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ON THE ABSOLUTE SUMMABILITY OF SERIES WITH
RESPECT TO BLOCK-ORTHONORMAL SYSTEMS

G. NADIBAIDZE

Abstract. Theorems determining Weyl’s multipliers for the summa-
bility almost everywhere by the |c, 1|method of the series with respect
to block-orthonormal systems are proved. In particular, it is stated
that if the sequence {ω(n)} is the Weyl multiplier for the summability
almost everywhere by the |c, 1| method of all orthogonal series, then
there exists a sequence {Nk} such that {ω(n)} will be the Weyl mul-
tiplier for the summability almost everywhere by the |c, 1| method of
all series with respect to the ∆k-orthonormal systems.

The present paper deals with the summability almost everywhere (a.e.)
by the |c, α| method of series with respect to block-orthonormal systems.
Under the summability by the |c, α| method of the series

∞
∑

n=1

an

is understood the convergence of the series

∞
∑

n=1

∣

∣σ(α)
n+1 − σ(α)

n

∣

∣,

where

σ(α)
n =

1
Aα

n

∞
∑

k=1

Aα
n−k ak

are the Cesàro (c, α)-means.
The problem of the summability a.e. by the |c, α| method of orthogonal

series was considered by P.L. Ul’yanov [1]. In particular, he proved that if
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the condition
∞
∑

n=1

1
n ω(n)

< ∞, (1)

is fulfilled for a positive nondecreasing sequence {ω(n)}, then the conver-
gence of the series

∞
∑

n=1

a2
n ω(n)

guarantees the summability a.e. on (0, 1) by the |c, α| method (α > 1
2 ) of

the series
∞
∑

n=1

an ϕn(x) (2)

for every orthonormal system from L2(0, 1).
If however

∞
∑

n=1

1
n ω(n)

= ∞,

then there exists an even function f(x) ∈ ∩
p≥1

Lp[0, 2π] such that its Fourier

series

f(x) ∼
∞
∑

n=1

cn cosnx

converges a.e. on [0, 2π] and for every fixed α > 0 is not |c, α| summable
a.e. on [0, 2π] though

∞
∑

n=1

c2
n ω(n) < ∞.

Definition 1 (see [2]). Let {Nk} be an increasing sequence of natural
numbers, ∆k = (Nk, Nk+1], k = 1, 2, . . . , and {ϕn} be a system of functions
from L2(0, 1). The system {ϕn} will be called a ∆k-orthonormal system
(∆k-ONS) if:

(1) ‖ϕn‖2 = 1, n = 1, 2, . . . ;
(2) (ϕi, ϕj) = 0 for i, j ∈ ∆k, i 6= j, k ≥ 1.

Definition 2 (see [1]). A positive nondecreasing sequence {ω(n)} will
be called the Weyl multiplier for the summability a.e. of series with respect
to the ∆k-ONS {ϕn} if the condition

∞
∑

n=1

a2
n ω(n) < ∞ (3)
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guarantees the summability a.e. by the |c, α| method of the corresponding
series (2).

Below we shall quote the theorem showing that if the sequence {ω(n)}
is the Weyl multiplier for the summability a.e. by the |c, 1| method of all
orthogonal series (2), then it will be the Weyl multiplier for the summability
a.e. by the |c, 1| method of all series (2) with respect to the ∆k-ONS for
the increasing sequence of natural numbers {Nk}.

Theorem 1. If a positive nondecreasing sequence {ω(n)} is the Weyl
multiplier for the summability a.e. by the |c, 1| method of all orthonormal
series (2), then there exists an increasing sequence of natural numbers {Nk}
such that {ω(n)} is the Weyl multiplier for the summability a.e. by the |c, 1|
method of all series (2) with respect to the ∆k = (Nk, Nk+1]-ONS.

Proof. We prove this theorem by the Wang–Ul’yanov’s scheme (see [1])
modifying it accordingly. Let the positive nondecreasing sequence {ω(n)}
be the Weyl multiplier for the summability a.e. by the |c, 1| method of all
orthogonal series (2). Then condition (1) is fulfilled.

As is known (see [1]), for the positive nondecreasing on [n0, +∞) function
ω(x) the series

∞
∑

m=n0

1
m ω(m)

and
∞
∑

m=n2
0

1
m ω(

√
m)

converge or diverge simultaneously. Therefore, taking into account (1), we
have

∞
∑

n=1

1
n ω( 4

√
n)

< ∞.

Then
∞
∑

n=1

R(n)
n ω( 4

√
n)

< ∞, (4)

where

R(n) =

( ∞
∑

k=2

1
k ω( 4√k)

) 1
2

( ∞
∑

k=n+1

1
k ω( 4√k)

) 1
2
.

Obviously, R(1) = 1, R(n) < R(n + 1) and limn→∞R(n) = +∞.
Define the sequence k(n) by the recursion formula

k(1) = 0, k(n + 1) =

{

k(n) + 1 if R(n + 1) ≥ k(n) + 1,
k(n) if R(n + 1) < k(n) + 1,

n ≥ 1.
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Thus we obtain the nondecreasing sequence of nonnegative integers for
which

k(n) ≤ R(n), n = 1, 2, . . . . (5)

Note that for the sequence k(n) there exists an increasing sequence of natu-
ral numbers {Nk} (it is assumed that N0 = 0) which is defined by the
formula

k(n) = max{k : Nk < n}.

