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ENTROPY NUMBERS OF CERTAIN SUMMATION
OPERATORS

J. CREUTZIG AND W. LINDE

Abstract. Given nonnegative real sequences a = (αk)k∈Z and b = (βk)k∈Z
we study the generated summation operator

Sa,b(x) :=
(
αk

[∑

l<k

βlxl

])
k∈Z

, x = (xk)k∈Z ,

regarded as a mapping from `p(Z) to `q(Z). We give necessary and sufficient
conditions for the boundedness of Sa,b and prove optimal estimates for its
entropy numbers relative to the summation properties of a and b. Our results
are applied to the investigation of the behaviour of

P
(∑

k∈Z
αq

k|W (tk)|q < εq
)

and P
(
sup
k∈Z

αk|W (tk)| < ε
)

as ε → 0, where (tk)k∈Z is some nondecreasing sequence in [0,∞) and
(W (t))t≥0 denotes the Wiener process.
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1. Introduction

Volterra integral operators are known to play an important role within Func-
tional Analysis as well as Probability Theory. A special class of interest is that
of so-called weighted Volterra integral operators Tρ,ψ mapping Lp(0,∞) into
Lq(0,∞) and defined by

Tρ,ψ : f 7→ ρ(s)

s∫

0

ψ(t)f(t) dt , (1.1)

where ρ, ψ ≥ 0 are suitable functions on (0,∞). The main task is to describe
properties of Tρ,ψ (boundedness, degree of compactness, etc.) in terms of certain
properties of the weight functions ρ and ψ. Although several results have been
proved in this direction ([12], [5], [6], [10]), interesting problems remain open.
For example, we do not know of a complete characterization of ρ’s and ψ’s such
that the approximation or entropy numbers of Tρ,ψ behave exactly as those of
T1 on [0, 1]. (T1 = T1,1 denotes the ordinary integral operator).
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Given sequences a = (αk)k∈Z and b = (βk)k∈Z, the summation operator Sa,b :
`p(Z) → `q(Z) defined by

Sa,b : x = (xk)k∈Z 7→
(
αk

∑

j<k

βjxj)k∈Z
)

(1.2)

can be viewed as a discrete counterpart to weighted Volterra operators. Thus
one may expect for Sa,b similar compactness properties (relative to a and b)
as for Tρ,ψ (relative to ρ and ψ). This is indeed so as long as one considers
upper estimates for the entropy numbers en(Sa,b). Here the most surprising
result (Theorem 2.3) asserts that summation operators can behave as badly and
irregularly as weighted integral operators. Yet the situation becomes completely
different when considering lower estimates for en(Sa,b). The deeper reason is as
follows: If ρψ > 0 on some interval (some set of positive measure suffices),
then the entropy numbers of Tρ,ψ cannot tend to zero faster than those of T1

considered on this interval. Since en(T1) ≈ n−1, this order is a natural lower
bound for en(Tρ,ψ). In the case of summation operators such a“canonical”
operator (as T1 for Tρ,ψ) does not exist. Hence it is not surprising that en(Sa,b)
can tend to zero much faster than n−1.

The aim of this paper is to investigate these phenomena more precisely. We
state optimal conditions for a and b in order that supn n en(Sa,b) < ∞. More
precise statements can be formulated under some additional regularity assump-
tions on a and b, e.g., monotonicity or an exponential decay of the βk’s.

As is well-known, the ordinary Volterra operator T1 is closely related to Brow-
nian motion. More precisely, let (ξk)

∞
k=1 be an i.i.d. sequence of standard nor-

mal distributed random variables and let (fk)
∞
k=1 be some orthonormal basis in

L2(0,∞). Then

W (t) =
∞∑

k=1

ξk(T1fk)(t), t ≥ 0 , (1.3)

is a standard Wiener process over (0,∞). In this sense, summation operators
Sa,b : `2 → `q generate Gaussian sequences X = (Xk)k∈Z ∈ `q(Z) with

Xk = αkW (tk), k ∈ Z, (1.4)

where tk’s are defined via β2
k = tk+1 − tk.

Recent results ([9], [11]) relate the entropy behaviour of an operator with
estimates for the probability of small balls of the generated Gaussian random
variable. We transform the entropy results proved for Sa,b into the small ball
estimates for X = (Xk)k∈Z defined above. Hence we find sufficient conditions
for the αk’s and tk’s such that

lim
ε→0

ε2 logP
(
‖X‖q < ε

)
= 0. (1.5)

These conditions turn out to be (in this language) the best possible ones.
The paper is organized as follows. In Section 2, the main results about the

entropy of Sa,b are stated. Section 3 provides basic tools and well-known facts,
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which are used in Section 4 to prove our results. Section 5 is devoted to the
study of some examples. Finally, in Section 6 we establish some small ball
estimates for Gaussian vectors as in (1.4), using our entropy results for Sa,b

proved before.

2. Notation and Main Results

For a given sequence x = (xk)k∈Z ⊆ R and p ∈ [1,∞] set

‖x‖p :=
( ∞∑

k=−∞
|xk|p

)1/p

if p < ∞, ‖x‖∞ := sup
k∈Z

|xk|,

and let `p(Z) := {x : ‖x‖p < ∞}. As usual, for p ∈ [1,∞] the adjoint p′ is
given by 1/p + 1/p′ = 1. Now, let p, q ∈ [1,∞] be arbitrary. For nonnegative
sequences a = (αk)k∈Z and b = (βk)k∈Z satisfying

Ak :=
(∑

l≥k

αq
l

)1/q

< ∞ and Bk :=
(∑

l<k

βp′
l

)1/p′

< ∞ (2.1)

for all k ∈ Z (with obvious modifications for q = ∞ or p = 1), the expression

Sa,b(x) :=
(
αk

[∑

l<k

βlxl

])

k∈Z
(2.2)

is well-defined for any x = (xk)k∈Z ∈ `p(Z). Our first result is a version of the
well-known Maz’ja-Rosin Theorem (see, e.g., [12], pp. 39-51), characterizing
the boundedness of Sa,b in terms of Ak and Bk given in (2.1):

Theorem 2.1. Under the above assumptions, the operator Sa,b is well-de-
fined and bounded from `p(Z) to `q(Z) iff D(a, b) < ∞, where

D(a, b) :=





sup
k∈Z

[Ak ·Bk] for p ≤ q ,

(∑

k∈Z
[Ak ·B

p′
q′
k ]

pq
p−q βp′

k−1

) p−q
pq

for p > q .
(2.3)

Moreover, there is a universal Cp,q > 0 with

1

Cp,q

D(a, b) ≤ ‖Sa,b : `p(Z) → `q(Z)‖ ≤ Cp,qD(a, b). (2.4)

Our next aim is to describe the compactness of Sa,b in terms of entropy
numbers. For the introduction of entropy numbers, let E, F be Banach spaces
with unit balls BE, BF . If T : E → F is a linear bounded operator, we set the
(dyadic) entropy numbers of T to be

en(T ) := inf
{
ε > 0 : ∃ y1, . . . , y2n−1 ∈ F s. t. T (BE) ⊆

2n−1⋃

k=1

(
yk + εBF

)}
,

where “+” means the Minkowski sum. It is well-known that T is compact iff
en(T ) → 0, so that it makes sense to consider the speed of decay of en(T ) as a
measure for the compactness of T .
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To avoid some technical and notational problems, from now on it is assumed
that p > 1, hence p′ < ∞. In the following, the number r > 0 defined by

1/r := 1/q + 1/p′ (2.5)

will play a crucial role. Since p > 1, we always have r < ∞.
Later on, we will use the monotone rearrangement δ∗k of a sequence (δk)k∈Z.

By this we mean that the sequence (δ∗k)k≥0 is the nonincreasing rearrangement
of (δk)k≥0, and that (δ∗k)k≤−1 is the nondecreasing rearrangement of (δk)k≤−1

(i.e., (δ∗−k)k≥1 is the nonincreasing rearrangement of (δ−k)k≥1).
For the nonnegative sequences a and b satisfying (2.1), we define

vk := inf
{
m ∈ Z :

∑

l≤m

βp′
l ≥ 2k

}
(2.6)

for any k ∈ Z, where inf ∅ := ∞, and with these vk’s we set

δk(a, b) :=





2k/p′
( vk+1∑

l=vk+1

αq
l

)1/q

if vk < ∞ ,

0 for vk = ∞ .

