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ON THE CORRECTNESS OF THE DIRICHLET PROBLEM
IN A CHARACTERISTIC RECTANGLE FOR FOURTH

ORDER LINEAR HYPERBOLIC EQUATIONS

T. KIGURADZE

Abstract. It is proved that the Dirichlet problem is correct in the
characteristic rectangle Dab = [0, a] × [0, b] for the linear hyperbolic
equation

∂4u
∂x2∂y2

= p0(x, y)u + p1(x, y)
∂u
∂x

+ p2(x, y)
∂u
∂y

+

+p3(x, y)
∂2u
∂x∂y

+ q(x, y)

with the summable in Dab coefficients p0, p1, p2, p3 and q if and
only if the corresponding homogeneous problem has only the trivial
solution. The effective and optimal in some sense restrictions on p0,
p1, p2 and p3 guaranteeing the correctness of the Dirichlet problem
are established.

§ 1. Formulation of the Problem and Main Results

The Dirichlet problem for second order hyperbolic equations and some
higher order linear hyperbolic equations with constant coefficients has long
been attracting the attention of mathematicians. The problem has been
the subject of numerous studies (see [1–20] and the references therein) but
still remains investigated very little for a wide class of hyperbolic equations.
This class includes the fourth order hyperbolic equation

∂4u
∂x2∂y2=p0(x, y)u+p1(x, y)

∂u
∂x

+p2(x, y)
∂u
∂y

+p3(x, y)
∂2u
∂x∂y

+q(x, y) (1.1)

for which the Dirichlet problem is considered here in the characteristic rect-
angle Dab = [0, a]× [0, b].
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Throughout the paper it will be assumed that 0 < a < +∞, 0 < b < +∞,
and pk : Dab → R (k = 0, 1, 2, 3) and q : Dab → R are Lebesgue summable
functions.

A function u : Dab → R will be called a solution of system (1.1) if it is
absolutely continuous together with ∂u

∂x , ∂u
∂y , ∂2u

∂x∂y and satisfies (1.1) almost
everywhere in Dab.

Let Γab be the boundary of the rectangle Dab, and ϕ : Γab → R be
a continuous function having the absolutely continuous partial derivatives
∂ϕ(x,0)

∂x , ∂ϕ(x,b)
∂x and ∂ϕ(0,y)

∂y , ∂ϕ(a,y)
∂y in [0, a] and [0, b], respectively.

The Dirichlet problem for equation (1.1) in Dab consists in finding a
solution u : Dab → R of (1.1) satisfying the boundary condition

u(x, y) = ϕ(x, y) for (x, y) ∈ Γab. (1.2)

Along with (1.1),(1.2), we shall consider the corresponding homogeneous
problem

∂4u
∂x2∂y2 = p0(x, y)u + p1(x, y)

∂u
∂x

+ p2(x, y)
∂u
∂y

+ p3(x, y)
∂2u
∂x∂y

, (1.10)

u(x, y) = 0 for (x, y) ∈ Γab, (1.20)

and also the perturbed problem

∂4u
∂x2∂y2=p0(x, y)u+p1(x, y)

∂u
∂x

+p2(x, y)
∂u
∂y

+p3(x, y)
∂2u
∂x∂y

+q(x, y), (1.3)

u(x, y) = ϕ(x, y) for (x, y) ∈ Γab. (1.4)

Before formulating the main results, we introduce some notation and a
definition.
R is the set of real numbers.
L(Dab) is the space of Lebesgue summable functions z : Dab → R.
˜C(Dab) is the space of absolutely continuous functions z : Dab → R (see

the definition in [21] or [22]).
˜C1(Dab) is the space of absolutely continuous functions z : Dab → R

having the absolutely continuous partial derivatives ∂z
∂x , ∂z

∂y and ∂2z
∂x∂y .

˜C1(Γab) is the space of absolutely continuous functions ζ : Γab → R
having the absolutely continuous partial derivatives ∂ζ(x,0)

∂x , ∂ζ(x,b)
∂x in [0, a]

and the absolutely continuous partial derivatives ∂ζ(0,y)
∂y , ∂ζ(a,y)

∂y in [0, b].

Definition 1.1. Problem (1.1), (1.2) will be called correct if it has a
unique solution u and for an arbitrary positive number ε and nonnegative
function γ ∈ L(Dab) there exists a positive number δ such that for arbi-
trary functions pk ∈ L(Dab) (k = 0, 1, 2, 3), q ∈ L(Dab) and ϕ ∈ ˜C1(Γab)
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satisfying the conditions

|pk(x, y)− pk(x, y)| ≤ γ(x, y) almost everywhere in Dab (k = 0, 1, 2, 3),

∣

∣

∣

x
∫

0

y
∫

0

[pk(s, t)− pk(s, t)] ds dt
∣

∣

∣ ≤ δ for (x, y) ∈ Dab (k = 0, 1, 2, 3),

∣

∣

∣

x
∫

0

y
∫

0

[q(s, t)− q(s, t)] ds dt
∣

∣

∣ ≤ δ for (x, y) ∈ Dab,

|ϕ(x, y)− ϕ(x, y)|+
∣

∣

∣

∂ϕ(x, 0)
∂x

− ∂ϕ(x, 0)
∂x

∣

∣

∣ +
∣

∣

∣

∂ϕ(x, b)
∂x

− ∂ϕ(x, b)
∂x

∣

∣

∣ +

+
∣

∣

∣

∂ϕ(0, y)
∂y

− ∂ϕ(0, y)
∂y

∣

∣

∣ +
∣

∣

∣

∂ϕ(a, y)
∂y

− ∂ϕ(a, y)
∂y

∣

∣

∣ < δ for (x, y) ∈ Γab,

problem (1.3), (1.4) has a unique solution u and

|u(x, y)− u(x, y)|+
∣

∣

∣

∂u(x, y)
∂x

− ∂u(x, y)
∂x

∣

∣

∣ +
∣

∣

∣

∂u(x, y)
∂y

− ∂u(x, y)
∂y

∣

∣

∣ +

+
∣

∣

∣

∂2u(x, y)
∂x∂y

− ∂2u(x, y)
∂x∂y

∣

∣

∣ < ε for (x, y) ∈ Dab.

