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ON THE CORRECTNESS OF THE DIRICHLET PROBLEM
IN A CHARACTERISTIC RECTANGLE FOR FOURTH
ORDER LINEAR HYPERBOLIC EQUATIONS

T. KIGURADZE

ABSTRACT. It is proved that the Dirichlet problem is correct in the
characteristic rectangle Dy, = [0, a] X [0, b] for the linear hyperbolic

equation
LA VT Ly L
——— =po(z,y)u T,Y)— z,Y)—
etage — POVt P@y) 5o+ () o
82
ers(as,y)8 oy +q(z,y)

with the summable in D,; coefficients po, p1, p2, p3 and ¢ if and
only if the corresponding homogeneous problem has only the trivial
solution. The effective and optimal in some sense restrictions on pg,
p1, p2 and p3 guaranteeing the correctness of the Dirichlet problem
are established.

8 1. FORMULATION OF THE PROBLEM AND MAIN RESULTS

The Dirichlet problem for second order hyperbolic equations and some
higher order linear hyperbolic equations with constant coefficients has long
been attracting the attention of mathematicians. The problem has been
the subject of numerous studies (see [1-20] and the references therein) but
still remains investigated very little for a wide class of hyperbolic equations.
This class includes the fourth order hyperbolic equation

0*u ou ou 0%u
9220y7 =po(z, y)u+pi(z, y)axﬂ?z(w,y)a +ps(T,y) 5 5- 99 +q(z,y) (1.1)

for which the Dirichlet problem is considered here in the characteristic rect-
angle Dy, = [0,a] x [0,0].
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Throughout the paper it will be assumed that 0 < a < 400, 0 < b < +o0,
and pg : Dgpy — R (k=0,1,2,3) and ¢ : Dg, — R are Lebesgue summable
functions.

A function u : Dy, — R will be called a solution of system (1.1) if it is
absolutely continuous together with %, ?TZ’ 88;5; and satisfies (1.1) almost
everywhere in Dy,.

Let T'y, be the boundary of the rectangle Dy, and ¢ : I'yp — R be
a continuous function having the absolutely continuous partial derivatives

a“’éﬁ’o), awéz’b) and a“’ég’y), awégZ’y) in [0,a] and [0, b], respectively.

The Dirichlet problem for equation (1.1) in D, consists in finding a
solution u : Dg, — R of (1.1) satisfying the boundary condition

u(z,y) = p(z,y) for (x,y) € Tap. (1.2)

Along with (1.1),(1.2), we shall consider the corresponding homogeneous
problem

0ty ou ou 0%u
207 po(z, y)u + p1(z, y)% +p2(w,y)8fy +p3(x,y)%, (1.10)
u(z,y) =0 for (z,y) € Tup, (1.20)
and also the perturbed problem
ot _ ou ou u
szo(x,y)qupl(x,y)%erQ(x,y)a—wapg(x,y)anq(x,y), (1.3)
u(z,y) = p(z,y) for (z,y) € Tap. (1.4)

Before formulating the main results, we introduce some notation and a
definition.

R is the set of real numbers.

L(Dgy) is the space of Lebesgue summable functions z : Dy, — R.

é(Dab) is the space of absolutely continuous functions z : Dy, — R (see
the definition in [21] or [22]).

51(Dab) is the space of absolutely continuous functions z : Dy, — R

; : ; s rat 0z 9z %z
having the absolutely continuous partial derivatives 5=, o and 77 5y

ot (T'ap) is the space of absolutely continuous functions ¢ : I'yp, — R

having the absolutely continuous partial derivatives M, XK@b) i [0, a]
ox ox

and the absolutely continuous partial derivatives w, BC(Ba,y) in [0, b].
Y Y

Definition 1.1. Problem (1.1),(1.2) will be called correct if it has a
unique solution u and for an arbitrary positive number £ and nonnegative
function v € L(D,) there exists a positive number § such that for arbi-
trary functions p,, € L(Day) (k = 0,1,2,3), 7 € L(Dg) and @ € C(T'ap)
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satisfying the conditions

[P (z,v) — pr(z,y)| < v(z,y) almost everywhere in Dy, (k=0,1,2,3),

‘//pkst — pi(s,t)] dsdt‘<6 for (z,y) € Dg, (k=0,1,2,3),
00

x Y
| [ [t~ ats0)dsdt| <5 tor (w.9) € Das
00
_ 09(z,0)  Op(x,0)| | |09(x,b)  Op(x,b)
[P, y) — (@ y)l + ‘ or  Ox ‘ ’ or Oz +
99(0,y)  9¢(0,y)| , |9P(a,y)  O¢(a,y)
+’ ay By ‘ + ‘ ay ay ‘ < ¢ for (z,y) € T,

problem (1.3), (1.4) has a unique solution @ and

_ Ju(z y) _ Ou(z,y)| |, |Oulz,y) Ou(z,y)
[ae,y) — ule,y)] + |7 o |75 oy |t
u(z,y) 82
‘ drdy 6x8y ’ <e for (@) € Dap-

Theorem 1.1. Problem (1.1),(1.2) is correct if and only if the corre-
sponding homogeneous problem (1.1¢), (1.20) has only the trivial solution.