(2.7)

Here, as well as in the following, the empty sum has to be read as 0. With r
given by (2.5) we define

|(a, b)|r := ‖
(
δk(a, b))k∈Z‖r =

(∑

k∈Z
δk(a, b)r

)1/r

(2.8)

and

|(a, b)|r,∞ := sup
k≥1

k1/r
(
δ∗k−1(a, b) + δ∗−k(a, b)

)
. (2.9)

It is easy to see that

‖
(
αl βl−1

)
l∈Z‖r ≤ |(a, b)|r and |(a, b)|r,∞ ≤ c |(a, b)|r .

On the other hand, there are easy examples such that |(a, b)|r,∞ < ∞ and

‖
(
αl βl−1

)
l∈Z‖r = ∞, and vice versa, i.e., these two expressions are not compa-

rable.

Let us formulate now the main results of this paper. We have the following
general upper estimate for the entropy numbers of Sa,b:

Theorem 2.2. Let Sa,b map `p(Z) into `q(Z).

(1) There is a numerical constant c > 0 such that

sup
n∈N

n en(Sa,b) ≤ c |(a, b)|r. (2.10)

(2) Whenever the right hand side of (2.10) is finite, we have

lim
n→∞n en(Sa,b) = 0. (2.11)
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The next result shows that estimate (2.10) cannot in general be improved to

an estimate neither against |(a, b)|r,∞ nor against ‖
(
αl βl−1

)
l∈Z‖r:

Theorem 2.3. For any sequence dk > 0, k = 1, 2, . . . satisfying
∑

k dq
k < ∞

and
∑

k dr
k = ∞ there are sequences a = (αk)k≥1 and b = (βk)k≥1 such that:

(1) The operator Sa,b : `p → `q is bounded.

(2)
∞∑

k=1

[αk+1βk]
r < ∞.

(3) dk = δk(a, b) = 2k/p′
( vk+1∑

l=vk+1

αq
l

)1/q

for all k ≥ 1

(4) sup
n∈N

n en(Sa,b) = ∞.

On the other hand, under some additional regularity assumptions about a
and b assertion (2.11) holds even under weaker conditions. More precisely, the
following is valid.

Proposition 2.4. For a, b given, assume that αq
k/β

p′
k is monotone near ±∞

if q < ∞, or that αk is monotone near ±∞ if q = ∞. Then the condition

‖
(
αl βl−1

)
l∈Z‖r < ∞ implies

lim
n→∞n en(Sa,b) = 0.

For sequences b which do not increase too fast (e.g., not superexponentially)
at +∞, and do not decrease too fast at −∞, we have the following lower
estimate for the entropy numbers of Sa,b.

Theorem 2.5. Assume that there is m ≥ 1 such that

|{k′ ∈ Z : vk′ = vk}| ≤ m (2.12)

for all k ∈ Z. Then, for ρ > 0 with 1/s := ρ− 1/p + 1/q > 0 we have

sup
n∈N

nρ en

(
Sa,b : `p → `q

)
≥ c · sup

n∈N
n1/s(δ∗n−1(a, b) + δ∗−n(a, b)) (2.13)

with c > 0 only depending on p, q,m and ρ. In particular, if ρ = 1, then

sup
n∈N

n en

(
Sa,b : `p → `q

)
≥ c |(a, b)|r,∞ . (2.14)

Moreover, for ρ and s in (2.13) we have

lim
n→∞

nρ en

(
Sa,b : `p → `q

)
≥ c lim

n→∞
n1/s(δ∗n−1(a, b) + δ∗−n(a, b)). (2.15)

Remark. Note that for vk < ∞, k ∈ Z, i.e., for
∑

l∈Z βp′
l = ∞, condition (2.12)

is equivalent to

βk ≤ γ
( ∑

l<k

βp′
l

)1/p′

, k ∈ Z ,

for some γ > 0.
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Of course, condition (2.12) is violated provided that

(a) βl = 0 if l ≤ l0 for some l0 ∈ Z or

(b)
∑

l∈Z
βp′

l < ∞ .

Here we have the following weaker variant of Theorem 2.5.

Proposition 2.6. Suppose that there are some k0, k1 ∈ Z such that in case
(a) condition (2.12) holds for all k ≥ k0 or in case (b) for all k ≤ k1. Then if
1/s = ρ− 1/p + 1/q > 0, from

sup
n∈N

nρen(Sa,b : `p → `q) < ∞

we conclude that
sup
n∈N

n1/s(δ∗n−1(a, b) + δ∗−n(a, b)) < ∞
and (2.15) holds for Sa,b as well.

Note that in case (a), δ−n(a, b) = 0 for n ≥ n0, and in case (b), δn−1(a, b) = 0
for n ≥ n1 with certain n0, n1 ∈ Z. Examples (see Proposition 5.3) show that
Theorem 2.5 and Proposition 2.6 become false without an additional regularity
assumption.

3. Basic Tools

3.1. Connection to Integral Operators. Let ρ, ψ : (0,∞) → [0,∞) be
measurable functions with

ρ ∈ Lq(x,∞) and ψ ∈ Lp′(0, x) (3.1)

for any x ∈ (0,∞). Then for f ∈ Lp(0,∞) the function

(
Tρ,ψ(f)

)
(s) := ρ(s)

s∫

0

ψ(t)f(t) dt (3.2)

is well-defined. The operator Tρ,ψ is called the Volterra integral operator in-
duced by ρ and ψ. There is a close connection between summation and integral
operators. Generally speaking, one can always consider a summation operator
as “part” of a special Volterra integral operator. This allows one to use, for
these operators, results established in [10].

Let us denote ∆k := [2k, 2k+1) for k ∈ Z, and set

Ik := ∆2k = [22k, 22k+1) and Jk := ∆2k+1 = [22k+1, 22k+2). (3.3)

For any set X ⊆ (0,∞), let 1X be the indicator function of X. We denote by
`0(Z) := RZ the space of all real sequences and set L0(0,∞) to be the space of
all equivalence classes of measurable functions. It is easily checked that for any
p ∈ [1,∞] the mappings

Φp
I : `0(Z) → L0(0,∞), (xk)k∈Z 7→

∑

k∈Z
xk1Ik

|Ik|−1/p (3.4)
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and

Φp
J : `0(Z) → L0(0,∞), (xk)k∈Z 7→

∑

k∈Z
xk1Jk

|Jk|−1/p (3.5)

induce isometric embeddings of `p(Z) into Lp(0,∞) (for p = ∞ let, as usual,
1/p = 0). Given now sequences a = (αk)k∈Z and b = (βk)k∈Z, we set

ρ := Φq
I(a) and ψ := Φp′

J (b) , (3.6)

i.e., we have

ρ =
∑

k∈Z
αk1Ik

|Ik|−1/q and ψ =
∑

k∈Z
βk1Jk

|Jk|−1/p′ . (3.7)

The connection between summation and integral operators reads as follows:

Proposition 3.1. In the above setting, ρ and ψ defined in (3.6) satisfy (3.1)
if and only if a and b satisfy (2.1), and it holds

Tρ,ψ ◦ Φp
J = Φq

I ◦ Sa,b. (3.8)

Moreover, Tρ,ψ is bounded from Lp to Lq iff Sa,b is so from `p to `q. In this
case there is an operator Q : Lp(0,∞) → `p(Z) with ‖Q‖ ≤ 1 such that for all
f ∈ Lp(0,∞) we have

‖Tρ,ψ(f)‖q = ‖Sa,b ◦Q(f)‖q . (3.9)

In particular,

‖Tρ,ψ : Lp → Lq‖ = ‖Sa,b : `p → `q‖ . (3.10)

Proof. The equivalence of (3.1) and (2.1) is clear by the definition of ρ and ψ

and of Φq
I and Φp′

J , respectively. We easily compute

Tρ,ψ

(
Φp

J(xk)
)

=
∑

k∈Z
αk|Ik|−1/q

[∑

l<k

βlxl

]
1Ik

= Φq
I(Sa,b(xk)) .

This verifies that (3.8) holds.
If Tρ,ψ is bounded, then, due to (3.8), so is the operator Sa,b, and ‖Sa,b‖ ≤

‖Tρ,ψ‖. Conversely, if Sa,b is bounded and f ∈ Lp((0,∞)), set

Q(f) :=
(
|Jk|−1/p′

∫

Jk

f(t) dt
)

k∈Z
. (3.11)

Due to Hölder’s inequality, Q(f) ∈ `p with ‖Q(f)‖p ≤ ‖f‖p, and, additionally,
we find

∥∥∥Tρ,ψ(f)
∥∥∥

q

q
=

∑

k∈Z
αq

k

∣∣∣∣
∑

l<k

βl|Jl|−1/p′
∫

Jl

f(t) dt

∣∣∣∣
q

=
∥∥∥Sa,b(Q(f))

∥∥∥
q

q
. (3.12)

This proves (3.9), and implies, in particular, that ‖Tρ,ψ‖ ≤ ‖Sa,b‖ which com-
pletes the proof.

