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POSITIVE SOLUTIONS TO SECOND ORDER SINGULAR
DIFFERENTIAL EQUATIONS INVOLVING THE
ONE-DIMENSIONAL M-LAPLACE OPERATOR

TOMOYUKI TANIGAWA

Abstract. We consider a class of second order quasilinear differential
equations with singular ninlinearities. Our main purpose is to investi-
gate in detail the asymptotic behavior of their solutions defined on a
positive half-line. The set of all possible positive solutions is classified
into five types according to their asymptotic behavior near infinity,
and sharp conditions are established for the existence of solutions
belonging to each of the classified types.

1. Introduction

This paper is concerned with positive solutions to second order singular
differential equations of the form

(p(t)|y′|m−2y′)′ + q(t)y−n = 0, t ≥ a, (A)

where the following conditions are assumed to hold:=
(a) m > 1 and n > 0 are constants;

(b) p(t) and q(t) are positive continuous functions on [a,∞), a ≥ 0;

(c) p(t) satisfies

∞
∫

a

(p(t))−
1

m−1 dt < ∞. (1.1)

By a (positive) solution of (A) on J ⊂ [a,∞) is meant a function y :
J → (0,∞) which is continuously differentiable together with p|y′|m−2y′

and satisfies the equation at every point of J . We will be mainly interested
in the case where J is a half-line [t0,∞), t0 ≥ a. A solution is said to be
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proper if it can be continued to ∞ and singular otherwise. It is clear that a
singular solution necessarily vanishes at the right end point of its maximal
interval of existence which is bounded.

The equation (A) always has singular solutions, and it is= shown that

all of its solutions are singular unless
[

(p(t))−1

t
∫

a

q(s)ds
] 1

m−1

is integrable

on [a,∞). Otherwise, (A) posseses proper solutions on which our attention
in this paper will be focused. We classify the set of all possible positive
proper solutions of (A) into five types according to their asymptotic behav-
ior as t → ∞ (Section 2), and then establish conditions (preferably sharp)
for the existence of a proper solution of each of these five types (Section
3). Thus we are able to characterize the situations in which (A) has proper
solutions of all but one of the classified types. Since the differential opera-
tor (p(t)|y′|m−2y′)′ in (A), which is a natural generalization of the Sturm–
Liouville operator (p(t)y′)′, can also be regarded as a one-dimensional polar
form of the m-Laplace operator ∆mu = div(|Du|m−2Du), Du denoting the
gradient of u in RN , the results for (A) are expected to apply to singular
partial differential equations of the type

div
(

|Du|m−2Du
)

+ c(|x|)u−n = 0 (1.2)

to provide nontrivial information about their positive spherically symmetric
solutions defined in exterior domains. Analysis based on this expectation is
made in Section 4, in which other examples illustrating our main results for
(A) are also presented.

We notice that singular equations of the form (A) with p(t) satisfying
the condition

∞
∫

a

(p(t))−
1

m−1 dt = ∞ (1.3)

have been considered by Kurokiba, Kusano and Wang [1]. They have made a
fairly complete study of the structure of positive solutions, both singular and
proper, of (A), by examining how the trajectories of the solutions emanating
from a fixed point y(t0) = y0 > 0 alter depending on the change of the initial
gradient y′(t0) = y1 ∈ R. The transition from (1.2) to (1.1) seems to make
it difficult to directly apply their approach to the present situation, and this
observation motivated us to look at the problem from a slightly different
angle.

Differential equations with singular nonlinearities have received consid-
erable attention in recent years; for the literature more or less related to the
present work we refer to the papers [1–11].
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2. Classification of Proper Solutions

A) Singular solutions. We first observe that there always exist singular
solutions of (A) emanating from any given point on the positive part of the
line t = t0, t0 ≥ a. Let y(t) be a positive solution of (A) determined by the
initial conditions

y(t0) = η > 0, (p(t0))
1

m−1 y′(t0) = −ζ < 0.