Theorem 1.1. Problem (1.1), (1.2) is correct if and only if the corre-
sponding homogeneous problem (1.10), (1.20) has only the trivial solution.

Now consider the sequence of boundary value problems

∂4u
∂x2∂y2 = p0m(x, y)u+p1m(x, y)

∂u
∂x

+ p2m(x, y)
∂u
∂y

+

+p3m(x, y)
∂2u
∂x∂y

+ qm(x, y), (1.5m)

u(x, y) = ϕm(x, y) for (x, y) ∈ Γab, (1.6m)

under the following assumptions on the functions pkm, qm and ϕm:
(i) pkm ∈ L(Dab), q ∈ L(Dab) (k = 0, 1, 2, 3; m = 1, 2, . . . ) and the

equalities

lim
m→∞

x
∫

0

y
∫

0

[pkm(s, t)− pk(s, t)] ds dt = 0 (k = 0, 1, 2, 3),

lim
m→∞

x
∫

0

y
∫

0

[qm(s, t)− q(s, t)] ds dt = 0

hold uniformly on Dab;
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(ii) There exists a nonnegative function p ∈ L(Dab) such that the in-
equalities

|pkm(x, y)| ≤ p(x, y) (k = 0, 1, 2, 3; m = 1, 2, . . . )

hold almost everywhere in Dab;
(iii) ϕm ∈ ˜C1(Γab) (m = 1, 2, . . . ) and the equalities

lim
m→∞

∂kϕm(x, 0)
∂xk =

∂kϕ(x, 0)
∂xk , lim

m→∞

∂kϕm(x, b)
∂xk =

∂kϕ(x, 0)
∂xk (k = 0, 1),

lim
m→∞

∂kϕm(0, y)
∂yk =

∂kϕ(0, y)
∂yk , lim

m→∞

∂kϕm(a, y)
∂yk =

∂kϕ(a, y)
∂yk (k = 0, 1)

hold uniformly on [0, a] and [0, b] respectively.
Theorem 1.1 can be reformulated in the manner as follows.
Theorem 1.1′. If the homogeneous problem (1.10), (1.20) has only the

trivial solution, then problem (1.1), (1.2) has the unique solution u. More-
over, if the conditions (i)–(iii) hold, then beginning from some sufficiently
large m0 problem (1.5m), (1.6m) has the unique solution um and

lim
m→∞

∂j+kum(x, y)
∂xj∂yk =

∂j+ku(x, y)
∂xj∂yk uniformly on Dab (j, k = 0, 1).∗

Remark 1.1. The conditions (i) and (ii) can be fulfilled even in the case
where the differences pkm(x, y)−pk(x, y) (k = 0, 1, 2, 3) and qm(x, y)−q(x, y)
have no limits as m →∞. For example, the functions

pkm(x, y) = pk(x, y) + sin mx sin my,

qm(x, y) = q(x, y) + m sin mx sin my (k = 0, 1, 2, 3; m = 1, 2, . . . )

satisfy the conditions (i) and (iii).
Finally, we introduce the effective conditions for the correctness of prob-

lem (1.1),(1.2).

Theorem 1.2. Let the inequalities

|pk(x, y)− pk0(x, y)| ≤ lk (k = 1, 2), |p3(x, y)| ≤ l3, (1.7)

p0(x, y)− 1
2

∂p10(x, y)
∂x

− 1
2

∂p20(x, y)
∂y

≤ l0 (1.8)

hold almost everywhere in Dab, where lk (k = 0, 1, 2, 3) are constants and
the functions p10 ∈ L(Dab) and p20 ∈ L(Dab) are absolutely continuous
in the first and in the second argument, respectively, and have the partial

∗Here and in what follows it is assumed that ∂0u(x,y)
∂x0 ≡ ∂0u(x,y)

∂y0 ≡ ∂0u(x,y)
∂x0∂y0 ≡

u(x, y).
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derivatives ∂p10(x,y)
∂x and ∂p20(x,y)

∂y summable in Dab. Moreover, let either
l0≥0 and

a2b2

π4 l0 +
ab2

π3 l1 +
a2b
π3 l2 +

ab
π2 l3 < 1, (1.9)

or l0 < 0 and

b
π

l1 +
a
π

l2 + l3 < 2
√

|l0|. (1.10)

Then problem (1.1), (1.2) is correct.

Remark 1.2. The strict inequality (1.9) in Theorem 1.2 cannot be re-
placed by the nonstrict one

a2b2

π4 l0 +
ab2

π3 l1 +
a2b
π3 l2 +

ab
π2 l3 ≤ 1. (1.9′)

To make sure that is so, let us consider the equation

∂4u
∂x2∂y2 =

π4

a2b2 u (1.11)

with the boundary condition (1.20). For equation (1.11) conditions (1.7)
and (1.8) hold, where p0(x, y) ≡ l0 = π4

a2b2 , pk(x, y) ≡ 0, lk = 0 (k = 1, 2, 3)
and pk0(x, y) ≡ 0 (k = 1, 2), and instead of (1.9) condition (1.9′) holds.
And yet problem (1.11), (1.20) is incorrect, since it has the infinite set of
solutions of the form u(x, y) = c sin πx

a sin πy
b , where c is an arbitrary real

constant.

§ 2. Auxiliary Statements

We introduce some additional notation to be used in this section.
If ϕ ∈ ˜C1(Γab), then

η(ϕ)(x, y) =
(

1− y
b

)

ϕ(x, 0) +
y
b
ϕ(x, b) +

(

1− x
a

)

ϕ(0, y) +

+
x
a

ϕ(a, y)−
(

1− y
b

)(

1− x
a

)

ϕ(0, 0)− y
b

(

1− x
a

)

ϕ(0, b)−

−
(

1− y
b

)x
a

ϕ(a, 0)− xy
ab

ϕ(a, b) for (x, y) ∈ Dab. (2.1)

It is obvious that η(ϕ) ∈ ˜C1(Dab) and

η(ϕ)(x, y) = ϕ(x, y) for (x, y) ∈ Γab. (2.2)

We denote by g1 and g2 the Green’s functions of the boundary value
problems

d2z
dx2 = 0, z(0) = z(a) = 0 and

d2z
dy2 = 0, z(0) = z(b) = 0.
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Therefore

g1(x, s) =

{

(x− a) s
a for s ≤ x,

(s− a)x
a for s > x,

(2.3)

g2(y, t) =

{

(y − b) t
b for t ≤ y,

(t− b)y
b for t > y.

