
GEORGIAN MATHEMATICAL JOURNAL: Vol. 6, No. 4, 1999, 395-400

ON THE DIRICHLET PROBLEM FOR A SECOND ORDER
ELLIPTIC SYSTEM WITH DEGENERATION ON THE

ENTIRE DOMAIN BOUNDARY

M. USANETASHVILI

Abstract. The solvability of the first boundary value problem is
investigated for a second order elliptic system with degeneration on
the entire domain boundary.

Consider a system of the form

L(u) ≡ Auxx + 2Buxy + Cuyy + aux + buy + cu = 0 (1)

in the bounded simply connected domain D of the plane of variables x, y,
where A,B,C, a, b ∈ Hα(D) ∩ C3(D) are given scalar functions and c is a
given negatively definite n×n-matrix from the class Hα(D)∩C3(D), n > 1,
i.e.,

(ξ, c(x, y)ξ) ≤ c0(ξ, ξ), c0 = const < 0 ∀ξ ∈ Rn, ∀(x, y) ∈ D, (2)

u = (u1, u2, . . . , un) is the desired n-dimensional vector function, and (·, ·)
is a scalar product.

It will be assumed below that system (1) is elliptic in the domain D and
degenerates on the boundary Γ = ∂D, i.e.,

(B2 −AC)|D < 0, (3)

(B2 −AC)|∂D = 0. (4)

Obviously, since system (1) is elliptic in D, it can be assumed without
loss of generality that A|D > 0.

Let us write the equation ∂D in the form H(x, y) = 0, where H|D > 0,
H ∈ C2(D), H|Γ = 0, 5H|Γ 6= 0.

A vector u of the class C2(D) satisfying system (1) in the domain D is
called a regular solution of this system.
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Let us pose the Dirichlet problem for the system (1). Find, in the domain
D, a regular solution of equation (1) which is continuous in the closed
domain D and satisfies the boundary condition

u|Γ = f, (5)

where f = (f1, f2, . . . , fn) is a given continuous vector function on Γ.
Note that the Dirichlet problem was investigated in [1], [5] for some

specific classes of second order elliptic systems.
When investigating the Dirichlet problem, the following two cases are to

be distinguished:

(AH2
x + 2BHxHy + CH2

y )|Γ 6= 0, (6)

(AH2
x + 2BHxHy + CH2

y )|Γ = 0. (7)

Remark 1. Equality (4) together with condition (6) imply that equation
(1) parabolically degenerates on Γ and, at every point of the boundary,
the tangential direction does not coincide with the characteristic direction.
Conditions (4) and (7) are equaivalent to the fact that at the points of the
boundary either the equation order degenerates or parabolic degeneration
takes place and the characteristic direction coincides with the tangential
direction.

When condition (3) is fulfilled, the following extremum principle [1] takes
place: the norm R(x, y) =

√

(u, u) of a regular solution u of system (1)
in the domain D cannot attain a nonzero relative maximum at any point
(x, y) ∈ D.

The uniqueness of the solution of the Dirichlet problem for system (1)
follows from the above-mentioned extremum principle.

To construct the solution of the Dirichlet problem we shall use the Wiener
method. Using arbitrary vector functions f of the class C(D)∩C3(D) that
are continuously extendable onto D, let us construct a sequence of domains
Dh increasing as h → 0 and having a smooth boundary of the class C2 such
that Dh1 ⊂ Dh2 for h1 > h2

Let uh(x, y) be the solution of the Dirichlet problem for system (1) in
Dh that coincides with f on the boundary of Dh. As is known, the solution
uh(x, y) exists and is unique, since in Dh system (1) does not degenerate
[6]. By virtue of (2) in Dh we have the inequality ‖uh‖ ≤ M , where M =
max ‖f(x, y)‖ in D. Let us show that the set of functions {uh(x, y)} is
compact within D. Indeed, let h0 be an arbitrary fixed value of h. For
h ≤ h0 the set {uh(x, y)} will be uniformy bounded in Dh0 ,

‖uh(x, y)‖ ≤ M. (8)
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On the other hand, we have the representation [6]

uh(x, y) =
∫

∂Dh0

Kh0(x, y; s)uh(s)ds, (x, y) ∈ Dh0 , (9)

where the kernel is itself a regular solution of system (1) with respect to the
variables x, y.