Then, taking into account (4) and (5), we find that

∞
∑

n=1

k(n)
n ω( 4

√
n)

< ∞. (6)

Let {ϕn} be a block-orthonormal system with ∆k = (Nk, Nk+1] and
condition (3) be fulfilled. Then for the corresponding series (2) we have

σn(x)− σn−1(x) =
1

n(n− 1)

∞
∑

i=1

ai(i− 1) ϕi(x), n ≥ 2.

Denoting by c the absolute positive constants which, generally speaking,
may have different values in different inequalities and using (6), we find
that
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2
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≤
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∞
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(
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a2
i i

2 +
n

∑
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2
) 1

2 ≤
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1
n2

(

k(n)
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i

) 1
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∞
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√
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n2
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[ 4√n]
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i2a2
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) 1
2
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i2a2
i

) 1
2
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√

k(n)(
√

n 4
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+
∞
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∞
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1
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(
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) 1
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< ∞,

whence by Levy’s theorem
∞
∑

n=2

∣

∣σn(x)− σn−1(x)
∣

∣ < ∞ a.e. on (0, 1).

The theorem below makes it possible to determine the Weyl multipliers
for the summability a.e. of the series (2) with respect to the ∆k-ONS for
regularly increasing sequences {Nk}.

Theorem 2. Let an increasing sequence of natural numbers {Nk} be
given, for which the condition

∞
∑

k=n

1
N2

k
= O

( n
N2

n

)

(n →∞) (7)

is fulfilled, and let
k(n) = max{k : Nk < n}.

If for the positive nondecreasing sequence {ω(n)} condition (1) is fulfilled,
then for every ∆k-ONS {ϕn} the condition

∞
∑

n=1

a2
n ω(n) k(n) < ∞ (8)

guarantees the summability a.e. by the |c, 1| method of the corresponding
series (2).

Proof. Let conditions (1), (7) and (8) be fulfilled. Then for the corre-
sponding series (2) we have
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≤ c
∞
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+

+
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8
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+
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∑
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1
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1
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(
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2

=

= c + c
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k(i)
n3 +
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j
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∑
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1
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)) 1
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(

k(i)
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∑

n=Nk(i)+1+1

1
n3 +

+
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1
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)) 1
2
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(
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whence by Levy’s theorem

∞
∑

n=2

∣

∣σn(x)− σn−1(x)
∣

∣ < ∞ a.e. on (0, 1).

Remark 1. In Theorem 2, the Weyl multipliers defined by conditions (1)
and (8) can be assumed to be exact on the set of sequences {Nk} with
condition (7) in the sense that if condition (1) is violated, then one can
construct a sequence {Nk} for which condition (7) is fulfilled and also there
exists a trigonometric series

∞
∑

n=1

bn cosnx,

which is nonsummable by the |c, α| method for almost all x ∈ [0, 2π] (for
every fixed α > 0) though

∞
∑

n=1

b2
n ω(n) k(n) < ∞.
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Indeed, let the condition
∞
∑

n=1

1
n ω(n)

= ∞

be fulfilled for the sequence {ω(n)}.
We construct an increasing sequence of natural numbers {Nk} in such a

way that the condition

k = O
(

Nk
∑

n=1

1
n ω(n)

)β
, 0 < β ≤ 1

2
,

be fulfilled and the sequence Nk
k be increasing.

Clearly, condition (7) is fulfilled (see [3], Remark 2).
Take

sk =
k

∑

n=1

1
n ω(n)

, k = 1, 2, . . . ,

and
cm =

1
√

m ω(m) (sm)β+ 1
2

m = 1, 2, . . . .

Then for arbitrary εm = ±1 we have
∞
∑

m=1

(εmcm)2ω(m)k(m) =
∞
∑

m=1

k(m)
m ω(m)(sm)2β+1 =

=
∞
∑

k=0

Nk+1
∑

m=Nk+1

k(m)
m ω(m)(sm)2β+1 ≤ c

∞
∑

k=0

Nk+1
∑

m=Nk+1

(sNk)β

m ω(m)(sm)2β+1 ≤

≤ c
∞
∑

k=0

Nk+1
∑

m=Nk+1

1
m ω(m)(sm)1+β ≤ c

∞
∑

m=1

1
m ω(m)(sm)1+β < ∞.

On the other hand,

∞
∑

n=0

{ 2n+1
∑

m=2n+1

c2
m

} 1
2

≥
∞
∑

n=0

{ 2n+1
∑

m=2n+1

1
m(ω(m))2(sm)1+2β

} 1
2

≥

≥ 1
2

∞
∑

n=1

1

ω(2n)(s2n)
1
2+β

= ∞.

Therefore by Billard’s theorem [1], for almost all choices of εk = ±1 the
series

∞
∑

m=1

εm cm cosmx
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is |c, α|-nonsummable (α > 0) at almost every point x ∈ [0, 2π] though
∞
∑

n=1

b2
n ω(n) k(n) < ∞,

where bn = εncn.

Remark 2. The above theorems remain also valid for |c, α| methods with
cα > 1

2 .
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