(2.4)

Under C1,1(Dab) we understand the Banach space of continuous functions
z : Dab → R having the continuous partial derivatives ∂z

∂x , ∂z
∂y , ∂2z

∂x∂y , with
the norm

‖z‖C1,1 = max
{

1
∑

j,k=0

∣

∣

∣

∂j+kz(x, y)
∂xj∂yk

∣

∣

∣ : (x, y) ∈ Dab

}

.

It is obvious that ˜C1(Dab) ⊂ C1,1(Dab). On the other hand, Arcela–
Ascoli lemma gives rise to

Lemma 2.1. Let Z ⊂ ˜C1(Dab) and there exist summable functions h1 :
[0, a] → [0,+∞) and h2 : [0, b] → [0, +∞) such that every function z ∈ Z
satisfies the inequality

∣

∣

∣

∂3z(x, y)
∂x2∂y

∣

∣

∣ ≤ h1(x)

for every y ∈ [0, b] and almost every x ∈ [0, a] and the inequality

∣

∣

∣

∂3z(x, y)
∂x∂y2

∣

∣

∣ ≤ h2(y)

for every x ∈ [0, a] and almost every y ∈ [0, b]. Moreover, if Z is bounded
in the topology of the space C1,1(Dab), then it is the relative compact of this
space.

In C1,1(Dab) consider the operator equation

u(x, y) = η(ϕ)(x, y) +

a
∫

0

b
∫

0

g1(x, s)g2(y, t)[Q(u)(s, t) + q(s, t)]dsdt, (2.5)

where

Q(u)(x, y) = p0(x, y)u(x, y) + p1(x, y)
∂u(x, y)

∂x
+

+ p2(x, y)
∂u(x, y)

∂y
+ p3(x, y)

∂2u(x, y)
∂x∂y

. (2.6)
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Under a solution of equation (2.5) we understand a function u ∈ C1,1(Dab)
satisfying (2.5) at every point of Dab.

2.1. Lemma on Equivalence of Problem (1.1),(1.2) and Equation
(2.5).

Lemma 2.2. Problem (1.1), (1.2) is equivalent to equation (2.5). More
precisely, problem (1.1), (1.2) is solvable if and only if equation (2.5) is solv-
able and the sets of their solutions coincide.

Proof. First we show that if problem (1.1), (1.2) is solvable, then its arbi-
trary solution u is a solution of equation (2.5). Put

v(x, y) = u(x, y)− η(ϕ)(x, y). (2.7)

Then in view of (2.1) and (2.6)

∂2

∂x2

(∂2v(x, y)
∂y2

)

= Q(u)(x, y) + q(x, y) almost for every (x, y) ∈ Dab, (2.8)

since

∂4η(ϕ)(x, y)
∂x2∂y2 = 0 for (x, y) ∈ Dab.

On the other hand, by virtue of (1.2) and (2.2) we have

∂2v(0, y)
∂y2 =

∂2v(a, y)
∂y2 = 0 for 0 ≤ y ≤ b, (2.9)

v(x, 0) = v(x, b) = 0 for 0 ≤ x ≤ a. (2.10)

By the condition Q(u) ∈ L(Dab) it follows from (2.8) and (2.9) that the
function v satisfies the equality

∂2v(x, y)
∂y2 =

a
∫

0

g1(x, s)[Q(u)(s, y) + q(s, y)] ds

for every x ∈ [0, a] and almost for every y ∈ [0, b]. Hence, taking into the
account (2.9) and (2.7), we get

u(x, y)− η(ϕ)(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)[Q(u)(s, t) + q(s, t)] ds dt

for (x, y) ∈ Dab. Thus u is a solution of equation (2.5).
To complete the proof, we have to show that if equation (2.5) is solvable,

then its arbitrary solution u is a solution of problem (1.1), (1.2). Indeed,
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since η(ϕ) ∈ ˜C1(Dab) and u ∈ C1.1(Dab), it follows from (2.3)–(2.6) that
u ∈ ˜C1(Dab) and

∂2u(x, y)
∂y2 =

∂2η(ϕ)(x, y)
∂y2 +

a
∫

0

g1(x, s)[Q(u)(s, y) + q(s, y)] ds,

∂4u(x, y)
∂x2∂y2 = Q(u)(x, y) + q(x, y) almost for every (x, y) ∈ Dab,

i.e., u is the solution of equation (1.1). On the other hand, by (2.2)–(2.4)
it follows from (2.5) that u satisfies the boundary condition (1.2).

2.2. Lemma on the Fredholm Property of Problem (1.1),(1.2).

Lemma 2.3. Problem (1.1), (1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (1.10), (1.20) has only the trivial solu-
tion.

Proof. For an arbitrary u ∈ C1,1(Dab) put

A(u)(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)Q(u)(s, t) ds dt, (2.11)

where Q : C1,1(Dab) → L(Dab) is the operator given by (2.6). In view of
(2.3), (2.4) and (2.6) it is clear that A : C1,1(Dab) → C1,1(Dab) is a linear
bounded operator.

By Lemma 2.1 problem (1.1), (1.2) is equivalent to the equation

u(x, y) = u0(x, y) +A(u)(x, y), (2.12)

where

u0(x, y) = η(ϕ)(x, y) +

a
∫

0

b
∫

0

g1(x, s)g2(y, t)q(s, t) ds dt

and u0 ∈ ˜C1(Dab). As for problem (1.10), (1.20), it is equivalent to the
equation

u(x, y) = A(u)(x, y). (2.120)

Now, we have to show that equation (2.12) is uniquely solvable if and only
if equation (2.120) has only the trivial solution.