Now consider the sequence of boundary value problems

ﬂ = (z,y)u+ (z )%—F (z )@—F
837282/2 = Pom\T,Y P1m\T, Y 8.13 P2m\T, Y 8y
0%y
+p3m(x’y)% + qm(z,y), (1.5m)
U(ZC, y) = @m(zyy) fOI‘ (Z‘,y) € Fab? (16771)

under the following assumptions on the functions pgm,, ¢ and @.,:
(i) pkm € L(Dap), ¢ € L(Dgap) (K = 0,1,2,3;m = 1,2,...) and the
equalities

m—0o0

Ty
lim //[pkm(s,t) —pr(s,t)]dsdt =0 (k=0,1,2,3),
0

m—00

lim /w/y[qm(&t) —q(s, )] dsdt =0
0

hold uniformly on D;
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(ii) There exists a nonnegative function p € L(Dg) such that the in-
equalities

|pkm(x7y)‘ Sp(:l?,y) (k2071a2335 m = 1a23)

hold almost everywhere in Dy;
(iii) @m € C*(Tap) (m =1,2,...) and the equalities

o (z,0) _ o o(z,0) 0% o (,b) B o o(z,0)

rr}i—{noo Oxk T xR 7 mlgnoo Axk T Oxk (k=0,1),
0 0om(0,y)  0Fp(0,y) . OFem(ay)  9%p(a,y)
o oyt oyk L oyF I (k=0,1)

hold uniformly on [0, a] and [0, b] respectively.

Theorem 1.1 can be reformulated in the manner as follows.

Theorem 1.1'. If the homogeneous problem (1.1g),(1.29) has only the
trivial solution, then problem (1.1),(1.2) has the unique solution u. More-
over, if the conditions (i)—(iii) hold, then beginning from some sufficiently
large mq problem (1.5,,), (1.6,,) has the unique solution w,, and

i P un(ey) 9 (e, y)
moe O oyk  Oxioyk

uniformly on Dgpy (4,k=0,1)."

Remark 1.1. The conditions (i) and (ii) can be fulfilled even in the case
where the differences py., (2, y)—pr(x,y) (k = 0,1,2,3) and g, (x, y)—q(z,y)
have no limits as m — oo. For example, the functions

Prem (2, y) = pr(z,y) + sin ma sin my,
gm(@,y) = q(z,y) + msinmasinmy (k=0,1,2,3; m=1,2,...)

satisfy the conditions (i) and (iii).
Finally, we introduce the effective conditions for the correctness of prob-
lem (1.1),(1.2).

Theorem 1.2. Let the inequalities

Ipk(z,y) — pro(z, )| <l (k=1,2), |ps(z,y)| <3, (1.7)
10pio(x,y)  10pao(z,y)
_ =z =z < )
po(z,y) 5" on 5 oy = lo (1.8)

hold almost everywhere in Dqyp, where I, (k = 0,1,2,3) are constants and
the functions p1g € L(Dgp) and pag € L(Dgp) are absolutely continuous
in the first and in the second argument, respectively, and have the partial

— 9206y0 =

Ou(z,y) _
9x0 -

0 0
*Here and in what follows it is assumed that 9 g(;f,’y) = Zuey) -

u(z, y).
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derivatives aploaff’y) and ap?%(;’y) summable in Dgy,. Moreover, let either
lo>0 and
a?b? ab? a?b ab
?lo + ﬁll + ?12 + plg <1, (19)
orly <0 and
b a
;ll—‘r;lg-i-lg < 24/lo]. (1.10)

Then problem (1.1),(1.2) is correct.

Remark 1.2. The strict inequality (1.9) in Theorem 1.2 cannot be re-
placed by the nonstrict one
a’b? ab? a’b ab
To make sure that is so, let us consider the equation
0*u 7t

0x20y? a2
with the boundary condition (1.2y). For equation (1.11) conditions (1.7)
and (1.8) hold, where po(z,y) = lp = %, pre(z,y) =0, =0 (k=1,2,3)
and pro(z,y) = 0 (k = 1,2), and instead of (1.9) condition (1.9") holds.
And yet problem (1.11),(1.2) is incorrect, since it has the infinite set of
solutions of the form wu(xz,y) = csin Z= sin 5%, where c is an arbitrary real
constant.