As a simple corollary we have
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Corollary 3.2. For a and b satisfying (2.1), and ρ and ψ defined as in (3.7)
we have

(1/2) en(Tρ,ψ) ≤ en(Sa,b) ≤ 2 en(Tρ,ψ).

Proof. First note that
en(T ) ≤ 2 en(J ◦ T )

for any operator T : E → F and any isometric embedding J : F → F0. Hence,
by (3.8) we conclude

en(Sa,b) ≤ 2 en(Φq
I ◦ Sa,b) = 2 en(Tρ,ψ ◦ Φp

J) ≤ 2 en(Tρ,ψ) ‖Φp
J‖ ≤ 2 en(Tρ,ψ) .

On the other hand, by (3.9) we have (use Lemma 4.2 in [10], yet observe that
there the entropy numbers were defined slightly different so that additional
factor 2 had to be added)

en(Tρ,ψ) ≤ 2 en(Sa,b ◦Q) ≤ 2 en(Sa,b) ‖Q‖ ≤ 2 en(Sa,b),

which completes the proof.

For later use we cite now some of the main results in [10] about weighted
Volterra integral operators. Let ρ and ψ now be arbitrary nonnegative measur-
able functions on (0,∞) satisfying (3.1). For s > 0, set

R(s) := ‖ρ‖Lq(s,∞) and Ψ(s) := ‖ψ‖Lp′ (0,s). (3.13)

The following version of the Maz’ja–Rosin Theorem can be found in [10], Theo-
rem 6.1:

Theorem 3.3. Let 1 ≤ p, q ≤ ∞ and ρ, ψ ≥ 0 on (0,∞). Then Tρ,ψ is
bounded from Lp(0,∞) into Lq(0,∞) iff D(ρ, ψ) < ∞, where

D(ρ, ψ) :=





sup
s>0

R(s)Ψ(s) if p ≤ q,

( ∞∫

0

[
R(s) ·Ψ(s)p′/q′

] pq
p−q ψ(s)p′ ds

) p−q
pq

for p > q.
(3.14)

Moreover, there are universal constants cp,q, Cp,q > 0 such that

cp,qD(ρ, ψ) ≤ ‖Tρ,ψ : Lp → Lq‖ ≤ Cp,qD(ρ, ψ) . (3.15)

Now we turn to upper estimates for the entropy numbers of Tρ,ψ. Therefore
set

uk := inf
{
s > 0 :

s∫

0

ψ(t)p′ dt ≥ 2k
}
, k ∈ Z , (3.16)

and define

δk(ρ, ψ) := 2k/p′
( uk+1∫

uk

ψ(t)q dt
)1/q

. (3.17)
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Similarly to the setting for a and b, with r given by (2.5) define

|(ρ, ψ)|r := ‖
(
δk(ρ, ψ)

)
k∈Z‖r =

(∑

k∈Z
δk(a, b)r

)1/r

(3.18)

and

|(ρ, ψ)|r,∞ := sup
k≥1

k1/r
(
δ∗k(a, b) + δ∗−k+1(a, b)

)
. (3.19)

With this notation we have ([10], Theorem 4.6):

Theorem 3.4. Let p > 1 and 1 ≤ q ≤ ∞. Then for all ρ, ψ as above, the
following statements are valid.

(1) For Tρ,ψ as in (3.2), we have sup
n

n en(Tρ,ψ) ≤ C |(ρ, ψ)|r .

(2) Whenever |(ρ, ψ)|r < ∞, we even have

lim
n→∞n en(Tρ,ψ) ≤ C ‖ρψ‖r . (3.20)

Remarks. (1) There exist functions ρ and ψ (cf. [10], Theorem 2.3) with
‖ρψ‖r < ∞ such that lim

n→∞n en(Tρ,ψ) = ∞ . But note that since these ρ’s and

ψ’s are not of form (3.7) with suitable sequences a and b, hence they cannot be
used to construct similar examples for summation operators. However to prove
Theorem 2.3 the general ideas may be taken over in order.

(2) In [10] lower estimates for en(Tρ,ψ) were also proved. But unfortunately
all these lower bounds turn out to be zero in the case of disjointly supported
functions ρ and ψ. So they do not provide any information about lower bounds
for en(Sa,b).

3.2. Entropy Numbers of Diagonal Operators. For a given sequence σ =
(σk)k≥1 of nonnegative numbers, one defines the diagonal operator

Dσ(x) :=
(
σkxk)k∈N , x = (xk)k∈N . (3.21)

Considered as a mapping from `p(N) to `q(N), the entropy of these operators
can be estimated by means of σk’s. As an example, we have the following special
case of general results in [1] or [13].

Theorem 3.5. Let p, q ∈ [1,∞] be arbitrary, and let σ = (σk)k≥0 be a non-
negative bounded sequence of real numbers. Let ρ > 0 satisfy 1/s := ρ− 1/p +
1/q > 0. Then there are constants c1, c2 > 0 depending on p, q and ρ only such
that

c1 sup
n∈N

n1/sσ∗n ≤ sup
n∈N

nρ en

(
Dσ : `p(N) → `q(N)

)
≤ c2 sup

n∈N
n1/sσ∗n. (3.22)

For the lower bound, one even has

n1/q−1/pσ∗n ≤ 6 en(Dσ). (3.23)

Let us draw an easy conclusion out of this:
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Corollary 3.6. In the above setting,

c1 lim
n→∞

n1/sσ∗n ≤ lim
n→∞

nρ en(Dσ) (3.24)

as well as

lim
n→∞nρ en(Dσ) ≤ 2 c2 lim

n→∞n1/sσ∗n (3.25)

holds.

Proof. Without loss of generality, assume that σn’s are already nonincreasing,
e.g., σn = σ∗n. Then estimate (3.24) is an immediate consequence of (3.23).

To prove (3.25), fix a number N ∈ N and set

DN((xi)
∞
i=1) := (σ1x1, . . . , σNxN , 0, . . . ), DN

0 := Dσ −DN .

Because of e2n−1(Dσ) ≤ en(DN)+en(DN
0 ) and the exponential decay of en(DN)

as n →∞ (cf. [2], 1.3.36), we get

lim
n→∞nρen(Dσ) ≤ 2 lim

n→∞nρen(DN
0 ) ≤ 2 sup

n∈N
nρen(DN

0 ). (3.26)

Now DN
0 is not a diagonal operator with nonincreasing entries, but this difficulty

can be easily overcome. For x = (xi)i∈N let

S−N(x) := (xi+N)i∈N and S+
N(x) := (0, . . . , 0, x1, . . . )

be the operators of shifting N times to the right or to the left in `p(N) or `q(N),
respectively. If

DN
1 ((xi)

∞
i=1) := (x1σN+1, x2σN+2, . . . )

is the diagonal operator defined by (σN+i)i≥1, we clearly have

DN
0 = S+

N ◦DN
1 ◦ S−N and DN

1 = S−N ◦DN
0 ◦ S+

N ,

and therefore (note that both shift operators have norm one) it holds by the
multiplicity of the entropy numbers

en(DN
0 ) = en(DN

1 ).

But for DN
1 Theorem 3.5 applies and leads to

sup
n∈N

nρen(DN
1 ) ≤ c2 sup

n∈N
n1/sσn+N

with s > 0 defined in this theorem. Since n1/s ≤ (n + N)1/s, this yields

sup
n∈N

nρen(DN
0 ) ≤ c2 sup

n∈N
(n + N)1/sσn+N = c2 sup

m>N
m1/sσm. (3.27)

Now we combine (3.26) and (3.27) to find that

lim
n→∞nρen(Dσ) ≤ 2c2 sup

n>N
n1/sσn (3.28)
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holds for all N ∈ N. Taking the infimum over the right side of (3.28), we end
up with

lim
n→∞nρen(Dσ) ≤ 2c2 inf

N∈N

(
sup
n>N

n1/sσn

)
= 2c2 lim

n→∞n1/sσn,

which proves (3.25).