By Fredholm’s alternative for operator equations ([2.3], Theorem XII.
2.3) we need only to show that A is a completely continuous operator,
which is equivalent to the fact that A(Bρ) = {v = A(u) : u ∈ Bρ} is a
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relative compact in C1,1(Dab), where ρ is an arbitrary positive number and
Bρ = {u ∈ C1,1(Dab) : ‖u‖C1,1 ≤ ρ}.

By condition (2.6) every function u ∈ Bρ satisfies the inequality

|Q(u)(x, y)| ≤ ρp(x, y)

almost everywhere in Dab, where

p(x, y) =
3

∑

k=0

|pk(x, y)|.

With regard to this fact and equalities (2.3), (2.4) and (2.6), we conclude
from (2.11) that A(Bρ) ⊂ ˜C1(Dab). Moreover, for any v ∈ A(Bρ) the
inequality

∣

∣

∣

∂3v(x, y)
∂x2∂y

∣

∣

∣ ≤ h1(x)

holds for every y ∈ [0, b] and almost for every x ∈ [0, a] and the inequality

∣

∣

∣

∂3v(x, y)
∂x∂y2

∣

∣

∣ ≤ h2(y)

holds for every x ∈ [0, a] and almost for every y ∈ [0, b], where

h1(x) = ρ

b
∫

0

p(x, t) dt, h2(y) = ρ

a
∫

0

p(s, y) ds.

Moreover, h1 : [0, a] → [0,+∞) and h2 : [0, b] → [0,+∞) are summable
functions. Hence Lemma 2.1 implies that A(Bρ) is a relative compact of
the space C1,1(Dab).

2.3. Krasnosel’skii–Krein Type Lemmas.

Lemma 2.4. Let f ∈ L(Dab), z ∈ C(Dab),

fm ∈ L(Dab), zm ∈ ˜C(Dab) (m = 1, 2, . . . ), (2.13)

lim
m→∞

x
∫

0

y
∫

0

[fm(s, t)− f(s, t)] ds dt = 0 uniformly on Dab, (2.14)

and

lim
m→∞

zm(x, y) = z(x, y) uniformly on Dab. (2.15)
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Moreover, if

lim sup
m→∞

(

a
∫

0

∣

∣

∣

∂zm(s, 0)
∂s

∣

∣

∣ ds +

b
∫

0

∣

∣

∣

∂zm(0, t)
∂t

∣

∣

∣ dt +

+

a
∫

0

b
∫

0

∣

∣

∣

∂2zm(s, t)
∂s∂t

∣

∣

∣ ds dt
)

< +∞, (2.16)

then

lim
m→∞

x
∫

0

y
∫

0

[fm(s, t)zm(s, t)−f(s, t)z(s, t)]dsdt=0 uniformly onDab
∗. (2.17)

Proof. By virtue of condition (2.16) and the boundedness of the sequence
(zm)∞m=1 there exists a positive constant ρ such that

|zm(x, y)|+
a

∫

0

b
∫

0

|f(s, t)| ds dt +

a
∫

0

∣

∣

∣

∂zm(s, y)
∂s

∣

∣

∣ ds +

b
∫

0

∣

∣

∣

∂zm(x, t)
∂t

∣

∣

∣ dt +

+

a
∫

0

b
∫

0

∣

∣

∣

∂2zm(s, t)
∂s∂t

∣

∣

∣ ds dt < ρ for (x, y) ∈ Dab. (2.18)

For an arbitrary natural m set

γm(x, y) =

x
∫

0

y
∫

0

[fm(s, t)− f(s, t)] ds dt, (2.19)

δm(x, y) =

x
∫

0

y
∫

0

[fm(s, t)zm(s, t)− f(s, t)z(s, t)] ds dt. (2.20)

Then

δm(x, y)=

x
∫

0

y
∫

0

∂2γm(s, t)
∂s∂t

zm(s, t)dsdt+

x
∫

0

y
∫

0

f(s, t)[zm(s, t)−z(s, t)]dsdt=

=γm(x, y)zm(x, y)+

x
∫

0

y
∫

0

∂2zm(s, t)
∂s∂t

γm(s, t)dsdt−
x

∫

0

∂zm(s, y)
∂s

γm(s, y)ds−

∗An analogous statement for functions of one variable was proved for the first time
in [24].



ON THE CORRECTNESS OF THE DIRICHLET PROBLEM 457

−
y

∫

0

∂zm(x, t)
∂t

γm(x, t) dt+

x
∫

0

y
∫

0

f(s, t)[zm(s, t)−z(s, t)] ds dt. (2.21)

On the other hand, by (2.14) and (2.15) there exists a sequence of positive
numbers (εm)∞m=1 such that

γm(x, y)| < εm, |zm(x, y)− z(x, y)| < εm for (x, y) ∈ Dab, (2.22)

and

lim
m→∞

εm = 0. (2.23)

Taking into account (2.18) and (2.22), from (2.21) we find

|δm(x, y)| < ρεm for (x, y) ∈ Dab (m = 1, 2, . . . ).

Hence, by virtue of equalities (2.20) and (2.23), we obtain condition
(2.17).

Lemma 2.5. Let f ∈ L(Dab), z ∈ C(Dab) and along with (2.13)–(2.15)
the conditions

zm(x, y) = z0m(x, y) + zm(x, y), zm ∈ ˜C(Dab) (m = 1, 2, . . . ), (2.24)

lim sup
m→∞

(

a
∫

0

∣

∣

∣

∂zm(s, 0)
∂s

∣

∣

∣ ds +

b
∫

0

∣

∣

∣

∂zm(0, t)
∂t

∣

∣

∣ dt +

+

a
∫

0

b
∫

0

∣

∣

∣

∂2zm(s, t)
∂s∂t

∣

∣

∣ ds dt
)

< +∞, (2.25)

lim
m→∞

z0m(x, y) = z0(x, y) uniformly on Dab (2.26)

hold, where

z0 ∈ ˜C(Dab). (2.27)

Moreover, let there exist a nonnegative function f∗ ∈ L(Dab) such that the
inequality

|fm(x, y)| ≤ f∗(x, y) (m = 1, 2, . . . ) (2.28)

holds almost everywhere in Dab. Then condition (2.17) is fulfilled.