(1.11)

8 2. AUXILIARY STATEMENTS

We introduce some additional notation to be used in this section.
If ¢ € C1(T'yp), then

n(e)a.y) = (1= ) e(@.0) + Zol.b) + (1- ) p(0,y) +

b
- (-5 £~ 51 £
—(1 - %)%p(a,O) - %gp(a,b) for (x,y) € Dap. (2.1)
It is obvious that (@) € C(Dgp) and
n(e)(@,y) = p(z,y) for (z,y) € Tap. (2:2)

We denote by g1 and go the Green’s functions of the boundary value
problems

2 2
d= 0, 2(0)=z(a) =0 and Z—yz =0, 2(0)==z()=0.
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Therefore
(x—a) for s<u,
5) = 2.3
9(@,5) {(s—a)a for s> =, (2:3)
(y—b)t for t<y,
1) = 2.4
9209, %) {(t—b)g for t>y. (24)

Under C*1(D,;) we understand the Banach space of continuous functions
z : Dgpy — R having the continuous partial derivatives %7 g—z, aajgyv with

the norm

||z||c11—max{ Z ‘aj;;ay ‘ (x,y)epab}.

It is obvious that C(Dgy) C C1(Dg). On the other hand, Arcela-
Ascoli lemma gives rise to

Lemma 2.1. Let Z C C*(Dg) and there exist summable functions hy :
[0,a] — [0,+00) and hz : [0,b] — [0,+00) such that every function z € Z
satisfies the inequality

> 2(z,y)
— | <
0x20y ‘ < M (z)

for every y € [0,b] and almost every x € [0,a] and the inequality

Pz(z,y)
St -
Oz0y> ‘ < ha(y)

for every x € [0,a] and almost every y € [0,b]. Moreover, if Z is bounded
in the topology of the space C1'1(Dgy), then it is the relative compact of this
space.

In C1Y(Dgyp) consider the operator equation

u(z,y) =n(tp)(a?,y)+/a/bg1(:v7S)gz(y,t)[Q(U)(Sat)+Q(S7t)]d8dt> (2.5)
where o
Q) = ol y)u(e ) + ) 22
# o) 28D (o) THED (o
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Under a solution of equation (2.5) we understand a function u € C11 (D)
satisfying (2.5) at every point of Dgy.

2.1. Lemma on Equivalence of Problem (1.1),(1.2) and Equation
(2.5).

Lemma 2.2. Problem (1.1),(1.2) is equivalent to equation (2.5). More
precisely, problem (1.1),(1.2) is solvable if and only if equation (2.5) is solv-
able and the sets of their solutions coincide.

Proof. First we show that if problem (1.1),(1.2) is solvable, then its arbi-
trary solution w is a solution of equation (2.5). Put

v(z,y) = ulz, y) —n(e)(z,y). (2.7)
Then in view of (2.1) and (2.6)

02 (8211(35, y)

72 ("o ) = Q(u)(z,y) + q(z,y) almost for every (z,y) € Dap, (2.8)

Ox?

since

9'n(p)(z,y)
0x20y>
On the other hand, by virtue of (1.2) and (2.2) we have
0*v(0,y) _ 0*v(a,y)
oyz  Oy?
v(z,0) =v(z,b) =0 for 0<z<a. (2.10)

=0 for (z,y) € Dgp.

=0 for 0<y<b, (2.9)

By the condition Q(u) € L(Dgp) it follows from (2.8) and (2.9) that the
function v satisfies the equality

a

_ /gl(x,s)[Q(u)(S,y) +q(s,y)] ds

0

Pv(z,y)
Oy

for every = € [0,a] and almost for every y € [0,b]. Hence, taking into the
account (2.9) and (2.7), we get

a b

u(e.s) = 1) = [ [ oo sl (@0 + als, )] dsae
00
for (x,y) € Dgp. Thus u is a solution of equation (2.5).

To complete the proof, we have to show that if equation (2.5) is solvable,
then its arbitrary solution u is a solution of problem (1.1),(1.2). Indeed,
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since () € CY(Dgp) and u € C*1(Dgy), it follows from (2.3)~(2.6) that
u € CY(Dgyp) and

) 1;)(;2 y) _ 0 n(aw;gx,y) +/gl(x,5)[g(u)(s,y) +a(s,y)] ds,

0'u(z, y)

0120y?
i.e., u is the solution of equation (1.1). On the other hand, by (2.2)-(2.4)
it follows from (2.5) that u satisfies the boundary condition (1.2). O

— Q(u)(w,y) + qx,y) almost for every (z,y) € Dup,

2.2. Lemma on the Fredholm Property of Problem (1.1),(1.2).

Lemma 2.3. Problem (1.1),(1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (1.1¢), (1.29) has only the trivial solu-
tion.