From=20(A), p(t)|y′(t)|m−2y′(t) is decreasing, and so y′(t) < 0 as long as
y(t) exists. Integrating (A) rewritten as

(−p(t)(−y′(t))m−1)′ + q(t)(y(t))−n = 0

twice from t0 to t yields

y(t) = η −
t

∫

t0

[

(p(s))−1
(

ζm−1 +

s
∫

t0

q(r)(y(r))−ndr
)] 1

m−1

ds. (2.1)

Let η > 0 and t1 > t0 be fixed and choose ζ > 0 so that

η < ζ

t1
∫

t0

(p(s))−
1

m−1 ds.

Then it follows from (2.1) that y(t) must tend to zero as t approaches some
point t2 < t1 beyond which y(t) cannot be continued to the right as a
solution of (A). Thus y(t) is a singular solution.

B) Proper solutions. We intend to classify the set of proper positive so-
lutions of (A) according to their asymptotic behavior as t → ∞. Here and
in what follows extensive use will be made of the function π(t) defined by

π(t) =

∞
∫

t

(p(s))−
1

m−1 ds, t ≥ a. (2.2)

Because of (1.1), π(t) → 0 as t → ∞. Let y(t) be such a solution on
[t0,∞), t0 ≥ a. From (A) we see that p(t)|y′(t)|m−2y′(t) is decreasing for
t ≥ t0, so that either

p(t)|y′(t)|m−2y′(t) > 0 for t ≥ t0 (2.3)

or there is t1 ≥ t0 such that

p(t)|y′(t)|m−2y′(t) < 0 for t ≥ t1. (2.4)

Suppose that (2.3) holds. Then, y′(t) > 0, t ≥ t0, and

p(t)(y′(t))m−1 ≤ p(t0)(y′(t0))m−1, t ≥ t0,
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or equivalently

y′(t) ≤ p(t0)
1

m−1 y′(t0)(p(t))−
1

m−1 , t ≥ t0.

Integrating the above shows that

y(t) ≤ y(t0) + (p(t0))
1

m−1 y′(t0)π(t0), t ≥ t0. (2.5)

Thus, y(t) is bounded above on [t0,∞) and increases to a finite positive
limit as t → ∞. Clearly, p(t)|y′(t)|m−2y′(t) = p(t)(y′(t))m−1 tends to a
nonnegative constant as t →∞.

Suppose that (2.4) holds. Then, y′(t) < 0, t ≥ t1, and

−p(t)(−y′(t))m−1 ≤ −p(t1)(−y′(t1))m−1, t ≥ t1,

or
−y′(t) ≥ (p(t1))

1
m−1 (−y′(t1))(p(t))−

1
m−1 , t ≥ t1.

An integrating of the above gives

y(t) ≥ (p(t1))
1

m−1 (−y′(t1))π(t), t ≥ t1, (2.6)

which shows that y(t) may decrease to zero as t → ∞ but cannot decay
faster than any constant mulitiple of π(t). In this case p(t)|y′(t)|m−2y′(t) =
−p(t)(−y′(t))m−1 goes to a finite negative limit or −∞ as t →∞.

The above observations suggest us to distinguish the following five possib-
lities in the asymptotic behavior of positive proper solutions of the equation
(A):

(I) lim
t→∞

y(t) = const > 0, lim
t→∞

(p(t))
1

m−1 y′(t) = const ≥ 0;

(II) lim
t→∞

y(t) = const > 0, lim
t→∞

(p(t))
1

m−1 y′(t) = const < 0;

(III) lim
t→∞

y(t) = const > 0, lim
t→∞

(p(t))
1

m−1 y′(t) = −∞;

(IV) lim
t→∞

y(t) = 0, lim
t→∞

(p(t))
1

m−1 y′(t) = −∞;

(V) lim
t→∞

y(t) = 0, lim
t→∞

(p(t))
1

m−1 y′(t) = const < 0.