It is of more use for us to consider diagonal operators mapping `p(Z) into
`q(Z), generated, say, by a sequence (σk)k∈Z. However these operators are iso-
morphic to the product of two diagonal operators generated by (σk−1)k≥1 and
(σ−k)k≥1. It is then quite easy to establish

Corollary 3.7. Let p, q ∈ [1,∞] be arbitrary, and let σ = (σk)k∈Z be a
nonnegative bounded sequence of real numbers. For given ρ > 0 assume 1/s :=
ρ− 1/p + 1/q > 0 . Then there are constants c1, c2 > 0 depending only on p, q
and ρ such that

c1 sup
n∈N

n1/s(σ∗n−1 + σ∗−n) ≤ sup
n∈N

nρen(Dσ) ≤ c2 sup
n∈N

n1/s(σ∗n−1 + σ∗−n) (3.29)

and, moreover,

lim
n→∞

nρen(Dσ) ≥ c1 lim
n→∞

n1/s(σ∗n−1 + σ∗−n)

as well as

lim
n→∞nρen(Dσ) ≤ c2 lim

n→∞n1/s(σ∗n−1 + σ∗−n).

4. Proof of the Results

Let us start with the proof of Theorem 2.1.

Proof of Theorem 2.1. Let a = (αk)k∈Z and b = (βk)k∈Z be given, satisfying
(2.1), and define ρ and ψ by means of (3.7). Then R(s) and Ψ(s) are given by
(3.13). Because of Proposition 3.1 and Theorem 3.3 we have the estimate

1

Cp,q

D(ρ, ψ) ≤ ‖Sa,b : `p(Z) → `q(Z)‖ ≤ Cpq,D(ρ, ψ)

with D(ρ, ψ) given in (3.14). So it remains to show that with D(a, b) from (2.3)
we have

c1D(ρ, ψ) ≤ D(a, b) ≤ c2D(ρ, ψ) . (4.1)

Let us treat the case p ≤ q first. Take any s ∈ Ik for some k ∈ Z. Then
on the one hand we have R(s) ≤ Ak, while, on the other hand, Ψ(s) = Bk.
Now assume s ∈ Jk for some k ∈ Z. Then R(s) = Ak+1, while Ψ(s) ≤ Bk+1.
Combining both cases, we find

sup
s>0

R(s) ·Ψ(s) ≤ sup
k∈Z

[Ak ·Bk] . (4.2)

Since Ak · Bk = R(22k) · Ψ(22k), we even have equality in (4.2), which proves
(4.1) for p ≤ q.
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Let us now assume p > q. First note that the integral in the definition of
D(ρ, ψ) has only to be taken over

⋃
k∈Z Jk . But if s ∈ Jk−1, then R(s) = Ak

while Ψ(s) ≤ Bk, hence (recall ψ(s) = βk−1|Jk−1|−1/p′)

D(ρ, ψ) ≤ D(a, b) .

Conversely, whenever s ∈ [22k+3/2, 22k+2] ⊆ Jk, we have R(s) = Ak+1, while

Ψ(s) ≥
(
Bp′

k + 2−1βp′
k

)1/p′

≥ 2−1/p′Bk+1 .

Consequently, we obtain

(∫

Jk

[
R(s) ·Ψ(s)p′/q′

] pq
p−q ψ(s)p′ ds

) p−q
pq

≥ 2−1/q′
[
(Ak+1 ·Bp′/q

k+1)
pq

p−q βp′
k

] p−q
pq ,

yielding

D(a, b) ≤ 21/q′ D(ρ, ψ) ,

which proves (4.2) in this case as well.

Proof of Theorem 2.2. Let a, b be given, and ρ, ψ be defined via (3.7). In view
of Proposition 3.1 and Theorem 3.4 we have to show only that

δk(a, b) = δk(ρ, ψ), (4.3)

where δk’s are defined in (2.7) and (3.17), respectively. But for vk as in (2.6)
and uk as in (3.16), we have uk ∈ J̄vk

= [22k+1, 22k+2]. Inserting this into the
definition of δk’s yields (4.3), and hence Theorem 2.2.

Proof of Theorem 2.3. We treat the case q < ∞ first. Let dk be given with
∑

k∈N
dq

k < ∞ and
∑

k∈N
dr

k = ∞. (4.4)

We assume 0 < dk ≤ 1. For any k ∈ N, we can find sk ∈ N such that

sk ≤ 1

dq
k

≤ 2sk. (4.5)

According to our assumptions, it is possible to find a partition (Km)m∈N of N
with inf Km+1 = sup Km + 1, and

∑

k∈Km

dr
k ≥ mr. (4.6)

Set νm := max
k∈Km

d−1
k . Then for any k ∈ Km there are nk ∈ N such that

(νmdk)
r ≤ nk ≤ 2(νmdk)

r. (4.7)

Further we define

γk,j :=
∑

l<k

(1 + 2sl) nk + (j − 1)(1 + 2sk) (4.8)
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for k ∈ N and j = 1, . . . , nk + 1. In particular, γ1,1 = 0 and γk,nk+1 = γk+1,1.
Now we are ready to define a partition of N suitable for our purposes: For any
k ∈ N and j = 1, . . . , nk set

A+
k,j := {γk,j + 1, . . . , γk,j + sk}, (4.9)

as well as

Ik,j := {γk,j + sk + 1} (4.10)

and

A−
k,j := {γk,j + sk + 2, . . . , γk,j+1}. (4.11)

Clearly, |A+
k,j| = |A−

k,j| = sk, and

A+
k,1 ≺ Ik,1 ≺ A−

k,1 ≺ A+
k,2 ≺ · · · ≺ A−

k,nk
≺ A+

k+1,1 ≺ · · · , (4.12)

where ≺ denotes the natural ordering of intervals in N. Denoting

Uk :=
nk⋃

j=1

(
A+

k,j ∪ Ik,j ∪ A−
k,j

)
= {γk,1 + 1, . . . , γk+1,1} , (4.13)

it is clear that N =
⋃

k≥1 Uk. Let us define β0 := 1, and

βl :=
2(k−1)/p′

n
1/p′
k (1 + 2sk)1/p′

for l ∈ Uk . (4.14)

This way we ensure (note that |Uk| = nk(1 + 2sk)) that for vk’s defined in (2.6)
we have vk = γk,1 for k ≥ 1 and vk = 0 if k ≤ 0 so that

Uk = {vk + 1, . . . , vk+1}, k ≥ 1. (4.15)

Now, let us set

αl :=





2−k/p′dk

n
1/q
k

if l ∈ Ik,j for some k ∈ N, j = 1, . . . , nk,

0 otherwise.

(4.16)

We can easily compute that

vk+1∑

l=vk+1

aq
l =

nk∑

l=1

2−kq/p′dq
k

nk

= 2−kq/p′dq
k. (4.17)

In particular, we know a = (αl)l∈Z ∈ `q(Z), and δk(a, b) = dk and hence (3)
holds.

If l ∈ Ik,j, then l − 1 ∈ Uk, which implies

∑

l∈N

(
αlβl−1

)r
=

∑

k∈N

nk∑

j=1

(
2−k/p′dk

n
1/q
k

· 2(k−1)/p′

n
1/p′
k (1 + 2sk)1/p′

)r

≤ ∑

k∈N
nk

dr
k

nk(1 + 2sk)r/p′ ≤
∑

k∈N

(
dk/(2sk)

1/p′
)r

.
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Because of the definition of sk we assured 2sk ≥ d−q
k , and hence we can estimate

further
∑

l∈N

(
αlβl−1

)r ≤ ∑

k∈N
d

(1+q/p′)r
k =

∑

k∈N
dq

k < ∞, (4.18)

i.e., (2) is valid. Using Theorem 2.1 one easily checks that Sa,b is bounded,
i.e.,(1) is satisfied as well.

So it remains to verify (4). To do so, let us fix k ∈ N and j ∈ {1, . . . , nk}.
Then consider the vector xk,j = (xk,j

l )l∈Z given by

xk,j
l :=





s
−1/p
k if l ∈ A+

k,j,

−s
−1/p
k for l ∈ A−

k,j,

0 otherwise .

(4.19)

Recall that |A+
k,j| = |A−

k,j| = sk, so ‖xk,j‖p ≤ 2. Setting yk,j := Sa,b(x
k,j), we

have

yk,j
l =





s
1/p′
k

dk

n
1/r
k (1 + 2sk)1/p′

if l ∈ Ik,j

0 otherwise .