Proof. For an arbitrary u € C%1(D,) put
a b

Ay = [ [ o mb0ows0dsd (21
0 0
where Q : C11(Dgy) — L(Dyp) is the operator given by (2.6). In view of
(2.3),(2.4) and (2.6) it is clear that A : CYY(Dgp) — CH1(Dyy) is a linear
bounded operator.
By Lemma 2.1 problem (1.1), (1.2) is equivalent to the equation

where

a

b
uo(z,y) = n(p)(z,y) + 91(z,5)g2(y,t)q(s, t) ds dt
/]

and ug € C'(Dgp). As for problem (1.1p), (1.20), it is equivalent to the
equation

Now, we have to show that equation (2.12) is uniquely solvable if and only
if equation (2.12y) has only the trivial solution.

By Fredholm’s alternative for operator equations ([2.3], Theorem XII.
2.3) we need only to show that A is a completely continuous operator,
which is equivalent to the fact that A(B,) = {v = A(u) : u € B,} is a



ON THE CORRECTNESS OF THE DIRICHLET PROBLEM 455

relative compact in C!(Dg;), where p is an arbitrary positive number and
B, = {u€ M (Dy) : Julloss < p}.
By condition (2.6) every function u € B, satisfies the inequality

|Q(u)(z,y)| < pp(z,y)

almost everywhere in D, where

3
p(@,y) = Ipe(@,y)l.
k=0

With regard to this fact and equalities (2.3), (2.4) and (2.6), we conclude
from (2.11) that A(B,) C C'(Dap). Moreover, for any v € A(B,) the
inequality

Pu(x,y)

Z I <
9220y ‘*hl(x)

holds for every y € [0,b] and almost for every x € [0,a] and the inequality

PPv(z,y)

—2 I <h
Oxdy? ‘ < ha(y)
holds for every z € [0,a] and almost for every y € [0,b], where

b a

hﬂ@zp/ﬂ%ﬂﬁ,hﬂw:p/M&w®~

0 0
Moreover, hy : [0,a] — [0,+00) and hs : [0,b] — [0,+00) are summable
functions. Hence Lemma 2.1 implies that A(B,) is a relative compact of
the space Ot (Dgy,). O
2.3. Krasnosel’skii—-Krein Type Lemmas.

Lemma 2.4. Let f € L(Dga), z € C(Dap),

fm € L(Dg),  2zm € C(Dg) (m=1,2,...), (2.13)

m—00

lim //[fm(s,t) — f(s,t)]dsdt =0 uniformly on Dgp, (2.14)
00

and

lim z,(x,y) = z(z,y) uniformly on Dgp. (2.15)

m—0o0
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Moreover, if

a

limsup(/‘wlds—i—/lm‘dt—i-
0

m— o0 Js
0
a b 82
+//‘ o 8t ‘dsdt) < +oo, (2.16)
0
then
Ty
lim //[fm(s,t)zm(s,t)ff(s,t)z(s,t)]dsdt:O uniformly on Dgp*. (2.17)
00

Proof. By virtue of condition (2.16) and the boundedness of the sequence
(z2m)$9_ there exists a positive constant p such that

Oz ( Oz (z,1)
|zmxy|+//|fst|dsdt+/’ : Sy‘d +/‘L‘dt+

a b
+//‘82Z ‘dsdt< for (x,y) € D (2.18)
Dot P Yy Hab '
0
For an arbitrary natural m set
z vy
ne9) = [ [Unlst) = fs.0)ds (219)
00
z Yy
Om(z,y) = //[fm(s,t)zm(s,t) — f(s,t)2(s,t)] ds dt. (2.20)
00
Then
r Y z Y

//a%aﬁai 2 (s,t)dsdt+//f(s,t)[zm(s,t)fz(s,t)}dsdt:
0 00

0?2 (5,1) i 0zm(8,9)
=V (2, y)zm (2, y) // e m(s,t)dsdt—/ 5 Ym(s:y)ds—

0

*An analogous statement for functions of one variable was proved for the first time
in [24].
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_/ aZma(x 2 dt+//f (5,1)[zm(s,t) —2(s,t)] ds dt. (2.21)

0

On the other hand, by (2.14) and (2.15) there exists a sequence of positive
numbers (&,,)2°_; such that

7m(957y)| < Em, |Zm<x7y) - Z(.T},y)| <E&m for (l‘,y) € Dab7 (222)
and

lim &, = 0. (2.23)

Taking into account (2.18) and (2.22), from (2.21) we find
|0m (2, y)| < pem for (z,y) € Dgp (m=1,2,...).