Positive solutions of types (IV) and (V) are often termed decaying solu-
tions of (A). A solution y(t) of type (V) decays as t →∞ exactly like a con-
stant multiple of π(t), since (V) is equivalent to lim

t→∞
y(t)/π(t) = const > 0.

The speed of decay of a soluiton y(t) of type (IV) is slower than π(t) as
t →∞, since (IV) is equivalent to lim

t→∞
y(t)/π(t) = ∞.

C) Integral equations. Let us now derive integral equations for proper
positive solutions of (A) corresponding to the classification given above.
The integral equaitons will prove to be crucial in the study to be made
in the next section regarding the existence (and nonexistence) of proper
solutions of (A) of the five classified types.
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Let y(t) be a solution of type (I) on [t0,∞). Rewriting the equation (A)
as

(p(t)(y′(t))m−1)′ + q(t)(y(t))−n = 0, t ≥ t0,

and integrating it twice from t to ∞, we have

y(t) = c−
∞
∫

t

[

(p(s))−1
(

wm−1 +

∞
∫

s

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t0, (2.7)

where

c = lim
t→∞

y(t) > 0 and ω = lim
t→∞

(p(t))
1

m−1 y′(t) ≥ 0.

An immediate consequence of (2.7) is that q(t)(y(t))−n is integrable on
[t0,∞).

Let y(t) be a solution of type (II) on [t1,∞). Noting that

(−p(t)(−y′(t))m−1)′ + q(t)(y(t))−n = 0, t ≥ t1, (2.8)

and integrating (2.8) twice from t to ∞, we obtain

y(t) = c +

∞
∫

t

[

(p(s))−1
(

ωm−1 −
∞
∫

s

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t1, (2.9)

where

c = lim
t→∞

y(t) > 0 and ω = − lim
t→∞

(p(t))
1

m−1 y′(t) > 0.

Likewise, q(t)(y(t))−n is integrable on [t1,∞) for a solution y(t) of type (II).
To obtain an integral equation for a solution y(t) of type (III) or (IV) we

first integrate (2.8) from t1 to t:

p(t)(−y′(t))m−1 = p(t1)(−y′(t1))m−1 +

t
∫

t1

q(s)(y(s))−nds, t ≥ t1, (2.10)

or equivalently

−y′(t) =
[

(p(t))−1
(

p(t1)(−y′(t1))m−1 +

+

t
∫

t1

q(s)(y(s))−nds
)] 1

m−1

, t ≥ t1. (2.11)
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Since p(t)(−y′(t))m−1 → ∞ as t → ∞, (2.10) implies that q(t)(y(t))−n is
not integrable on [t1,∞). An integration of (2.11) over [t,∞) then yields

y(t) = c +

∞
∫

t

[

(p(s))−1
(

p(t1)(−y′(t1))m−1 +

+

s
∫

t1

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t1, (2.12)

where c = lim
t→∞

y(t) ≥ 0; c > 0 if y(t) is of type (III) and c = 0 if

y(t) is of type (IV). It should be noticed in this case that the function
[

(p(t))−1

t
∫

t1

q(s)(y(s))−nds
] 1

m−1

is integrable on [t1,∞).

Finally consider a solution y(t) of type (V). As a result of repeated inte-
gration of (2.8) over [t,∞) it follows that y(t) satisfies the integral equation

y(t) =

∞
∫

t

[

(p(s))−1
(

ωm−1 −
∞
∫

s

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t1, (2.13)

where ω = − lim
t→∞

(p(t))
1

m−1 y′(t) > 0. The integrability of q(t)(y(t))−n on

[t1,∞) follows readily from (2.13).