Proof. By conditions (2.13), (2.15), (2.24) and (2.26)

lim
m→∞

zm(x, y) = z(x, y) uniformly on Dab,
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where z ∈ C(Dab). But by Lemma 2.4 the latter condition, along with
(2.14) and (2.25), yields

lim
m→∞

x
∫

0

y
∫

0

[fm(s, t)zm(s, t)− f(s, t)z(s, t)] ds dt = 0 uniformly on Dab.

Thus to complete the proof we have only to show that

lim
m→∞

δ0m(x, y) = 0 uniformly on Dab, (2.29)

where

δ0m(x, y) =

x
∫

0

y
∫

0

[fm(s, t)z0m(s, t)− f(s, t)z0(s, t)] ds dt.

In view of (2.19) and (2.27)

δ0m(x, y) =

x
∫

0

y
∫

0

∂2γm(s, t)
∂s∂t

z0(s, t) ds dt +

+

x
∫

0

y
∫

0

fm(s, t)[z0m(s, t)− z0(s, t)] ds dt = γm(x, y)z0(x, y) +

+

x
∫

0

y
∫

0

∂2z0(s, t)
∂s∂t

γm(s, t) ds dt−
x

∫

0

∂z0(s, y)
∂s

γm(s, y) ds−

−
y

∫

0

∂z0(x, t)
∂t

γm(x, t) dt +

x
∫

0

y
∫

0

fm(s, t)[z0m(s, t)− z0(s, t)] ds dt,

which with regard to (2.28) gives

|δ0m(x, y)| ≤ ρεm for (x, y) ∈ Dab (m = 1, 2, . . . ), (2.30)

where

ρ = max
{

|z0(x, y)|+
a

∫

0

∣

∣

∣

∂z0(s, y)
∂s

∣

∣

∣ ds +

b
∫

0

∣

∣

∣

∂z0(x, t)
∂t

∣

∣

∣ dt : (x, y) ∈ Dab

}

+

+

a
∫

0

b
∫

0

∣

∣

∣

∂2z0(s, t)
∂s∂t

∣

∣

∣ ds dt +

a
∫

0

b
∫

0

f∗(s, t) ds dt,

εm = max{|γm(x, y)|+ |z0m(x, y)− z0(x, y)| : (x, y) ∈ Dab}.
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But by (2.14) and (2.26) equality (2.23) holds. (2.23) and (2.30) yield
condition (2.29).

Lemma 2.6. Let

vm(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)fm(s, t)zm(s, t) ds dt, (2.31)

v(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)f(s, t)z(s, t) ds dt, (2.32)

where g1 and g2 are the functions given by (2.3) and (2.4), and fm, zm
(m = 1, 2, . . . ), f and z are the functions satisfying either the conditions of
Lemma 2.4, or the conditions of Lemma 2.5. Then

lim
m→∞

‖vm − v‖C1,1 = 0. (2.33)

Proof. By (2.31) and (2.32)

vm ∈ ˜C1(Dab) (m = 1, 2, . . . ), v ∈ ˜C1(Dab)

and the equalities

∂j+kvm(x, y)
∂xj∂yk =

=

a
∫

0

b
∫

0

g1j(x, s)g2k(y, t)fm(s, t)zm(s, t) ds dt (j, k = 0, 1), (2.34)

∂j+kv(x, y)
∂xj∂yk =

a
∫

0

b
∫

0

g1j(x, s)g2k(y, t)f(s, t)z(s, t) ds dt (j, k = 0, 1), (2.35)

hold, where g10(x, s) = g1(x, s), g11(x, s) = ∂g1(x,s)
∂x , g20(y, t) = g2(y, t) and

g21(y, t) = ∂g1(y,t)
∂y .

Let σ(x, y) be an arbitrary polynomial of two variables. If the functions
fm, zm (m = 1, 2, . . . ), f and z satisfy the conditions of Lemma 2.4 (Lemma
2.5), then the functions fm, σzm (m = 1, 2, . . . ), f and σz satisfy the
conditions of this lemma too. Therefore for arbitrary fixed a0 ∈ [0, a] and
b0 ∈ [0, b] we have

lim
m→∞

x
∫

a0

y
∫

b0

σ(s, t)[fm(s, t)zm(s, t)− f(s, t)z(s, t)] ds dt = 0
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uniformly on Dab. Hence by (2.34) and (2.35) we conclude that

lim
m→+∞

∂j+kvm(x, y)
∂xj∂yk = lim

m→+∞

∂j+kv(x, y)
∂xj∂yk (j, k = 0, 1) uniformly on Dab.

Therefore condition (2.33) holds.

When zm(x, y) ≡ z(x, y) ≡ 1 (m = 1, 2, . . . ) Lemma 2.6 takes the form of

Lemma 2.7. Let

vm(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)fm(s, t) ds dt (m = 1, 2, . . . ),

v(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)f(s, t) ds dt,

where fm ∈ L(Dab) (m = 1, 2, . . . ) and f ∈ L(Dab) are the functions satis-
fying condition (2.14). Then condition (2.33) holds.

2.4. Lemma on Sequences of Solutions of Problems (1.5m),(1.6m)
(m=1,2, . . . ).

Lemma 2.8. Let the functions pkm, qm and ϕm (k = 0, 1, 2, 3; m =
1, 2, . . . ) satisfy the conditions (i)–(iii) and let, for every natural m, problem
(1.5m), (1.6m) have a solution um. Moreover, let

ρ = sup{‖um‖C1,1 : m = 1, 2, . . . } < +∞. (2.36)

Then there exist a subsequence (umn)∞n=1 of the sequence (um)∞m=1 and a
solution u of problem (1.1), (1.2) such that

lim
n→∞

‖umn − u‖C1,1 = 0. (2.37)

Proof. By Lemma 2.2 and the conditions (ii) and (2.36) for any natural m
the function um admits the representation

um(x, y) = vm(x, y) + vm(x, y), (2.38)

where

vm(x, y) = η(ϕm)(x, y) +

a
∫

0

b
∫

0

g1(x, s)g2(y, t)qm(s, t) ds dt, (2.39)

vm(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)Qm(s, t) ds dt, (2.40)
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Qm(x, y) = p0m(x, y)um(x, y) + p1m(x, y)
∂um(x, y)