Hence, by virtue of equalities (2.20) and (2.23), we obtain condition
(2.17). O

Lemma 2.5. Let f € L(Dgyp), 2z € C(Dgp) and along with (2.13)—(2.15)
the conditions

Zm(x7y) = ZOm(xay) +§m(33,y), Zm € é(Dab) (m =12,... )a (224)

o ([ Z5420ae f|00
0 0

a b
0%Z,(5,1)
//‘ o ’d dt) < oo, (2.25)
00
hm zom(x,y) = zo(x,y) uniformly on Dgp (2.26)
hold, where
20 € C(Dgs). (2.27)

Moreover, let there exist a nonnegative function f* € L(Dg) such that the
inequality

|fm(z. ) < fr(2,y) (m=1,2,...) (2.28)
holds almost everywhere in Dyy. Then condition (2.17) is fulfilled.
Proof. By conditions (2.13), (2.15), (2.24) and (2.26)

lim Z,,(z,y) = Z(z,y) uniformly on D,

m—00
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where Z € C(Dgy). But by Lemma 2.4 the latter condition, along with
(2.14) and (2.25), yields

z Yy

lim //[fm(s,t)ém(s,t) — f(s,t)Z(s,t)]dsdt =0 uniformly on D,p.

m—00

0 0

Thus to complete the proof we have only to show that

lim dgm(x,y) =0 uniformly on Dy, (2.29)

m—0o0

where

Som (@, 9) //[fm(s,t)z()m(s,t)—f(s,t)zo(s,t)] ds dt.
0

In view of (2.19) and (2.27)

2
dom(x,y) = //8gzait (s,t)dsdt +

—l—//fm $,6)[zom (8, t) — 20(s,t)] ds dt = ym(x, y)z0 (2, y) +

0
’ 822 820(5,y)
+// 83(‘% (s,t)dsdt — /Tym(s,y)dsf

0
Y z Y

0z0(x,t)
— | /"y (z,t) dt + Fm(s8,8)[zom (s, t) — zo(s, t)] ds dt,

t

which with regard to (2.28) gives
[om (z, )| < pem for (x,y) € Doy (m=1,2,...), (2.30)

where

a b
p:max{|z0(:c y)|+/‘%‘ds+/‘%‘dt:(m,y)eDab}—f—
0

a b a b

0?20(s,t) .
+// o ‘d dt+// (s,4) ds dt,
0 0

Em = max{|’ym( 7y)| + |ZOm(I7y) - ZO(‘r7y)| : (Ivy) € Dab}'
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But by (2.14) and (2.26) equality (2.23) holds. (2.23) and (2.30) yield
condition (2.29). O

Lemma 2.6. Let

a

b
= //91 x,8)92(y, t) fm (8, 1) zm (s, t) ds dt, (2.31)
0

a

b
://gl(x,s)gg(y,t)f(s,t)z(s,t)dsdt, (2.32)
00

where g1 and go are the functions given by (2.3) and (2.4), and fum, zm
(m=1,2,...), f and z are the functions satisfying either the conditions of
Lemma 2.4, or the conditions of Lemma 2.5. Then

lim ||vm —v|lcia = 0. (2.33)

Proof. By (2.31) and (2.32)

Um € C'(Dgy) (m=1,2,...), veC'(Duy)
and the equalities

Otk (x,y)
Oxd Qyk

J

915 (@, )92 (Y, 1) fn (5, 8) 2m (s, 1) ds dt (j,k = 0,1),  (2.34)

o ..

a b

//glj 22 8)gan (s ) f (5, 0)2(s, 1) ds dt (,k = 0,1, (2.35)
0

6J+k

OxJ 8y

hold, where gio(z,s) = g1(x, ), g11(x,s) = 691(17 s)

g21(y,t) = 76%(5,0.

Let o(z,y) be an arbitrary polynomial of two variables. If the functions
fms zm (m=1,2,...), f and z satisfy the conditions of Lemma 2.4 (Lemma
2.5), then the functions f,,, oz, (m = 1,2,...), f and oz satisfy the
conditions of this lemma too. Therefore for arbitrary fixed ag € [0, a] and
bo € [0,b] we have

, g20(y,t) = ga(y,t) and

lim //J(s,t)[fm(s,t)zm(s,t) — f(s,t)z(s,t)]dsdt =0

m— o0
ao bg
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uniformly on D,p,. Hence by (2.34) and (2.35) we conclude that

0 Ry, (2, y) . ()
hm —_— Y = hm —_—
m—+too  OxlOyk m—+too Qi Qyk

Therefore condition (2.33) holds. O

(,k =0,1) uniformly on Dgp.

When z,,(z,y) = z(z,y) =1 (m = 1,2,...) Lemma 2.6 takes the form of

Lemma 2.7. Let

a b
vm(z,y) = g1(z,8)g2(y, t) fm (s, t)dsdt (m=1,2,...),
[]
a b
U(x’y) = gl(xas)g2(yvt)f(s?t) dsdt,
/]

where fr, € L(Dap) (m=1,2,...) and f € L(Dgap) are the functions satis-
fying condition (2.14). Then condition (2.33) holds.