3. Existence of Proper Solutions

A) Increasing proper solutions. We begin by noting that for the existence
of a positive proper solution of type (I) of (A) it is necessary that q(t) is
integrable on [a,∞), that is,

∞
∫

a

q(t)dt < ∞. (3.1)

In fact, if y(t) is of type (I) on [t0,∞), then since y(t)≤y(∞)= lim
t→∞

y(t)<∞,

t ≥ t0, we have, by the integrability of q(t)(y(t))−n,

(y(∞))−n

∞
∫

t0

q(t)dt ≤
∞
∫

t0

q(t)(y(t))−ndt < ∞,

which implies (3.1). It turns out that (3.1) is also a sufficient condition for
(A) to have a type (I)-solution.
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Theorem 3.1. There exists a positive proper solution y(t) of (A) such
that

lim
t→∞

y(t) = const > 0, lim
t→∞

(p(t))
1

m−1 y′(t) = const ≥ 0 (3.2)

if and only if (3.1) holds.

Proof. Suppose that (3.1) holds. Let t0 ≥ a be fixed. There exist constants
c > 0 and ω ≥ 0 such that

∞
∫

t0

[

(p(t))−1
(

ωm−1 + c−n

∞
∫

t0

q(s)ds
)] 1

m−1

dt ≤ c. (3.3)

It suffices, for example, to take an arbitrary ω ≥ 0 and choose c > 0 large
enough. Define the set Y ⊂ C[t0,∞) and the mapping F : Y → C[t0,∞)
by

Y = {y ∈ C[t0,∞) : c ≤ y(t) ≤ 2c, t ≥ t0} (3.4)

and

(Fy)(t) = 2c−
∞
∫

t

[

(p(s))−1
(

ωm−1 +

+

∞
∫

s

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t0. (3.5)

We will demonstrate the existence of a fixed point of F in Y , which clearly
provides a solution of type (I) of (A) (cf. (2.7)). The Schauder-Tychonoff
fixed point theorem will be used for this purpose. It should be shown that
(i) F maps Y into itself, (ii) F is continuous and (iii) F(Y ) is relatively
compact in C[t0,∞). That F(Y ) ⊂ Y is a trivial consequence of (3.3). To
prove that F is continuous, let {yν} be a sequence in Y converging to y in the
topology of C[t0,∞), which means that {yν(t)} converges to y(t) uniformly
on compact subintervals of [t0,∞). Then, using the Lebesgue convergence
theorem, we can show that {(Fyν)(t)} converges to (Fy)(t) uniformly on
compact subintervals of [t0,∞). This implies that {Fyν} converges to Fy
in C[t0,∞), establishing the continuity of F . The relative compactness
of F(Y ) follows from the uniform boundedness (cf. (3.4)) and the local
equicontinuity of this set, the latter being a consequence of the inequality

0 ≤ (Fy)′(t) ≤
[

(p(t))−1
(

ωm−1 + c−n

∞
∫

t0

q(s)ds
)] 1

m−1

, t ≥ t0.
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Thus F has a fixed point y ∈ Y , which gives rise to a positive proper
solution y(t) of (A) on [t0,∞) with the property that lim

t→∞
y(t) = 2c and

lim
t→∞

(p(t))
1

m−1 y′(t) = ω.

B) Decreasing proper solutions. The remaining solutions of (A) belonging
to the types (II)-(V) are all (eventually) decreasing solutions. Let y(t) be a
solution of type (II) which is decreasing on [t1,∞). Then, y(t) ≤ y(t1) for
t ≥ t1, and combining this with the integrability of q(t)(y(t))−n on [t1,∞)
we have

(y(t1))−n

∞
∫

t1

q(s)ds ≤
∞
∫

t1

q(s)(y(s))−nds < ∞,

which implies (3.1). Actually (3.1) is a condition characterizing the exis-
tence of a type (II)-solution of (A), as the following theorem asserts.

Theorem 3.2. There exists a positive proper solution y(t) of (A) such
that

lim
t→∞

y(t) = const > 0, lim
t→∞

(p(t))
1

m−1 y′(t) = const < 0 (3.6)

if and only if (3.1) holds.

