrices A and B ∈ Rn×n

+ such that

r(A + BA2) < 1,

lim sup
ρ→+∞

1
ρ

ω
∫

0

γ(s, ρ, . . . , ρ) ds <
∥

∥(E −A−BA2)−1(E + BA)
∥

∥

and for any x ∈ Cω(Rn) the matrix

m
∑

k=0

ω
∫

0

Pk
(

s, x(s), x(τ1(s)), . . . , x(τm(s))
)

ds

is nondegenerate,

m
∑

k=0

ω
∫

0

∣

∣Pk
(

s, x(s), x(τ1(s)), . . . , x(τm(s))
)∣

∣ ds ≤ A,

and
∣

∣

∣

∣

[
m

∑

k=0

ω
∫

0

Pk
(

s, x(s), x(τ1(s)), . . . , x(τm(s))
)

ds
]−1

∣

∣

∣

∣

≤ B.

Then equation (1.2) has at least one ω-periodic solution.

Corollary 3.2. Let the inequality

f0(t, x0, x1, . . . , xm) · sgn(σx0) ≤ p0(t)‖x0‖+ γ
(

t, ‖x0‖, . . . , ‖xm‖
)

be fulfilled on R×R(m+1)n, where σ ∈ {−1, 1}, p0 ∈ Lω(R),
ω
∫

0
p0(s) ds < 0,
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γ(·, ρ, . . . , ρ) ∈ Lω(R+) for 0 < ρ < +∞, and

lim sup
ρ→+∞

(

1
ρ

t+ω
∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

γ(s, ρ, . . . , ρ) ds
)

<

<
∣

∣

∣

∣

exp
(

− σ

ω
∫

0

p0(ξ) dξ
)

− 1
∣

∣

∣

∣

uniformly with respect to t ∈ [0, ω].

Then equation (1.2) has at least one ω-periodic solution.

Corollary 3.3. Let the condition

[

f0(t, x0, x1, . . . , xm)− f0(t, y0, y1, . . . , ym)
]

· sgn
(

σ(x0 − y0)
)

≤

≤ p0(t)‖x0 − y0‖+
m

∑

k=0

γk(t)‖xk − yk‖

be fulfilled on R×R(m+1)n, where σ ∈ {−1, 1}, p0 ∈ Lω(R),
ω
∫

0
p0(s) ds < 0,

γk ∈ Lω(R+) (k = 1, . . . , m) and

m
∑

k=1

t+ω
∫

t

exp
(

σ

t
∫

s

p0(ξ) dξ
)

γk(s) ds <

<
∣

∣

∣

∣

exp
(

− σ

ω
∫

0

p0(ξ) dξ
)

− 1
∣

∣

∣

∣

for 0 ≤ t ≤ ω.

Then equation (1.2) has one and only one ω-periodic solution.

Corollary 3.4. Let there exist ρ ∈ ]0,+∞[ , δ ∈ ]0, 1[ and σ ∈ {−1, 1}
such that on the set

{

(t, x0, x1, . . . , xm) ∈ R×R(m+1)n : ‖x0‖ ≥ ρ,

(1− δ)‖xk‖ ≤ ‖x0‖ (k = 1, . . . , m)
}

the inequality

f0(t, x0, x1, . . . , xm) · sgn(σx0) ≤ 0

is fulfilled. Then equation (1.2) has at least one ω-periodic solution.
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Janáčkovo nám. 2a, 66295 Brno
Czech Republic