2.4. Lemma on Sequences of Solutions of Problems (1.5,,),(1.6,,)
(m=1,2, ... ).

Lemma 2.8. Let the functions pgm,qm and @, (kK = 0,1,2,3; m =
1,2,...) satisfy the conditions (i)—(iii) and let, for every natural m, problem
(1.5), (1.6,,) have a solution wu,,. Moreover, let

p =supq{|jum|lcin :m=1,2,...} < +o0. (2.36)

Then there ezist a subsequence (um, )22, of the sequence (unm)>_; and a
solution u of problem (1.1),(1.2) such that

lim ||[ty,, — ullcra = 0. (2.37)

Proof. By Lemma 2.2 and the conditions (ii) and (2.36) for any natural m
the function u,, admits the representation

Um(xay) = Um(xvy) +®m($7y)’ (238)

where

a

b
vm(z,y) = nlem)(z,y —|—//91 x,8)92(y, t)gm (s, t) dsdt, (2.39)
0 0

a b

0 0
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Oum (T, y
Qm(x7y) = pOm(xa y)um(x7y) +p1m(xay)% +
O (z,y) 0*um(,y)
m (T, m (T, 2.41
Fpom (@) =5 =+ pam(T.9) =5 5 (2.41)
and
|Qm(z,y)| < pp(x,y) almost everywhere in Dp. (2.42)
According to the conditions (i), (iii) and Lemma 2.7
lim ||’Um — 1)||Cl,1 = 0, (243)
where
a b
o) = () (.) + / [ ottt ndsde (24)
0
and

v e CY(Day). (2.45)
By (2.40) and (2.42) for any natural m we have

a b
Tm € CY(Dab), |Umllcis < (ab+a+b+ l)p//p s,t)ds dt, (2.46)
00

agﬁm(xay)

U\ Y| .

| 0220y | <) for e 0,0\, ye0b,  (247)

agﬁm(xay)

U\ Y) | .

| Dwdy? | <hay) for we0.a) y €0\, (248)
and

a4ﬁm(xvy) .

Um\N I .

’ 9120y? ’ < pp(z,y) almost everywhere in D, (2.49)
where

a

b
hi(z) = p/p(w,t) dt, ha(y) = p/p(&y) ds,

0

and I, C [0,a] and I, C [0,D] are some sets of zero measure.
By virtue of Lemma 2.1 conditions (2.46)—(2.49) guarantee that the se-

quence (v,,)%°_, is a relative compact in the topology of the space C*!(Dy;).
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Therefore there exist a function vy € C11(Dgyp) and a subsequence (v, )52 4
of this sequence such that

lim ”6mn 7@”01,1 =0.
This and (2.43) imply condition (2.37), where
u(z,y) = v(z,y) +0(z,y)

and u € CY1(Dgy,). By Lemma 2.2, to complete the proof, it remains to
show that u is a solution of equation (2.5).

Put
Ozon(, Ozon(x,
ZOn(xa y) = Umn (x7y)a Zln('ra ZJ) = #a ZQn(xay) = Oa(yy)a
8220n($, y)
23n(7,y) = T@y
Owon (T, Owon (,
wOn(xvy) :Umn(xvy)v wln(xay) = %7 w2n(xay) = Wa
82"17071($7 y)
w3, (T,y) = T&y’
dwon (x, . Owon (x,
Ton(2.8) = T (020), i) = T () = P00
_ 82w0n(xa y)
Wan(2,y) = T@y’
_ _ Ov(z,y) _ Ov(z,y)
’wo(ff,y) —’U(l’,y)7 ’U}1(.’L',y) - ox ) w2($=y) - ay )
Pv(z,y)
w3 (7, y) = 81:783;
Then by (2.37), (2.43) and (2.45) we have
hm ZOn(x7y) = U((E,y), hm Zln(may) = augt7y)7
e e Lo (2.50)
lim 29, (x,y) = dulz,y) lim z3,(x )—M
N0 2n 7y - 81/ Y 00 3n 7y - axay
Jim_wgn (2, y) = wi(,y)

uniformly on Dg, and

wy € C(Dgy) (k=0,1,2,3). (2.51)
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On the other hand, it follows from (2.46)—(2.49) that

limsup /’(%Uzmso /}&Ulm()t ’dt—f—
a b 82
wkn St B
+// T osot ’d dt) <400 (k=0,1,2,3). (2.52)
0

According to (2.38), (2.40) and (2.41) we have

an(iE7 y) = wkn(gjv y) + wkn(x y) (k = 07 1a 25 3)7 (253)
a b

3
zon(Z,y) = won(x,y) +Z//g1 (x, 8)g2(Y, ©)Prn (8, 1) 2k (8, t)dsdt. (2.54)

=09
But by Lemma 2.6 and the conditions (i), (ii), and (2.50)—(2.53) from (2.54)
we obtain
a b
u(e.g) = vle) + [ [ 910w 5)2(0,0) Q) s, 1) ds
0 0
where Q is the operator given by equality (2.6). Taking this and equality