This immediately implies the equicontinuity of the family {uh(x, y)}.
From (8) and (9) we obtain the equicontinuity of the set of function {uh}
in Dh0 . According to Arcela’s theorem [1] the latter set may contain a
subsequence uniformly converging to some function u(x, y) which by virtue
of (9) is the solution of system (1) in the domain D. It remains to find out
whether the constructed solution coincides with f on Γ.

We shall show that in the case of (6) for each point Q ∈ Γ = ∂D
there exists a function v(x, y) called a barrier and possessing the follow-
ing properties: (a) being continuous in some neighborhood of this point
ωQ =

{

P ∈ D : |P −Q| < ε
}

; (b) being equal to zero at the point Q; (c)
v(x, y) > 0 in ωQ\Q; (d) everywhere in this neighborhood satisfying the
condition

L0
1(u) ≡ Auxx + 2Buxy + Cuyy + aux + buy < 0.

In the considered case of (6) the function

v(x, y) = (x− x0)2 + (y − y0)2 + Hβ(x, y), 0 < β < 1,

can serve a barrier. Indeed, the function v(x, y) evidently satisfies the con-
ditions (a), (b) and (c). Let us verify the condition (d). Substituting the
expression for v(x, y) into L0

1(v), we obtain

L0
1(v) =β(β − 1)Hβ−2(AH2

x + 2BHxHy + CH2
y ) +

+ βHβ−1(AHxx + 2BHxy + CHyy + aHx + bHy) +

+ 2A + 2C + 2a(x− x0) + 2b(y − y0). (10)

Hence we immediately conclude that by virtue of 0 < β < 1 there exists a
neigborhood σQ of the point Q such that L0

1(v) < 0.
Since the function f(P ) is continuous, for given positive ε we can find a

semicircular neighborhood σ′Q ⊂ σQ of the point Q such that the inequality

‖f(P )− f(Q)‖ < ε, P ∈ σ′Q, 0 < ε < 1, (11)

be fulfilled.
Consider two functions v1(P ) = ε + Kv(P ), K > 0, u∗h(P ) = uh(P ) −

f(Q), where P ∈ σ′Q. In the domain ωh = σ′Q∩Dh, where h is a sufficiently
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small positive number, we have

sup
(x,y)∈ωh

L0
1(v) ≤ α0 = const < 0, (12)

L0
1(u

∗
h) = L0

1(uh), ‖u∗h‖C(ωh) ≤ 2M, M = max
D

‖f‖. (13)

We set g(P ) = (u∗h(P ), u∗h(P )), P ∈ ωh. By virtue of (3), (10), (12), (13)
and sufficiently large K we obtain

L0
1(v1 − g) = KL0

1(v)− 2[A(u∗hx, u∗hx) + 2B(u∗hx, u∗hy) + C(u∗hy, u∗hy)]−
−2(u∗h, Au∗hxx + 2Bu∗hxy + Cu∗hyy + au∗hx + bu∗hy) ≤

≤KL0
1(v)−2(uh(P )−f(Q), L0

1(uh))=KL0
1(v)−2(uh(P )−f(Q),−cuh)≤

≤ Kα0 − 2(f(Q), cuh) = KL0
1(v) + 2(uh, cuh)− 2(f(Q), cuh) ≤

≤ Kα0 + 2‖f(Q)‖ ‖c‖ ‖uh‖ ≤ Kα0 + 2M2‖c‖ < 0. (14)

Let us now find out which sign of v1 − g takes place on the domain
boundary ωh; ∂ωh = γh ∪ γ1h, where γ1h = ∂ωh ∩ ∂Dh, γh = ∂ωh\γ1h. By
virtue of (11) we have

g|γ1h =(uh(P )− f(Q), uh(P )− f(Q))|γ1h =‖(f(P )− f(Q)‖2 <ε,

v1|γ1h =ε + Kv(P )|γ1h > ε+K min
γ1h

v(P ), g|γh≤4M2.
(15)

By (15), for sufficiently large K we have

(v1 − g)|γ1h = (ε + Kv − g)|γ1h > ε + K min
(x,y)∈γ1h

v − ε = K min
(x,y)∈γ1h

v > 0,

(v1 − g)|γh = (ε + Kv − g)|γh ≥ ε + K min
(x,y)∈γh

v − 4M2 > 0.

By (14) and (15) and applying the extremum principle we have [1] (v1−
g)|ωh ≥ 0, i.e., g ≤ v1 throughout the domain ωh, or

(uh(P )− f(Q), uh(P )− f(Q)) ≤ ε + Kv(P ). (16)

Due to the properties of the barrier v there exists δ = δ(ε) > 0 such that
for ‖P −Q‖ < δ and P ∈ σ′Q we have

Kv(P ) < ε. (17)

From (16) and (17) we find that ‖u(P ) − f(Q)‖ ≤
√

2ε for ‖P − Q‖ < δ,
which was to be proved.