∂x
+

+p2m(x, y)
∂um(x, y)

∂y
+ p3m(x, y)

∂2um(x, y)
∂x∂y

(2.41)

and

|Qm(x, y)| ≤ ρp(x, y) almost everywhere in Dab. (2.42)

According to the conditions (i), (iii) and Lemma 2.7

lim
m→∞

‖vm − v‖C1,1 = 0, (2.43)

where

v(x, y) = η(ϕ)(x, y) +

a
∫

0

b
∫

0

g1(x, s)g2(y, t)q(s, t) ds dt (2.44)

and

v ∈ ˜C1(Dab). (2.45)

By (2.40) and (2.42) for any natural m we have

vm ∈ ˜C1(Dab), ‖vm‖C1,1 ≤ (ab + a + b + 1)ρ

a
∫

0

b
∫

0

p(s, t)ds dt, (2.46)

∣

∣

∣

∂3vm(x, y)
∂x2∂y

∣

∣

∣ ≤ h1(x) for x ∈ [0, a]\I1y, y ∈ [0, b], (2.47)

∣

∣

∣

∂3vm(x, y)
∂x∂y2

∣

∣

∣ ≤ h2(y) for x ∈ [0, a], y ∈ [0, b]\I2x, (2.48)

and
∣

∣

∣

∂4vm(x, y)
∂x2∂y2

∣

∣

∣ ≤ ρp(x, y) almost everywhere in Dab, (2.49)

where

h1(x) = ρ

b
∫

0

p(x, t) dt, h2(y) = ρ

a
∫

0

p(s, y) ds,

and I1y ⊂ [0, a] and I2x ⊂ [0, b] are some sets of zero measure.
By virtue of Lemma 2.1 conditions (2.46)–(2.49) guarantee that the se-

quence (vm)∞m=1 is a relative compact in the topology of the space C1,1(Dab).
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Therefore there exist a function v0 ∈ C1,1(Dab) and a subsequence (vmn)∞n=1
of this sequence such that

lim
m→∞

‖vmn − v‖C1,1 = 0.

This and (2.43) imply condition (2.37), where

u(x, y) = v(x, y) + v(x, y)

and u ∈ C1,1(Dab). By Lemma 2.2, to complete the proof, it remains to
show that u is a solution of equation (2.5).

Put

z0n(x, y) = umn(x, y), z1n(x, y) =
∂z0n(x, y)

∂x
, z2n(x, y) =

∂z0n(x, y)
∂y

,

z3n(x, y) =
∂2z0n(x, y)

∂x∂y
;

w0n(x, y) = vmn(x, y), w1n(x, y) =
∂w0n(x, y)

∂x
, w2n(x, y) =

∂w0n(x, y)
∂y

,

w3n(x, y) =
∂2w0n(x, y)

∂x∂y
;

w0n(x, y) = vmn(x, y), w1n(x, y) =
∂w0n(x, y)

∂x
, w2n(x, y) =

∂w0n(x, y)
∂y

,

w3n(x, y) =
∂2w0n(x, y)

∂x∂y
;

w0(x, y) = v(x, y), w1(x, y) =
∂v(x, y)

∂x
, w2(x, y) =

∂v(x, y)
∂y

,

w3(x, y) =
∂2v(x, y)

∂x∂y
.

Then by (2.37), (2.43) and (2.45) we have

lim
n→∞

z0n(x, y) = u(x, y), lim
n→∞

z1n(x, y) =
∂u(x, y)

∂x
,

lim
n→∞

z2n(x, y) =
∂u(x, y)

∂y
, lim

n→∞
z3n(x, y) =

∂2u(x, y)
∂x∂y

,
(2.50)

lim
n→∞

wkn(x, y) = wk(x, y)

uniformly on Dab and

wk ∈ ˜C(Dab) (k = 0, 1, 2, 3). (2.51)
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On the other hand, it follows from (2.46)–(2.49) that

lim sup
n→∞

(

a
∫

0

∣

∣

∣

∂wkn(s, 0)
∂s

∣

∣

∣ ds +

b
∫

0

∣

∣

∣

∂wkn(0, t)
∂t

∣

∣

∣ dt +

+

a
∫

0

b
∫

0

∣

∣

∣

∂2wkn(s, t)
∂s∂t

∣

∣

∣ ds dt
)

< +∞ (k = 0, 1, 2, 3). (2.52)

According to (2.38), (2.40) and (2.41) we have

zkn(x, y) = wkn(x, y) + wkn(x, y) (k = 0, 1, 2, 3), (2.53)

z0n(x, y) = w0n(x, y) +
3

∑

k=0

a
∫

0

b
∫

0

g1(x, s)g2(y, t)pkn(s, t)zkn(s, t)dsdt. (2.54)

But by Lemma 2.6 and the conditions (i), (ii), and (2.50)–(2.53) from (2.54)
we obtain

u(x, y) = v(x, y) +

a
∫

0

b
∫

0

g1(x, s)g2(y, t)Q(u)(s, t) ds dt,

where Q is the operator given by equality (2.6). Taking this and equality
(2.44) into account, it becomes clear that u is the solution of equation
(2.5).