(2.44) into account, it becomes clear that w is the solution of equation
(2.5). O

2.5. Lemma on the Stability of the Unique Solvability Property
of Problem (1.1p),(1.20).

Lemma 2.9. Let problem (1.1p),(1.29) have only the trivial solution.
Then for any nonnegative function v € L(Dgyp) there exists a positive num-
ber &g such that for arbitrary functions o, € L(Dgp) (k = 0,1,2,3) satisfying
the inequalities

the differential equation

o*u ou ou 0%u

W = Po(z,y)u +ﬁ1($7y)% +ﬁz(x’y)87y +?3(I79)m

has only the trivial solution satisfying the boundary conditions (1.2¢).
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Proof. Assume the contrary, i.e., that the lemma is not true. Then there
exist a nonnegative function v € L(Dgy,) and a sequence of summable in
Dgp functions (prm)_, (k= 0,1,2,3) such that

[pEm (2, y) — pr(x,y)| < v(x,y) almost for every (z,y) € Dap
(k=0,1,2,3; m=1,2,...),

r Yy
‘//[pk(&t)_pk(sat)]d‘gdt S% for (‘Tvy) EDab
0 0

(k=0,1,2,3; m=1,2,...)
and for an arbitrary natural m the differential equation

0w (@, )t + prm (@ )@+ ( )%+ ( )ﬂ
8$28y2_p0m Y P1m\T, Y 6.23 P2m\T,Y 8y P3m T,y 8x8y

has a solution u,, such that u,(z,y) =0 for (z,y) € 'y, and

||’uchl,1 =1. (255)

On the other hand, by Lemma 2.8 the sequence (u,,)So_; contains a sub-
sequence (,, )52 ; converging to the solution of problem (1.1p),(1.2¢) in
the norm of the space C*'. But problem (1.1p), (1.29) has only the trivial
solution. Therefore

lim ||umn||cl‘1 = 0,
n— oo

which contradicts condition (2.55). The obtained contradiction proves the
lemma. O

_2.6. On an Integral Identity for Functions from the Space
C!(Dap) Satisfying the Boundary Condition (1.2¢).

Lemma 2.10. If the function u € C! (Dap) satisfies the boundary condi-
tion (1.2¢), then

a b a b
//u 8 28152 // ~5ebt 8t ds dt. (2.56)
0 0

Proof. By the formula of integration by parts and condition (1.2y) we have

b b
ou(s,t 3u(s,t)

/u 8 28152 / ot 52815 dt (2:57)

0 0
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and

o/ auést’t)%dsz / [agas(at )]2d5' (2.58)

0

almost everywhere in [0, a] and [0, b].
Now, by integrating (2.57) from 0 to a and taking (2.58) into account we
obtain equality (2.56). O

2.7. On an Analogue of Wirtinger’s Lemma for Functions of
Two Variables.

Lemma 2.11. If a function u € CY1(Dyy) satisfies the boundary condi-
tion (1.2¢), then

a b a b
au(s,t) b? Bust
//[ | dsdt < ﬁ// T * dsdt, (2.59)
0 0 0
a b 8( ) 5 @ b 8
u(s,t a ust
! < — .
//[ o dsdt_wz// T * ds dt, (2.60)
0 0 0 0
a b 2b2 a b
9 a st
< — . .
//u (s,t)dsdt o // 85875 d dt (2.61)
0 0 0 0

Proof. By Wirtinger’s lemma (see [25], Lemma 257) and condition (1.29)
we have the inequalities

/b [(%é? t)rdt - ﬁ/ [6288({% )]2dt, 2.62)
0 0
IS Y S P
0 0
/bur“(s,t) dt < :Z/b [8”;’2&)}2«11&. (2.64)
0 0

If we integrate (2.62) and (2.63) from 0 to a and from 0 to b, respectively,
then we get inequalities (2.59) and (2.60). If we integrate (2.64) from 0 to
a, then with regard to (2.60) we obtain inequality (2.61). O



466 T. KIGURADZE

§ 3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1'. By virtue of Lemmas 2.3 and 2.9 problem (1.1),
(1.2) is uniquely solvable, and beginning from some sufficiently large mg
problem (1.1,,),(1.2,,) is also uniquely solvable. Denote the solutions of
these problems by u and wu,,, respectively. Our goal is to prove that

lim [|um — uflcra = 0. (3.1)

Assume the opposite, i.e., that condition (3.1) does not hold. Then
without loss of generality it can be assumed that

|t — ullcra > e (m=mo,mo +1,...), (3.2)

where ¢ is a positive constant independent of m. There exist two possibili-
ties: either (um,)SS_, satisfies condition (2.36), or

lim sup ||t [|cr1 = +o00. (3.3)

m—0o0

Assume first that (2.36) holds. Then by Lemma 2.8 there exists a subse-
quence (U, )52 of the sequence (u,,)9_; satisfying condition (2.37). But
this is impossible on account of condition (3.2).