Thus the following assertion is true.

Theorem 1. The Dirichlet problem (1), (5) always has a unique solu-
tion.
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When considering the case of (7) it will be assumed that in some neigh-
borhood of the boundary Γ there is a representation

AH2
x + 2BHxHy + CH2

y = HpG, (18)

where p = const > 0, G is a positive, continuous and bounded function in
this neigborhood.

Lemma 1. If there exists a function W (P ), which is positive in D, uni-
formly converging to infinity as ρ(P, ∂D) → 0 and satisfying the inequality
L0

1(W ) < 0, then system (1) has only a trivial solution in the class of
bounded vector functions in D.

Proof. Indeed, let u(x, y) be a bounded regular solution of system (1) in
D. Consider the expression L0

1(εW − (u, u)) = εL0
1(W ) − L0

1((u, u)). By
calculating L0

1((u, u)) we obtain

L0
1((u, u)) = 2[A(ux, ux) + 2B(ux, uy) + C(uy, uy)] +

+2(u,Auxx + 2Buxy + Cuyy + aux + buy) ≥ 0, (19)

since by virtue of (3), A|D > 0, and the Cauchy–Bunyakovskii inequality
we have

A(ux, ux) + 2B(ux, uy) + C(uy, uy) ≥ A‖ux‖2 − 2|B||(ux, uy)|+ C‖uy‖2 ≥

≥ A‖ux‖2 − 2
√

A
√

C‖ux‖ · ‖uy‖+ C‖uy‖2 =
(√

A‖ux‖ −
√

C‖uy‖
)2
≥ 0.

The conditions of Lemma 1 and (19) lead to L0
1(εW − (u, u)) < 0, which

by virtue of the extremum principle gives that the function εW − (u, u)
cannot have a negative minimum in D, and since its limit value on the
boundary are positive, we have (u, u) ≤ εW throughout D. Hence, since
ε > 0 is arbitrary, it folows that ‖u‖ = 0 in D.

Taking into account (18), expression (10) can be rewritten as

L0
1(v) = β(β − 1)Hβ+p+2G + βHβ−1L0

1(H) + 2A + 2C +

+2a(x− x0) + 2b(y − y0).

Theorem 2. If (2) holds and one of the conditions (i) 0 < p < 1; (ii) p =
1, (1−IG−1)|Γ > 0, I = L0

1(H); (iii) 1 < p < 2, I|Γ ≤ 0; (iv) p ≥ 2, I|Γ < 0
is fulfilled, then the Dirichlet problem has a solution.

Proof. The existence of a solution of the Dirichlet problem follows from the
existence of a barrier function. For 0 < p < 1 the sign of L0

1(v) coincides
with the sign of β(β − 1)Hp+β−2, i.e., L0

1(v) < 0. If the condition (ii) is
fulfilled, then the sign of L0

1(v) coincides with the sign of β[(β−1)G+I]Hβ−1

and, assuming that β < (1− IG−1)|Γ, we shall have L0
1(v) < 0. Under the
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condition (iv) the sign of L0
1(v) coincides with the sign of βHβ−1I, i.e.,

L0
1(v) < 0.

Lemma 2. Let any one of the conditions (i) p = 1, IG−1|Γ ≥ 1; (ii) 1 <
p < 2, I|Γ > 0; (iii) p ≥ 2, I|Γ ≥ 0 be fulfilled and, at each point P0 ∈ D,
either the function Φ(P0) = (Ag2

x + 2Bgxgy + Cg2
y)(P0) 6= 0, where g ∈

C2(D), g > 1, or Φ(P0) = 0 and c(P0) < 0. Then there exists a function
W (x, y) possessing the following properties: (a) W (P ) > 0, P ∈ D, (b)

lim
ρ(P,∂D)→0

W (P ) = +∞; (c) L0
1(W ) < 0, P ∈ D [7].

We can take as W , for instance, an expression W (x, y) = − log H(x, y)−
gn(x, y) + K0 for some natural n and positive constant K0.

Lemmas 1 and 2 give rise to the following assertion.

Theorem 3. When the conditions of Lemma 2 are fulfilled, system (1)
has only a trivial solution in the class of bounded vector functions in D.
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