2.5. Lemma on the Stability of the Unique Solvability Property
of Problem (1.10),(1.20).

Lemma 2.9. Let problem (1.10), (1.20) have only the trivial solution.
Then for any nonnegative function γ ∈ L(Dab) there exists a positive num-
ber δ0 such that for arbitrary functions pk ∈ L(Dab) (k = 0, 1, 2, 3) satisfying
the inequalities

|pk(x, y)− pk(x, y)| ≤ γ(x, y) almost for every (x, y) ∈ Dab (k = 0, 1, 2, 3),

∣

∣

∣

x
∫

0

y
∫

0

[pk(s, t)− pk(s, t)] ds dt
∣

∣

∣ ≤ δ for (x, y) ∈ Dab (k = 0, 1, 2, 3),

the differential equation

∂4u
∂x2∂y2 = p0(x, y)u + p1(x, y)

∂u
∂x

+ p2(x, y)
∂u
∂y

+ p3(x, y)
∂2u
∂x∂y

has only the trivial solution satisfying the boundary conditions (1.20).
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Proof. Assume the contrary, i.e., that the lemma is not true. Then there
exist a nonnegative function γ ∈ L(Dab) and a sequence of summable in
Dab functions (pkm)∞m=1 (k = 0, 1, 2, 3) such that

|pkm(x, y)− pk(x, y)| ≤ γ(x, y) almost for every (x, y) ∈ Dab

(k = 0, 1, 2, 3; m = 1, 2, . . . ),

∣

∣

∣

x
∫

0

y
∫

0

[pk(s, t)− pk(s, t)] ds dt
∣

∣

∣ ≤
1
m

for (x, y) ∈ Dab

(k = 0, 1, 2, 3; m = 1, 2, . . . )

and for an arbitrary natural m the differential equation

∂4u
∂x2∂y2 = p0m(x, y)u + p1m(x, y)

∂u
∂x

+ p2m(x, y)
∂u
∂y

+ p3m(x, y)
∂2u
∂x∂y

has a solution um such that um(x, y) = 0 for (x, y) ∈ Γab and

‖um‖C1,1 = 1. (2.55)

On the other hand, by Lemma 2.8 the sequence (um)∞m=1 contains a sub-
sequence (umn)∞n=1 converging to the solution of problem (1.10), (1.20) in
the norm of the space C1,1. But problem (1.10), (1.20) has only the trivial
solution. Therefore

lim
n→∞

‖umn‖C1,1 = 0,

which contradicts condition (2.55). The obtained contradiction proves the
lemma.

2.6. On an Integral Identity for Functions from the Space
˜C1(Dab) Satisfying the Boundary Condition (1.20).

Lemma 2.10. If the function u ∈ ˜C1(Dab) satisfies the boundary condi-
tion (1.20), then

a
∫

0

b
∫

0

u(s, t)
∂4u(s, t)
∂s2∂t2

ds dt =

a
∫

0

b
∫

0

[∂2u(s, t)
∂s∂t

]2
ds dt. (2.56)

Proof. By the formula of integration by parts and condition (1.20) we have

b
∫

0

u(s, t)
∂4u(s, t)
∂s2∂t2

dt = −
b

∫

0

∂u(s, t)
∂t

∂3u(s, t)
∂s2∂t

dt (2.57)
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and

a
∫

0

∂u(s, t)
∂t

∂3u(s, t)
∂s2∂t

ds = −
a

∫

0

[∂2u(s, t)
∂s∂t

]2
ds. (2.58)

almost everywhere in [0, a] and [0, b].
Now, by integrating (2.57) from 0 to a and taking (2.58) into account we

obtain equality (2.56).

2.7. On an Analogue of Wirtinger’s Lemma for Functions of
Two Variables.

Lemma 2.11. If a function u ∈ C1,1(Dab) satisfies the boundary condi-
tion (1.20), then

a
∫

0

b
∫

0

[∂u(s, t)
∂s

]2
ds dt ≤ b2

π2

a
∫

0

b
∫

0

[∂2u(s, t)
∂s∂t

]2
ds dt, (2.59)

a
∫

0

b
∫

0

[∂u(s, t)
∂t

]2
ds dt ≤ a2

π2

a
∫

0

b
∫

0

[∂2u(s, t)
∂s∂t

]2
ds dt, (2.60)

a
∫

0

b
∫

0

u2(s, t) ds dt ≤ a2b2

π4

a
∫

0

b
∫

0

[∂2u(s, t)
∂s∂t

]2
ds dt. (2.61)

Proof. By Wirtinger’s lemma (see [25], Lemma 257) and condition (1.20)
we have the inequalities

b
∫

0

[∂u(s, t)
∂s

]2
dt ≤ b2

π2

b
∫

0

[∂2u(s, t)
∂s∂t

]2
dt, (2.62)

a
∫

0

[∂u(s, t)
∂t

]2
ds ≤ a2

π2

a
∫

0

[∂2u(s, t)
∂s∂t

]2
ds, (2.63)

b
∫

0

u2(s, t) dt ≤ b2

π2

b
∫

0

[∂u(s, t)
∂t

]2
dt. (2.64)

If we integrate (2.62) and (2.63) from 0 to a and from 0 to b, respectively,
then we get inequalities (2.59) and (2.60). If we integrate (2.64) from 0 to
a, then with regard to (2.60) we obtain inequality (2.61).
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§ 3. Proofs of the Main Results

Proof of Theorem 1.1′. By virtue of Lemmas 2.3 and 2.9 problem (1.1),
(1.2) is uniquely solvable, and beginning from some sufficiently large m0

problem (1.1m), (1.2m) is also uniquely solvable. Denote the solutions of
these problems by u and um, respectively. Our goal is to prove that

lim
m→∞

‖um − u‖C1,1 = 0. (3.1)

Assume the opposite, i.e., that condition (3.1) does not hold. Then
without loss of generality it can be assumed that

‖um − u‖C1,1 ≥ ε (m = m0,m0 + 1, . . . ), (3.2)

where ε is a positive constant independent of m. There exist two possibili-
ties: either (um)∞m=1 satisfies condition (2.36), or

lim sup
m→∞

‖um‖C1,1 = +∞. (3.3)

Assume first that (2.36) holds. Then by Lemma 2.8 there exists a subse-
quence (umn)∞n=1 of the sequence (um)∞m=1 satisfying condition (2.37). But
this is impossible on account of condition (3.2).

To complete the proof, we have to show that the assumption that condi-
tion (3.3) is fulfilled leads us to a contradiction.

Choose a subsequence (umn)∞n=1 from (um)∞m=1 such that

ρn = ‖umn‖C1,1 > 0 (n = 1, 2, . . . ), lim
n→∞

ρn = +∞.