(4.20)

For m ∈ N, set Nm :=
∑

k∈Km
nk. Let us denote by ek,j the standard basis of

`Nm
p or `Nm

q , respectively, where k runs through Km and j through 1, . . . , nk.
Then we define two mappings, an injection

Xm : `Nm
p → `p(Z), ek,j 7→ xk,j, (4.21)

and a quasi-projection

Ym : `q(Z) → `Nm
q , el 7→





ek,j if l ∈ Ik,j,

0 otherwise .
(4.22)

We have ‖Xm‖ ≤ 2 and ‖Ym‖ ≤ 1. Additionally,

Ym ◦ Sa,b ◦Xm = Dσm , (4.23)

where Dσm is the diagonal operator generated by the sequence

σm
k,j = s

1/p′
k

dk

n
1/r
k (1 + 2sk)1/p′

≥ 3−1/p′ dk

n
1/r
k

≥ 1/6 ν−1
m . (4.24)

(Here we have used the definition of nk.) It is well-known (cf. [13] or (3.23))
that

NeN

(
id : `N

p → `N
q

)
≥ (1/6) N1/r, (4.25)

so, putting things together and using (4.23), (4.24) and (4.25) we get

NmeNm(Sa,b) ≥ 1/6 ν−1
m NmeNm

(
id : `Nm

p → `Nm
q

)
≥ c ν−1

m N1/r
m . (4.26)
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But due to the definition of nk we have

Nm ≥ νr
m

∑

k∈Km

dr
k, (4.27)

which, inserted in (4.26), yields, with regard to (4.6),

NmeNm(Sa,b) ≥ c
( ∑

k∈Km

dr
k

)1/r

≥ c m, (4.28)

so that lim
n→∞n en(Sa,b) = ∞.

Let now q = ∞, so r = p′. This means we have supn dn < ∞ while
∑

n dp′
n =

∞. We adapt the construction above, changing only the definition of variables
where q is involved. So define sk := 2k, and set αl := 2−k/p′dk for l ∈ Ik,j,
while all other variables are defined as above (they have different values now,
though). It is trivial to see that αl ∈ `∞ and that δk(a, b) = dk. Further, we
estimate

∑

l∈Z
[αlβl−1]

p′ =
∑

k∈N

nk∑

j=1

dp′
k

nk(1 + 2sk)p′ ≤
(
sup
n∈N

dp′
n

) ∑

k∈N
2−kp′ < ∞ .

As above, Theorem 2.1 shows the boundedness of Sa,b. The construction of Xm

and Ym remains exactly the same, and since (4.25) remains valid for q = ∞,
the arguments given above apply also here, so (4.28) holds in this case, too.

Next we want to prove Proposition 2.4. For this it clearly suffices to show
the following:

Lemma 4.1. Assume αq
l /β

p′
l−1 to be monotone near ±∞ if q < ∞, or αk

to be monotone near ±∞ for q = ∞. Then
(
αl βl−1

)
l∈Z ∈ `r always implies

|(a, b)|r < ∞.

Remark. It is notable that in the setting of Lemma 4.1, one cannot establish

the estimate |(a, b)|r ≤ c ‖
(
αl βl−1

)
l
‖r, as simple examples show.

Proof of Lemma 4.1. Let us first assume q < ∞. Since all possible situations

can be treated similarly, we treat, e.g., the case where αq
l /β

p′
l−1 is monotonically

increasing near ∞, say, for k > k0. So let k > k0 be given with vk+2 < ∞ and

vk 6= vk+1. Then, αq
l ≤ βp′

l−1α
q
vk+1

(βvk+1−1)
−p′ holds for any l ∈ {vk +1, . . . , vk+1}

and hence

δk(a, b)r = 2kr/p′
( vk+1∑

l=vk+1

αq
l

)r/q

≤ 2kr/p′
(vk+1−1∑

l=vk

βp′
l

)r/q αr
vk+1

β
rp′/q
vk+1−1

≤ 2k+1
αr

vk+1

β
rp′/q
vk+1−1

. (4.29)
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On the other hand, for any l ∈ {vk+1 + 1, . . . , vk+2 + 1} we have of course

αq
l ≥ βp′

l−1α
q
vk+1+1(βvk+1

)−p′ , which implies

vk+2+1∑

l=vk+1+1

αr
l β

r
l−1 ≥

( vk+2∑

l=vk+1

βp′
l

)αr
vk+1+1

β
rp′/q
vk+1

≥ 2k+1
αr

vk+1

β
rp′/q
vk+1−1

. (4.30)

We combine (4.29) and (4.30) to see that

δk(a, b)r ≤
vk+2+1∑

l=vk+1+1

αr
l β

r
l−1 (4.31)

holds for all k > k0 with vk+2 < ∞ and vk < vk+1. In order to prove that∑
k>k0

δk(a, b)r < ∞, in view of (4.31) it suffices to show that with K := {k ∈
Z : k > k0 and vk < vk+1 ≤ vk+2 < ∞} we have

∑

k∈K

vk+2+1∑

l=vk+1+1

αr
l β

r
l−1 ≤ 2

∑

l∈Z
αr

l β
r
l−1. (4.32)

This takes place if every summand appearing in the right-hand sum appears at
most two times in the sums on the left-hand side. Thus we have to show only
that for any l ∈ Z the set

Ml :=
{
k ∈ Z : vk 6= vk+1, vk+1 + 1 ≤ l ≤ vk+2 + 1

}

consists of at most two elements. So assume that k1, k2, k3 ∈ Ml with k1 < k2 <
k3. Since vk3 < vk3+1, we get

vk1+2 ≤ vk2+1 ≤ vk3 < vk3+1 . (4.33)

But by the definition of Ml we must have vk3+1 ≤ l − 1 ≤ vk1+2, which is a
contradiction. So we know |Ml| ≤ 2, and (4.32) is shown.

Let us now consider the case q = ∞, so r = p′. Again, we demonstrate
only the summability in +∞, provided that αk is monotonically increasing for
k > k0. The arguments above have only to be modified slightly: For any k > k0

with vk < vk+1 we have

δk(a, b)p′ = 2k sup
vk<l≤vk+1

αp′
l = 2kαp′

vk+1
,

while
vk+2+1∑

l=vk+1+1

αp′
l βp′

l−1 ≥ αp′
vk+1+1

( vk+2∑

l=vk+1

βp′
l

)
≥ αp′

vk+1
2k+1.

So we conclude that it suffices to verify (4.32) for the case q = ∞, which is
proved completely analogously as above for the case q < ∞.

Next we prove Theorem 2.5. To do so we construct suitable “embeddings” of
diagonal operators. Let m ∈ N be a number for which the regularity condition
(2.12) holds. For l ∈ Z we set

l + (2m + 4)Z := {l + (2m + 4)k : k ∈ Z} (4.34)
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as usual. If l ∈ {0, . . . , 2m + 3}, then we define

πl : Z→ l + (2m + 4)Z, πl(k) := l + (2m + 4)k . (4.35)

Now let Dl be a diagonal operator generated by the sequence

σl
k := δπl(k)(a, b) = 2πl(k)/p′

( vπl(k)+1∑

j=vπl(k)+1

αq
j

)1/q

. (4.36)

With these operators, we have

Proposition 4.2. For any l ∈ {0, . . . , 2m + 3}, there is a bounded linear
operator X l : `p(Z) → `p(Z) with ‖X l‖ ≤ Cm and

‖Dl(x)‖ ≤ 2‖Sa,b ◦X l(x)‖ (4.37)

for all x ∈ `p(Z).

Before we prove Proposition 4.2, let us mention a useful lemma:

Lemma 4.3. Assume vk 6= vk+1. Then

2k−1 ≤
vk+1−1∑

j=vk−1

βp′
l ≤ 2k+1. (4.38)

Proof. The upper estimate is trivial. For the lower estimate, combine
∑

l<vk+1

βp′
l ≥ ∑

l≤vk

βp′
l ≥ 2k with

∑

l<vk−1

βp′
l < 2k−1.

Proof of Proposition 4.2. We prove the proposition for the case l = 0, the
other cases can be treated analogously. Let (ek)k∈Z be the standard base of
`p(Z). We define the mapping X0 by setting X0(ek) := xk, where xk’s are
defined below. The construction guarantees that the vectors yk := Sa,b(x

k)
are disjointly supported, that ‖xk‖p ≤ c, and moreover ‖yk‖ ≥ 1/2σ0

k with σ0
k

defined in (4.36) for l = 0. From this, one can directly conclude the assertion.
So let k ∈ Z be given, and set k0 := (2m + 4)k = π0(k). If vk0 = vk0+1, then
σ0

k = δk0(a, b) = 0, and we set xk := 0. Otherwise, we distinguish two cases:
Case 1: vk0−1 6= vk0 .
Then we fix k1 ∈ {k0 + m + 2, k0 + 2m + 2} such that vk1 6= vk1+1 (this is

possible due to our assumption (2.12) ). Since k1 − 1 > k0 + 1 + m, (2.12) also
shows that vk1−1 > vk0+1. Now we define xk = (xk

j )j∈Z via

xk
j := 2−k0/p ·





βp′−1
j if j ∈ {vk0−2, . . . , vk0 − 1},
−Ck βp′−1

j for j ∈ {vk1−1, . . . , vk1+1 − 1},
0 otherwise,

(4.39)

where

Ck :=
( vk0

−1∑

j=vk0−2

βp′
l

)(vk1+1−1∑

j=vk1−1

βp′
l

)−1

. (4.40)
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Lemma 4.3 tells us that Ck ∈ [2−2m−4, 2−m+1]. It is easy to obtain

‖xk‖p
p = 2−k0

[ vk0
−1∑

j=vk0−2

βp′
j + Cp

k

vk1+1−1∑

j=vk1−1

βp′
j

]
≤ 1 + 2−k0+12k0+2m+1 ≤ 22m+2.