Proof. We need only to prove the “if ”part of the theorem. Let t1 ≥ a be
fixed. For an arbitrary fixed constant ω > 0 take a constant c > 0 such that

ω

∞
∫

a

(p(t))−
1

m−1 dt ≤ c and ω1−m

∞
∫

t1

q(t)dt ≤ (2c)n, (3.7)

which is possible by (1.1) and (3.1). Consider the set Y ⊂ C[t1,∞) and the
integral operator F : Y → C[t1,∞) defined by

Y = {y ∈ C[t1,∞) : c ≤ y(t) ≤ 2c, t ≥ t1}

and

(Fy)(t) = c +

∞
∫

t

[

(p(s))−1
(

ωm−1 −
∞
∫

s

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t1.

The condition (3.7) ensures that F is well defined on Y and maps Y into
itself. The continuity of F and the relative compactness of F(Y ) can be
proved exactly as in the proof of Theorem 3.1, and so there exists an element
y ∈ Y such that y = Fy by the Schauder-Tychonoff fixed point theorem.
Since the fixed element y(t) obtained satisfies the integral equation (2.9), it
provides a positive solution of (A) defined on [t1,∞) and satisfying (3.6):
lim

t→∞
y(t) = c and lim

t→∞
(p(t))

1
m−1 y′(t) = −ω. This finishes the proof.



SECOND ORDER SINGULAR DIFFERENTIAL EQUATIONS 355

We now turn to positive solutions of types (III) and (IV). We observed in

Section 2 that q(t)(y(t))−n is nonintegrable but
[

(p(t))−1

t
∫

t1

q(s)(y(s))−nds
] 1

m−1

is integrable on [t1,∞) for any solution of (A) of type (III) or type (IV). If
y(t) is of type (III), then, since y(t1) ≥ y(t) ≥ y(∞) > 0 for t ≥ t1, we see
that

(y(∞))−n

∞
∫

t1

q(t)dt ≥
∞
∫

t1

q(t)(y(t))−ndt = ∞ (3.8)

and

(y(t1))−
n

m−1

∞
∫

t1

[

(p(t))−1

t
∫

t1

q(s)ds
] 1

m−1

dt

≤
∞
∫

t1

[

(p(t))−1

t
∫

t1

q(s)(y(s))−nds
] 1

m−1

dt < ∞, (3.9)

whereas if y(t) is of type (IV), then since y(t1) ≥ y(t) ≥ kπ(t) for t ≥ t1,
we find that (3.9) remains to hold but, instead of (3.8),

k−n

∞
∫

t1

q(t)(π(t))−ndt ≥
∞
∫

t1

q(t)(y(t))−ndt = ∞.

Summarizing the above, in order for (A) to have a positive proper solution
of type (III) it is necessary that

∞
∫

a

q(t)dt = ∞ and

∞
∫

a

[

(p(t))−1

t
∫

a

q(s)ds
] 1

m−1

dt < ∞, (3.10)

and in order for (A) to have a proper solution of type (IV) it is necessary
that

∞
∫

a

q(t)(π(t))−ndt = ∞ and

∞
∫

a

[

(p(t))−1

t
∫

a

q(s)ds
] 1

m−1

dt < ∞. (3.11)

We will show that (3.10) is also sufficient for the existence of a type
(III)-solution of (A).
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Theorem 3.3. There exists a positive proper solution y(t) of (A) such
that

lim
t→∞

y(t) = const > 0, lim
t→∞

(p(t))
1

m−1 y′(t) = −∞ (3.12)

if and only if (3.10) is satisfied.

Proof. Suppose that (3.10) holds. For fixed t1 ≥ a choose c > 0 so large
that

∞
∫

t1

[

(p(t))−1

t
∫

t1

q(s)ds
] 1

m−1

dt ≤ c
m+n−1

m−1 .