Put vn(x, y) = 1
ρn

umn(x, y). Then

‖vn‖C1,1 = 1 (n = 1, 2, . . . ) (3.4)

and for every natural n the function vn is a solution of the problem

∂4v
∂x2∂y2 = p0mn(x, y)v + p1mn(x, y)

∂v
∂x

+ p2mn(x, y)
∂v
∂y

+

+p3mn(x, y)
∂2v

∂x∂y
+ q̃n(x, y),

v(x, y) = ϕn(x, y) for (x, y) ∈ Γab,

where q̃n(x, y) = 1
ρn

qmn(x, y), ϕ̃n(x, y) = 1
ρn

ϕmn(x, y). Moreover,

lim
n→∞

x
∫

0

y
∫

0

q̃n(s, t) ds dt = 0 uniformly on Dab (3.5)
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and the equalities

lim
n→∞

∂kϕ̃n(x, 0)
∂xk = 0, lim

n→∞

∂kϕ̃n(x, b)
∂xk = 0 (k = 0, 1), (3.6)

lim
n→∞

∂kϕ̃n(0, y)
∂yk = 0, lim

n→∞

∂kϕ̃n(a, y)
∂yk = 0 (k = 0, 1) (3.7)

hold uniformly on [0, a] and [0, b], respectively.
By Lemma 2.8 the conditions (i), (ii), (3.5)–(3.7) and the unique solvabil-

ity of the homogeneous problem (1.10), (1.20) guarantee that there exists a
subsequence (vnj )

∞
j=1 of the sequence (vn)∞n=1 such that

lim
j→∞

‖vnj‖C1,1 = 0.

But this contradicts condition (3.4). The obtained contradiction proves the
theorem. �

Proof of Theorem 1.1. Assume that the theorem is not true. Then by
virtue of Lemmas 2.3 and 2.9 there exist a positive number ε, a nonnegative
function γ ∈ L(Dab) and sequences of functions (pkm)∞m=1 (k = 0, 1, 2, 3),
(qm)∞m=1 and (ϕm)∞m=1 such that the conditions (i)–(iii) hold, where

p(x, y) =
3

∑

k=0

|pk(x, y)|+ γ(x, y),

and for any natural m problem (1.1m), (1.2m) has a unique solution um

satisfying the inequality

‖um − u‖C1,1 > ε.

But this is impossible, since equality (3.1) is valid by Theorem 1.1′. �

Proof of Theorem 1.2. By Theorem 1.1 we have only to show that in the
conditions of Theorem 1.2 the homogeneous problem (1.10), (1.20) has only
the trivial solution. Assume the opposite, i.e., that this problem has a
nontrivial solution u. Then according to Lemma 2.10 we have

a
∫

0

b
∫

0

[∂2u(s, t)
∂s∂t

]2
ds dt =

a
∫

0

b
∫

0

p0(s, t)u2(s, t) ds dt +

+

a
∫

0

b
∫

0

p1(s, t)u(s, t)
∂u(s, t)

∂s
ds dt +

a
∫

0

b
∫

0

p2(s, t)u(s, t)
∂u(s, t)

∂t
ds dt +

+

a
∫

0

b
∫

0

p3(s, t)u(s, t)
∂2u(s, t)

∂s∂t
ds dt. (3.8)
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Applying the Schwartz inequality and condition (1.7), we find

a
∫

0

b
∫

0

p1(s, t)u(s, t)
∂u(s, t)

∂s
dsdt ≤

a
∫

0

b
∫

0

p10(s, t)u(s, t)
∂u(s, t)

∂s
dsdt + l1ρ0ρ1,

a
∫

0

b
∫

0

p2(s, t)u(s, t)
∂u(s, t)

∂t
dsdt ≤

a
∫

0

b
∫

0

p20(s, t)u(s, t)
∂u(s, t)

∂t
dsdt + l2ρ0ρ2,

a
∫

0

b
∫

0

p3(s, t)u(s, t)
∂2u(s, t)

∂s∂t
ds dt ≤ l3ρ0ρ3,

where ρ0, ρ1, ρ2 and ρ3 are the positive constants given by the equalities

ρ2
0 =

a
∫

0

b
∫

0

u2(s, t) ds dt, ρ2
1 =

a
∫

0

b
∫

0

[∂u(s, t)
∂s

]2
ds dt,

ρ2
2 =

a
∫

0

b
∫

0

[∂u(s, t)
∂t

]2
ds dt, ρ2

3 =

a
∫

0

b
∫

0

[∂2u(s, t)
∂s∂t

]2
ds dt.

On the other hand, according to the formula of integration by parts and
condition (1.20) we have

a
∫

0

b
∫

0

p10(s, t)u(s, t)
∂u(s, t)

∂s
ds dt = −1

2

a
∫

0

b
∫

0

∂p10(s, t)
∂s

u2(s, t) ds dt,

a
∫

0

b
∫

0

p20(s, t)u(s, t)
∂u(s, t)

∂t
ds dt = −1

2

a
∫

0

b
∫

0

∂p20(s, t)
∂t

u2(s, t) ds dt.

Taking this and inequality (1.8) into account, from (3.8) we get

ρ2
3 ≤

a
∫

0

b
∫

0

[

p0(s, t)−
1
2

∂p10(s, t)
∂s

− 1
2

∂p20(s, t)
∂t

]

u2(s, t) ds dt +

+l1ρ0ρ1 + l2ρ0ρ2 + l3ρ0ρ3 ≤ l0ρ2
0 + l1ρ0ρ1 + l2ρ0ρ2 + l3ρ0ρ3. (3.9)

By Lemma 2.11 equalities (2.59)–(2.61) are valid, i.e.,

ρ1 ≤
b
π

ρ3, ρ2 ≤
a
π

ρ3, ρ0 ≤
ab
π2 ρ3. (3.10)
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Hence for l0 ≥ 0 (3.9) implies

0 < ρ2
3 ≤

(a2b2

π4 l0 +
ab2

π3 l1 +
a2b
π3 l2 +

ab
π2 l3

)

ρ2
3,

which contradicts inequality (1.9).
When l0 < 0, by (1.10) and (3.10), inequality (3.9) again gives the con-

tradiction

ρ2
3 + |l0|ρ2

0 ≤
( b

π
l1 +

a
π

l2 + l3
)

ρ0ρ3 < 2
√

|l0|ρ0ρ3 ≤ ρ2
3 + |l0|ρ2

0.
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