Let yk = (yk
l )l∈Z := Sa,b(x

k). We will not calculate all values of yk
l ’s, since it is

only important to note that yk
l ≥ 0, and

yk
l =





0 if l < vk0−2,

2−k0/pαl

vk0
−1∑

j=vk0−2

βp′
j when l ∈ {vk0 + 1, . . . , vk0+1},

0 for l ≥ vk1+1.

(4.41)

Case 2: vk0 = vk0−1.
In this case, because of vk0 < vk0+1, we know that

2k0−1 ≤ βp′
vk0
≤ 2k0+1. (4.42)

Let k1 be fixed like in case 1, and set

xk
j := 2−k0/p





βp′−1
vk0

for j = vk0 ,

−Ck βp′−1
j for j ∈ {vk1−1, . . . , vk1+1 − 1},

0 otherwise,

(4.43)

where this time

Ck := βp′
vk0

(vk1+1−1∑

j=vk1−1

βp′
l

)−1

. (4.44)

Because of (4.42) and Lemma 4.3, we know that Ck ∈ [2−2m−4, 2−m+1]. Again,
it is easy to obtain ‖xk‖p ≤ 2(2m+2)/p. Setting yk := Sa,b(x

k), we conclude that

yk
l =





0 if l < vk0 ,

2−k0/pαlβvk0
when l ∈ {vk0 + 1, . . . , vk0+1},

0 for l ≥ vk1+1.

(4.45)

So in both cases we have defined our vectors xk. Since k1 ≤ k0 + 2m + 2 ≤
π0(k +1)− 2, we easily see that the yk ’s are as disjointly supported as the xk ’s
are with

‖yk‖q ≥ 2k0/p′−1
( vk0+1∑

j=vk0
+1

αq
j

)1/q

= 1/2σ0
k. (4.46)

Taking into account yk = Sa,b ◦X0(ek), we conclude that (4.37) holds.

Before we can finally prove Theorem 2.5, a technical difficulty has to be fixed.
Note that for a subsequence σπ(n) of a sequence σn, the sequence (σπ(n))

∗
n cannot,

in general, be estimated from below by σ∗n, e.g. (σπ(n))
∗
n could be constantly 0
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and σ∗n be 1. In particular, for the sequences σl defined in (4.36), (σl)∗n cannot
be estimated from below by δ∗n(a, b), but fortunately this is possible for the
maximum:

Lemma 4.4. Let (σn)n≥0 be a nonnegative sequence tending to zero, and
let (σπ1(n))n∈N, . . . , (σπN (n))n∈N be partial sequences of (σn)n∈N, where the πj’s

satisfy
⋃N

j=1 πj(N) = N. Then for any s > 0 we have

sup
n∈N

n1/sσ∗n ≤ 2N1/s max
j=1,... ,N

sup
n∈N

n1/s(σπj(n))
∗
n, (4.47)

and for all k ∈ N
(Nk)1/sσ∗kN ≤ 2 N1/sk1/s max

j=1,... ,N
(σπj(n))

∗
k (4.48)

holds.

Proof. For x ≥ 0 denote bxc := sup{n ∈ N : n ≤ x}. Given n ∈ N, there are
k1, . . . , kn ∈ N with σki

≥ σ∗n/2. For l := bn/Nc + 1 we conclude that there is
j ∈ N such that |πj(N) ∩ {k1, . . . , kn}| ≥ l. Consequently, for this j we have
(σπj(n))

∗
l ≥ σ∗n/2, and since n/l ≤ N , we find

n1/sσ∗n ≤ 2 (n/l)1/sl1/s(σπj(n))
∗
l ≤ 2N1/sl1/s(σπj(n))

∗
n ,

which implies (4.47). The second assertion is analogous.

Proof of Theorem 2.5. Using Lemma 4.2 from [10], it is easy to deduce from
Proposition 4.2 and Corollary 3.7 that

sup
n∈N

nρen(Sa,b) ≥ 1/4 max
l≤2m+3

sup
n∈N

nρen(Dl)

≥ 1/4 max
l≤2m+3

sup
n∈N

n1/s((σl)∗n + (σl)∗−n+1) (4.49)

with Dl and σl defined in (4.36). On the other hand, by Lemma 4.4 with
δn := δn(a, b) we get

sup
n∈N

n1/s(δ∗n−1 + δ∗−n) ≤ sup
n∈N

n1/sδ∗n−1 + sup
n∈N

n1/sδ∗−n

≤ C max
l=0,... ,2m+3

(
sup
n∈N

n1/s(σl)∗n−1

)

+ C max
l=0,... ,2m+3

(
sup
n∈N

n1/s(σl)∗−n

)

≤ 2 C max
l=0,... ,2m+3

(
sup
n∈N

n1/s
(
(σl)∗n−1 + (σl)∗−n

))
.

Combined with (4.49), this shows the first assertion.
The last estimate is based on the fact that for an, bn ≥ 0 we have

sup
n

(an + bn) ≤ sup
n

an + sup
n

bn ≤ 2 sup
n

(an + bn).
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Such estimates cannot be established for the infimum. So for estimate (2.15) we
have to be a little more careful. First we define two subspaces of `p(Z), namely

`+
p :=

{
(xk)k∈Z ∈ `p(Z) : xk = 0 for k < 0

}
, (4.50)

as well as

`−p :=
{
(xk)k∈Z ∈ `p(Z) : xk = 0 if k ≥ 0,

∑

j<0

βjxj = 0
}

. (4.51)

The corresponding restrictions of Sa,b are denoted analogously, e.g.,

S+
a,b :=

(
Sa,b

)
|`+p

, S−a,b :=
(
Sa,b

)
|`−p

. (4.52)

We observe that Im (S+
a,b) ∩ Im (S−a,b) = {0}. It is easy to deduce that

en(S+
a,b) + en(S−a,b) ≤ Cp,q en(Sa,b). (4.53)

A careful inspection of the proof of Proposition 4.2 reveals that X l(ek) ∈ `+
p if

k ≥ 0, and that X l(ek) ∈ `−p if k < −1. As above, this yields

en(S+
a,b) ≥ C max

0≤l≤2m+3
en

(
D(σl

k
)k≥0

)

and

en(S−a,b) ≥ C ′ max
0≤l≤2m+3

en

(
D(σl

−k
)k≥2

)
.

From this we easily derive with the help of (3.23) and (4.48) that

nρen(S+
a,b) ≥ C n1/sδ∗(2m+4)(n−1) (4.54)

and

nρen(S−a,b) ≥ C ′ n1/s
(
(δ−k)k≥2m+4

)∗

(2m+4)n
. (4.55)

But it is not hard to see that
(
(δ−k)k≥2m+4

)∗

(2m+4)n
≥ δ∗−2(2m+4)n, which allows

to continue the estimate (4.55) into

nρen(S−a,b) ≥ C ′ n1/sδ∗−2(2m+4)n. (4.56)

Combined with (4.54) and (4.53), this reveals

nρen(Sa,b) ≥ C ′′ n1/s
(
δ∗2(2m+4)n−1 + δ∗−2(2m+4)n

)
.

From this we are directly led to (2.15).
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5. Examples and Special Cases

At first we will study polynomial growth of the αk’s and βk’s: Let us assume
that for α, β ∈ R we have αk = k−α and βk = k−β if k ≥ 1, and αk = 0 = βk

otherwise. First of all, (2.1) is satisfied iff α > 1/q for q < ∞, and iff α ≥ 0
when q = ∞. For Ak and Bk given by (2.1) we find that then Ak ≈ k−α+1/q

while

Bk ≈





k−β+1/p′ , β < 1/p′,
log k, β = 1/p′,
c, β > 1/p′.