It is easy to verify on the basis of the Schauder-Tychonoff theorem that the
mapping F defined by

(Fy)(t) = c +

∞
∫

t

[

(p(s))−1

s
∫

t1

q(r)(y(r))−ndr
] 1

m−1

ds, t ≥ t1,

has a fixed point y in the set Y = {y ∈ C[t1,∞) : c ≤ y(t) ≤ 2c, t ≥ t1}.
The fixed element y = y(t) satisfies the integral equation (2.12) (with
y′(t1) = 0), and hence it gives a positive solution of (A) on [t1,∞). From
the integral equation it follows that lim

t→∞
y(t) = c and that

(p(t))
1

m−1 y′(t) = −
[

t
∫

t1

q(s)(y(s))−nds
] 1

m−1

≤

≤ −(2c)−
n

m−1

[
t

∫

t1

q(s)ds
] 1

m−1

, t ≥ t1,

which implies that lim
t→∞

(p(t))
1

m−1 y′(t) = −∞ (see the first condition in

(3.10)). Thus we have been able to construct a positive proper solution
with the required asymptotic property (3.12), completing the proof.

So far we have been unable to prove or disprove that (3.11) is a necessary
and sufficient condition for (A) to possess a proper solution of type (IV).
Only a sufficient condition will be given in the following theorem.

Theorem 3.4. There exists a positive proper solution y(t) of (A) such
that

lim
t→∞

y(t) = 0 and lim
t→∞

y(t)
π(t)

= ∞ (3.13)
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if

∞
∫

a

q(t)dt = ∞ and

∞
∫

a

[

(p(t))−1

t
∫

a

q(s)(π(s))−nds
] 1

m−1

dt < ∞. (3.14)

Proof. Let t1 ≥ a be fixed and k > 0 be any constant. Put

K =

∞
∫

t1

[

(p(t))−1
(

km−1 + k−n

t
∫

t1

q(s)(π(s))−nds
)] 1

m−1

dt

and define

Y = {y ∈ C[t1,∞) : kπ(t) ≤ y(t) ≤ K, t ≥ t1} .

Using the Schauder–Tychonoff theorem one can show that the integral op-
erator F given by

(Fy)(t) =

∞
∫

t

[

(p(s))−1
(

km−1 +

s
∫

t1

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t1,

has at least one fixed point y = y(t) in Y , which satisfies the integral
equation (2.12) with c = 0 and (p(t1))

1
m−1 y′(t1) = −k. It is trivial to

see that lim
t→∞

y(t) = 0. That lim
t→∞

y(t)/π(t) = ∞, which is equivalent to

lim
t→∞

(p(t))
1

m−1 y′(t) = −∞, is concluded by using the first condition in (3.14)
in the inequality

(p(t))
1

m−1 y′(t) = −
[

km−1 +

t
∫

t1

q(s)(y(s))−nds
] 1

m−1

≤

≤ −
[

km−1 + K−n

t
∫

t1

q(s)ds
] 1

m−1

, t ≥ t1.

Our final task is to study the problem of existence of a type (V)-solution
of (A). If y(t) is such a solution on [t1,∞), then lim

t→∞
y(t)/π(t) = const > 0

and there exists a constant k > 0 such that y(t) ≤ kπ(t) for t ≥ t1. The
last inequality combined with the integrability of q(t)(y(t))−n (cf. (2.13))
shows that

k−n

∞
∫

t1

q(t)(π(t))−ndt ≤
∞
∫

t1

q(t)(y(t))−ndt < ∞,
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where π(t) is defined in (2.2). Thus a necessary condition for (A) to have a
solution of type (V) is

∞
∫

a

q(t)(π(t))−ndt < ∞. (3.15)

Theorem 3.5. There exists a positive proper solution y(t) of (A) such
that

lim
t→∞

y(t)
π(t)

= const > 0 (3.16)

if and only if (3.15) holds.

Proof. It suffices to demonstrate the sufficiency of (3.15). Let t1 ≥ a be
fixed and let ω > 0 be a constant such that

∞
∫

t1

q(t)(π(t))−ndt ≤ (2m−1 − 1)ωm+n−1.