To complete the proof, we have to show that the assumption that condi-
tion (3.3) is fulfilled leads us to a contradiction.

Choose a subsequence (U, )5 from (uy,)>_; such that

on = |ltm, lcri >0 (n=1,2,...), lim p, = 4oo.
Put v, (z,y) = pium” (x,y). Then
lonllcra =1 (n=1,2,...) (3.4)

and for every natural n the function v, is a solution of the problem

84’0 v v

Gu2ggz ~ Pomn (@ 9)0 F P, (2,) 5+ P, (@) 50+
v

TP3m, (xay)m + qn(z,Y),

U(ZIZ,’IJ) :an(l’ay) for (:Cay) € Faba

where G (2,Y) = 5-qm,, (7,9):  @n(2,y) = 5= 9m, (z,y). Moreover,

z Y

lim //q](s,t) dsdt =0 uniformly on D, (3.5)
n—oo
00
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and the equalities

k k=

n1£rr;8%+(,i”m 0, nlirgoa%nfw =0 (k=0,1),  (3.6)
o

lim W =0, lim W 0 (k=0,1)  (3.7)

hold uniformly on [0, a] and [0, b], respectively.
By Lemma 2.8 the conditions (i), (ii), (3.5)—(3.7) and the unique solvabil-
ity of the homogeneous problem (1.1p), (1.2) guarantee that there exists a

subsequence (vy,; )52, of the sequence (v,);2; such that

‘lim ||'Unj||cl,1 =0.
J—00

But this contradicts condition (3.4). The obtained contradiction proves the
theorem. [

Proof of Theorem 1.1. Assume that the theorem is not true. Then by
virtue of Lemmas 2.3 and 2.9 there exist a positive number ¢, a nonnegative
function v € L(Dgyp) and sequences of functions (prm)o>_, (k= 0,1,2,3),
(gm)2o_1 and ()59, such that the conditions (i)—(iii) hold where

3
lek z,9)| + (),
=0

and for any natural m problem (1.1,,),(1.2,,) has a unique solution wu,,
satisfying the inequality

it — ullrn > €.
But this is impossible, since equality (3.1) is valid by Theorem 1.1’. O

Proof of Theorem 1.2. By Theorem 1.1 we have only to show that in the
conditions of Theorem 1.2 the homogeneous problem (1.1p), (1.2¢) has only
the trivial solution. Assume the opposite, i.e., that this problem has a
nontrivial solution u. Then according to Lemma 2.10 we have

b

a b a
s t B )
// " 9s0t s dt*//Po(s’t)u (s,t)dsdt +
0

0

a

a b
du(s, 1) 8u(s,t)
0 0

a b
+//mwwwmﬁag)dw 5)
0 0
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Applying the Schwartz inequality and condition (1.7), we find

b
t) 3
//pl(s,t) ( ) S d dt<//p10 S, t (g )d dt+l1pop1,
0 0
a b P a b 5
//pg(&t)u(S,t)%detS//pgo(S,t)U(S,t)%dsdt—‘rlgpopg,
0 0 0 0

a b

82
//pf}(sat)u(sa 83(8 ) dsdt < lBPOP?n
00

where pg, p1, p2 and p3 are the positive constants given by the equalities

a b a b

pe = //u2(s t)dsdt, p?= // {({Més’ dsdt7
00 00
b P ( ) ) a
u(s,t st
pgz//[ = }dsdt, pgz// aat * ds dt.
00

On the other hand, according to the formula of integration by parts and
condition (1.2¢) we have

//plost aé dsdt = —= //8p108t (s,t)dsdt,

a b a b

//PQO(S,t)u(S, 8u( d dt = 71//51320 > t (s,t)dsdt.
ot 2
00 0

Taking this and inequality (1.8) into account, from (3.8) we get

a b

1 9p1o(s,t) 1 Opao(s,t)
2 4 4 2
p3 < // [po(s,t) 5 . 5 " }u (s,t)dsdt +
0 0

+l1pop1 + l2popz + lapops < lop + Lipopr + lapopz + lspops.  (3.9)

By Lemma 2.11 equalities (2.59)—(2.61) are valid, i.e.,

a ab
< ;PSa p2 < ;1037 po < EPS- (3~10)
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Hence for Iy > 0 (3.9) implies

212 2 2
9 a*b ab a“b ab 9
0<p5< (?lo + Fll + Fh + ﬁls)%,
which contradicts inequality (1.9).

When Iy < 0, by (1.10) and (3.10), inequality (3.9) again gives the con-
tradiction

b a
p5 + [lolp§ < (;11 +—lp+ l3>ﬂop3 < 2/llolpops < p3 +1lolp. O
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