(5.1)

Assume first p ≤ q. Then Theorem 2.1 tells us that Sa,b is bounded iff Ak · Bk

is so; by treating the three cases given in (5.1) separately and regarding 1/p′ ≥
1/r− α one can easily check that Sa,b is bounded from `p to `q iff α + β ≥ 1/r.
For p > q, the condition in Theorem 2.1 seems to be more complicated; however,
using (5.1) one can verify that in this case we can estimate

[Ak ·Bp′/q′
k ]

pq
p−q βp′

k−1 ≈





k
pq

p−q
(1−α−β), β < 1/p′,

k
pq

p−q
(1/q−α)−1(log k)

pq
q′(p−1) , β = 1/p′,

k
pq

p−q
(1/q−α)−βp′ , β > 1/p′.

(5.2)

For β ≥ 1/p′ this is always summable, while for β < 1/p′ we infer that Sa,b is
bounded from `p to `q iff pq

p−q
(1−α−β) < −1, which is equivalent to α+β > 1/r.

Since 1/p′ > 1/r − α (we have q < ∞ in this case), we find that for p > q the
operator Sa,b is bounded iff α+β > 1/r. Next we wish to calculate δk(a, b). For
this purpose we assume from now on that β < 1/p′. Then it is easy to see that
for vk as in (2.6) we have vk ≈ 2k/(1−βp′), and consequently,

δk(a, b) ≈ 2k/p′
(2(k+1)/(1−βp′)∑

j=2k/(1−βp′)
j−αq

)1/q

≈ 2k((1/q−α)/(1−βp′)+1/p′).

Since it is easily verified that (1/q − α)/(1 − βp′) < −1/p′ if and only if
β > 1/r−α, we derive that Sa,b is compact iff β > 1/r−α, and in this case, we
have an exponential decrease of δk(a, b). Through easy direct calculations one
verifies that δk(a, b) decrease even more rapidly for β ≥ 1/p′. Summing up our
results and using Theorem 2.2, we verify the following proposition:

Proposition 5.1. For α, β ∈ R, define Sα,β : `p(N) → `q(N) by

Sα,β : x = (xk)k∈N 7→
(
k−α

k−1∑

l=1

l−βxl

)

k∈N
.

Then
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(i) Sα,β is bounded from `p to `q iff




α ≥ 0 and α + β ≥ 1/r if q = ∞,

α > 1/q and α + β ≥ 1/r if p ≤ q < ∞,

α > 1/q and α + β > 1/r for p > q;

and
(ii) Sα,β is compact iff α > 1/q ( α ≥ 0, if q = ∞ ), and α + β > 1/r. In

this case, we have limn→∞ nen(Sα,β) = 0.

As a second class of interest we investigate the case that βk’s grow exponen-
tially:

Proposition 5.2. Let a = (αk)k∈Z be arbitrary, and let βk = 2k/p′, k ∈ Z.
Then we have

c1|(a, b)|r,∞ ≤ sup
n∈N

n en(Sa,b) ≤ c2|(a, b)|r,∞ (5.3)

and

c1 lim
n→∞

n1/rτn ≤ lim
n→∞

n en(Sa,b) ≤ lim
n→∞n en(Sa,b) ≤ c2 lim

n→∞n1/rτn, (5.4)

with τn := δ∗n−1(a, b) + δ∗−n(a, b).

Proof. Note first that δk(a, b) = 2k/p′αk for k ∈ Z. Let V : `p(Z) → `p(Z) denote
an auxiliary summation operator defined by

V ((xk)k∈Z) :=
(
2−k/p′ ∑

j<k

xj2
j/p′

)

k∈Z
.

Using Theorem 2.1 one easily checks that V is bounded. We set now D :
`p(Z) → `q(Z) to be the diagonal operator generated by the sequence δk(a, b).
Then it is trivial to obtain Sa,b = D ◦ V , yielding en(Sa,b) ≤ Cen(D). On the
other hand, let R : `p(Z) → `p(Z) be given by R(ek) := 2ek−1−ek. We find that
D = Sa,b ◦ R, and thus en(D) ≤ C ′en(Sa,b). Now we have to estimate en(D)
only, which has already been done in Corollary 3.7.

Next we study the case of a rapid (i.e., superexponential) increase of βk:

Proposition 5.3. Set βk = 22k
for k ≥ 0 and βk = 0 for k < 0. Then for

any sequence a = (αk)k∈Z we have

|(a, b)|r,∞ ≥ c sup
l∈N

l1/r(αl βl)
∗
l , (5.5)

while

sup
l∈N

l el(Sa,b) ≤ C sup
l∈N

l1/r(αl βl−1)
∗
l . (5.6)

In particular, if we set αl := 2−l β−1
l−1 whenever l ≥ 0, and αl = 0 otherwise,

then |(a, b)|r,∞ = ∞ while supn n en(Sa,b) < ∞.
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Proof. It is easy to see that vk = blog2 kc for k ≥ k0, where as usual

bxc := inf{n ∈ N : n ≥ x} .

In particular, vk 6= vk+1 iff k = 2l−1 for some l ≥ 1. So for k = 2l−1 we derive

δk(a, b) = 2k/p′αvk+1
= 2(2l−1)/p′αl ≥ cp βl αl. (5.7)

Since k1/r ≥ l1/r, this implies (5.5).
On the other hand, let V : `p(Z) → `p(Z) be defined by

V
(
(xl)l∈Z

)
:=

(
β−1

l−1

∑

j<l

βjxj

)
l∈Z . (5.8)

Then we have by Theorem 2.1 that ‖V ‖ ≤ Cp and, additionally,

Sa,b = Dαl·βl−1
◦ V. (5.9)

Thus en(Sa,b) ≤ Cp en(D(αl·βl−1)) and so (5.6) follows by virtue of Theorem
3.5.

Finally, we will estimate the first entropy numbers of finite-dimensional stan-
dard summation operators. Estimates for the approximation, Gelfand and Kol-
mogorov numbers of such operators can be found in [8]. Let N ≥ 2 be arbi-
trary, and set λ := min{1, 1/r}. Then for the standard summation operator
SN

1 : `N
p → `N

q with

SN
1 ((xi)

N
i=1) :=

(∑

j<i

xj

)N

i=1

we have

Proposition 5.4. There are universal constants c0, c1, c2 > 0 such that the
estimate

c1
N1/r

n
≤ en(SN

1 : `N
p → `N

q ) ≤ c2
N1/r

n
(5.10)

holds for all n ≤ c0N
λ.

Proof. We start with the upper estimate. Therefore choose m ∈ N such that

2m ≤ N < 2m+1.

vk’s are given now by

vk =





1 for k ≤ 0

2k if 1 ≤ k ≤ m

∞ when k > m.

(5.11)

Thus δk(a, b) = 2k/p′+k/q = 2k/r for k = 0, . . . , m − 1, and for k = m we have
δm(a, b) = 2m/p′(N − 2m)1/q ≤ 2m/r. By Theorem 2.2 we obtain

sup
n∈N

n en(SN
1 ) ≤ c

( m∑

k=0

δr
k

)1/r

≤ c 2m/r ≤ c′N1/r.
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For the lower estimate, set

Ij :=
[
j − 1

N
,

j

N

]
, 1 ≤ j ≤ N,

and denote by PN the conditional expectation operator mapping from Lp[0, 1]
to Lp[0, 1] generated by the partition I1, . . . IN of [0, 1], i.e.,

PN(f) :=
N∑

j=1

1Ij
|Ij|−1

∫

Ij

f(t) dt.

It is easily checked that ‖PN‖ = 1. Further we define ϕp to be an embedding
of `N

p into Lp[0, 1] with

ϕp((xj)) :=
N∑

j=1

xj1Ij
|Ij|−1/p.

Recalling |Ij| = N−1, we derive easily

(
ϕq ◦ (N−1/rSN

1 ) ◦ ϕ−1
p ◦ PN

)
f =

N∑

k=1

1Ik

(∑

j<k

∫

Ij

f dt
)
. (5.12)

Next define RN : Lp[0, 1] → Lq[0, 1] via

(RNf)(s) :=
N∑

k=1

( s∫

k−1
N

f(t) dt
)

1Ik
(s).