It is verified in a routine manner that the integral operator F defined by

(Fy)(t) =

∞
∫

t

[

(p(s))−1
(

(2ω)m−1 −
∞
∫

s

q(r)(y(r))−ndr
)] 1

m−1

ds, t ≥ t1,

is well defined on the set

Y = {y ∈ C[t1,∞) : ωπ(t) ≤ y(t) ≤ 2ωπ(t), t ≥ t1}

and maps Y into a relatively compact subset of Y . Therefore there exists a
fixed element y = y(t) of F in Y which solves the integral equation (2.13)
with ω replace by 2ω and hence gives a positive decaying solution satisfying
(3.16).

A close look at the hypotheses and conclusions of the theorems proven
above enable us to find a criterion for the nonexistence of positive proper
solutions for the equation (A).

Theorem 3.6. All positive solutions of (A) are singular if and only if

∞
∫

a

[

(p(t))−1

t
∫

a

q(s)ds
] 1

m−1

dt = ∞. (3.17)
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4. Examples and Application to PDE

We will give examples illustrating the theorems obtained in Section 3 and
demonstrate the applicability of the results for (A) to the qualitative study
of certain singular partial differential equations involving the m-Laplace
operator.

A) Let us consider the equation

(p(t)|y′|m−2y′)′ + λ(p(t))−
1

m−1 (π(t))ly−n = 0, t ≥ a, (4.1)

where l, m > 1, n > 0 and λ > 0 are constants, p(t) is a positive continuous
function on [a,∞) satisfying (1.1) and π(t) is defined by (2.2). This is a
special case of (A) with q(t) = λ(p(t))−

1
m−1 (π(t))l, for which the main

integral conditions required in Theorems 3.1−3.6 read as follows:

∞
∫

a

q(t)dt < ∞⇐⇒ l > −1; (4.2)

∞
∫

a

[

(p(t))−1

t
∫

a

q(s)ds
] 1

m−1

dt < ∞⇐⇒ l > −m; (4.3)

∞
∫

a

q(t)(π(t))−ndt < ∞⇐⇒ l > n− 1; (4.4)

∞
∫

a

[

(p(t))−1

t
∫

a

q(s)(π(s))−nds
] 1

m−1

dt < ∞⇐⇒ n− 1 ≥ l > n−m.(4.5)

Taking this fact into account, we have the following statments regarding the
structure of the solution set of (4.1).

(i) If −∞ < l ≤ −m, then all positive soluion of (4.1) are singular, and
vice versa.

(ii) If −m < l ≤ −1, then (4.1) possesses a positive proper solution of
type (III), and vice versa.

(iii) If −1 < l < ∞, then (4.1) possesses positive proper solutions1 of
types (I) and (II), and vice versa.

(iv) If n − 1 < l < ∞, then (4.1) possesses a positive proper solution of
type (V), and vice versa.

(v) If n−m < l ≤ −1, then (4.1) possesses a positive proper solution of
type (IV).

Remark 4.1. We now compare a necessary condition (3.11) with a suffi-
cient condition (3.14) for the existence of a type (IV)-solution of (A). These
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conditions applied to (4.1) reduce, respectively, to

−m < l ≤ n− 1 and n−m ≤ l < −1

(cf. the last statement (v)), illustrating the gap between (3.11) and (3.14).
An elementary calculation shows that the equation (4.1) has a decaying
solution (π(t))

m+l
m+n−1 if −m < l < n − 1 and λ = (m − 1)(n − l − 1)(m +

l)m−1/(m+n−1)m. Since 0 < (m+ l)/(m+n−1) < 1, this solution decays
slower than π(t) as t →∞, so that it is a solution of type (IV). This example
might suggest the possibility of considerably improving the criterion, given
in Theorem 3.4, for the existence of a type (IV)-solution for (A).

A more concrete example of equations of the type (4.1) is

(e(m−1)t|y′|m−2y′)′ + λeµty−n = 0, t ≥ 0, (4.6)

where m > 1, n > 0 and µ are constants. Restricting our attention to
decaying solutions of (4.6), we conclude that (4.6) has a proper solution
y(t) such that lim

t→∞
ety(t) = const > 0 if and only if −∞ < µ < −n, and

that (4.6) has a solution z(t) such that

lim
t→∞

z(t) = 0 and lim
t→∞

etz(t) = −∞ (4.7)

if 0 ≤ µ < m−n−1. For a larger µ -interval, that is, for any µ ∈ (−n, m−1),
there exists a positive value of λ for which (4.6) possesses a decaying solution
z(t) = e−

m−µ−1
m+n−1 t satisfying (4.7).

B) It is a simple exercise to verify that the results for (A) can be directly
applied to the qualitative study of spherically symmetric positive solutions
to singular elliptic partial differential equations of the form

div(|Du|m−2Du) + c(|x|)u−n = 0, x ∈ Ea, (4.8)

where m > 1 and n > 0 are constants, x = (x1, · · · , xN ) ∈ RN , N ≥ 2,
Du = (∂u/∂x1, · · · , ∂n/∂xN ), | · | denotes the Euclidean length of an N -
vector, Ea = {x ∈ RN : |x| > a}, a > 0 and c(t) is a positive continuous
function on [a,∞). As a matter of fact, a spherically symmetric function
u(x) = y(|x|) is a solution of (4.8) if and only if y(t) satisfies the ordinary
differential equation

(tN−1|y′|m−2y′)′ + tN−1c(t)y−n = 0, t ≥ a, (4.9)

which is clearly a special case of (A). The condition (1.1) written for (4.9)
is equivalent to requiring that N > m, in which case the function π(t) given
by (2.2) becomes

π(t) =
m− 1
N −m

t−
N−m
m−1 . (4.10)
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Assuming that N > m, we consider the following special case of (4.8)

div(|Du|m−2Du) + |x|ku−n = 0, x ∈ Ea, (4.11)

where k is a constant. The equation (4.9) then reduces to

(tN−1|y′|m−2y′)′ + tN+k−1y−n = 0, t ≥ a, (4.12)

which, in view of (4.10), is seen to be a special case of (4.1) with p(t) = tN−1,

l = −m(N − 1) + k(m− 1)
N −m

and λ =
(N −m

m− 1

)l
.

It is easily checked that the conditions (4.2), (4.3), (4.4) and (4.5) applied
to (4.12) read k < −N , k < −m, k < −N − n(N−m)

m−1 and −N−m(N−m)
m−1 <

k < −m−n(N−m)
m−1 , respectively. Combining this fact with the propositions

(i)−(v) stated in the preceding subsection, we can say something about the
existence and asymptotic behavior of positive symmetric solutions to the
equation (4.11).

(i) If k ≥ −m, then (4.11) has no positive spherically symmetric solutions
defined throughout Ea.

(ii) If −N ≤ k < −m, then (4.11) has a positive symmetric solution u(x)
on Ea such that

lim
|x|→∞

u(x) = const > 0, lim
|x|→∞

|x|
N−1
m−1 |Du| = ∞.

(iii) If k < −N , them (4.11) has positive symmetric solutions u(x) and
v(x) in Ea such that

lim
|x|→∞

u(x) = const > 0, lim
|x|→∞

|x|
N−1
m−1 |Du| ≥ 0

and
lim

|x|→∞
v(x) = const > 0, lim

|x|→∞
|x|

N−1
m−1 |Du| > 0.

(iv) If k < −N − n(N −m)
m− 1

, then (4.11) has a positive symmetric de-

caying solution u(x) with the property that

lim
|x|→∞

|x|
N−m
m−1 u(x) = const > 0.

(v) If −N ≤ k < −m− n(N −m)
m− 1

, then (4.11) has a positive symmetric

decaying solution v(x) with the property that

lim
|x|→∞

|x|
N−m
m−1 v(x) = ∞.
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