Using (5.12), we find

T1 = RN +
(
ϕq ◦ (N−1/rSN

1 ) ◦ ϕ−1
p ◦ PN

)
. (5.13)

We derive an upper bound for ‖RN‖ by estimating (we assume q < ∞; the case
q = ∞ may be treated in the same way)

‖RNf‖q =
( N∑

k=1

∫

Ik

∣∣∣∣
s∫

k−1
N

f(t) dt

∣∣∣∣
q

ds
)1/q

≤
( N∑

k=1

∫

Ik

(
s− k − 1

N

)q/p′

ds
(∫

Ik

|f(t)|p dt
)q/p)1/q

≤ N−1/r
( N∑

k=1

(∫

Ik

|f(t)|p dt
)q/p)1/q

The last sum can either be estimated by ‖f‖p when p ≥ q, or by N1/q−1/p‖f‖p

if p ≤ q. This shows that ‖RN‖ ≤ N−λ.
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From now on, d1, d2, . . . shall denote fixed constants (that is, the value of di

remains the same at each occurrence). Because of the additivity of the entropy
numbers (see, e.g., [2]) and equality (5.13) we come to

en(T1) ≤ ‖R‖+ en(ϕq ◦ (N−1/rSN
1 ) ◦ ϕ−1

p ◦ PN) ≤ d1N
−λ + d2N

−1/ren(SN
1 ).

Since it is well-known that en(T1) ≥ d3/n (cf. [7]), this reveals

d2N
−1/ren(SN

1 ) ≥ d3

n
− d1

Nλ
(5.14)

for all n,N ∈ N. Let c0 := d3(2d1)
−1, then (5.14) provides that for n ≤ c0N

λ

we have

N−1/ren(SN
1 ) ≥ d3

2d2n
.

For p < q, Proposition 5.4 is somewhat unsatisfying, because we can estimate
en(SN

1 ) only for n ≤ c0N
1/r. Recall that in this case, 1/r < 1. We leave this as

an open problem.

Problem.1 Find optimal estimates for en(SN
1 : `N

p → `N
q ) when p < q and

c0N
1/r ≤ n ≤ N .

6. Some Probabilistic Applications

Let T be an operator from a (separable) Hilbert space H into a Banach space
E, and let (ξk)

∞
k=1 be an i.i.d. sequence of N (0, 1)-distributed random variables.

Then the behaviour of en(T ) as n →∞ is known to be closely related with the
properties of the E-valued Gaussian random variable

X :=
∞∑

k=1

ξk · Tfk , (6.1)

where (fk)
∞
k=1 denotes some orthonormal basis in H. For example, in [4] it was

proved that
∑∞

n=1 n−1/2en(T ) < ∞ implies the a.s. convergence of (6.1) in E,
while, conversely, the a.s. convergence of (6.1) yields supn n1/2en(T ) < ∞ (cf.
[14]). A faster decay of en(T ) as n → ∞ is reflected by a “better” small ball
behaviour of X. More precisely the following holds (cf. [9], [11] and [3]):

Proposition 6.1. Let 0 < α < 2 and T : H → E generating X via (6.1).
Then the following statements are equivalent:

(i) lim
n→∞n1/αen(T ) := cα(T ) < ∞.

(ii) lim
ε→0

ε
2α

2−α logP
(
‖X‖E < ε) := −dα(X) > −∞.

1Recently M. Lifshits kindly showed us a proof of the following fact: For any h > 0 and any
pair (p, q) 6= (1,∞) there is c(p, q, h) > 0 such that en(SN ) ≥ c(p, q, h)n−1N1/r, n ≥ (1−h)N .
Since the upper estimate is valid for all n ∈ N, this almost answers the problem.
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Moreover,

dα(X) ≤ c0 · cα(T )
2α

2−α (6.2)

for some universal c0 > 0. Conversely, if T satisfies

lim
n→∞

n1/αen(T ) := κα(T ) > 0 ,

then
lim
ε→0

ε
2α

2−α logP
(
‖X‖E < ε) := −λα(X) < 0

and
λα(X) ≥ c′0 κα(T )

2α
2−α .

We want to apply these relations between the entropy and the small ball
behaviour to the summation operator Sa,b : `2(Z) → `q(Z), 1 ≤ q ≤ ∞. To do
so, let W = (W (t))t≥0 be a standard Wiener process over [0,∞). Taking the
natural unit vector basis (ek)k∈Z in `2(Z) leads to

X =
∞∑

k=−∞
ξkSa,b(ek), (6.3)

where the `q(Z)-valued Gaussian random variable X = (Xk)k∈Z is defined by

Xk := αkW (tk) (6.4)

with tk :=
∑

j<k β2
j being an increasing sequence of nonnegative numbers such

that lim
k→−∞

tk = 0. In our situation we have r = 2q
2+q

and vk’s given in (2.6) can

be calculated by

vk = sup{m ∈ Z : tm < 2k}. (6.5)

With this notation the following is valid:

Theorem 6.2. Let (αk)k∈Z be a sequence of nonnegative numbers satisfying
(2.1) and let (tk)k∈Z be a nondecreasing sequence with lim

k→−∞
tk = 0. For X =

(Xk)k∈Z defined by (6.4) and vk’s as in (6.5) we have the following.

(i) If

∞∑

k=−∞
2

kq
2+q ·

( vk+1∑

l=vk+1

αq
l

) 2
2+q

< ∞, (6.6)

then

lim
ε→0

ε2 logP(‖X‖q < ε) = 0. (6.7)

(ii) Assume that [tk+1 − tk]
−1αq

k is monotone near ±∞. Then (6.7) holds
provided that

∞∑

k=−∞
[tk − tk−1]

q
2+q · α

2q
2+q

k < ∞ . (6.8)
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Proof. Combining Proposition 6.1 for α = 1 with Theorem 2.2, one easily sees
that (6.6) implies

lim
ε→0

ε2 logP(‖X‖q < ε) = −d1(X) > −∞. (6.9)

Yet by the second part of Theorem 2.2 and estimate (6.2) we even have d1(X)=
0 which completes the proof of (i). Assertion (ii) is a direct consequence of
Proposition 2.4. Recall that β2

k = tk+1 − tk.

Remarks. (1) Theorem 2.3 shows that, in general, condition (6.6) cannot
be replaced by the weaker assumption (6.8). More precisely, for each q ∈ [1,∞]
there are αk’s and tk’s satisfying (6.8), yet

lim
ε→0

ε2 logP(‖X‖q < ε) = −∞ .

(2) In the case q = ∞ Theorem 6.2 reads as follows. Suppose that

∞∑

k=−∞
2k sup

vk<l≤vk+1

α2
l < ∞. (6.10)

Then

lim
ε→0

ε2 logP(sup
k∈Z

αk|W (tk)| < ε) = 0. (6.11)

Again, (6.11) becomes wrong under a weaker condition

∞∑

k=−∞
[tk − tk−1] · α2

k < ∞ . (6.12)

Recall that (6.12) suffices for αk’s monotone near ±∞ .

Observe that Theorem 6.2 provides us with sufficient conditions for

− logP(‖X‖q < ε) ¹ ε−α (6.13)

in the case α = 2. Of course, similar conditions would also be of interest for
α’s different of 2, yet we could not handle this problem by our methods. Recall
that we have derived upper bounds for the entropy of summation operators
by the corresponding results about integration operators. And there only the
case α = 2 has been treated. But for tk’s not increasing too fast we can prove
necessary conditions for (6.13) and all α > 0. To be more precise, suppose that
tk’s satisfy

sup
{

tk+1

tk
: tk > 0

}
< ∞ . (6.14)

Then the following holds.
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Proposition 6.3. Let X = (Xk)k∈Z be a Gaussian sequence defined by (6.4)
with tk’s satisfying (6.14). If

lim
ε→0

εα logP(‖X‖q < ε) > −∞ (6.15)

for some α > 0, then necessarily

sup
n≥1

n1/α+1/q
(
δ∗n−1 + δ∗−n

)
< ∞ (6.16)

with

δn = 2n/2




vk+1∑

l=vk+1

αq
l




1/q

, n ∈ Z , (6.17)

and vk’s defined by (6.5).

Proof. Using Proposition 6.1, we see that (6.15) implies

sup
n≥1

nρen(Sa,b) < ∞, (6.18)

where, as before, β2
k = tk+1 − tk and ρ = 1/α + 1/2. Let us first treat the case

tk > 0 for all k ∈ Z and supk tk = ∞. Then condition (6.14) implies

sup
k∈Z

|{k′ : vk = vk′}| < ∞ (6.19)

(in fact, here (6.14) and (6.19) are even equivalent), i.e., condition (2.12) is
satisfied. Thus Theorem 2.5 applies and by (6.16) we obtain

sup
n≥1

n1/s
(
δ∗n−1 + δ∗−n

)
< ∞ ,

where
1/s = ρ− 1/2 + 1/q = 1/α + 1/q .

This completes the proof in this case.
Next assume tk > 0 and supk tk < ∞. Then by (6.14) there is k0 ∈ N such

that
sup
k≤k0

|{k′ : vk = vk′}| < ∞ .

Here Proposition 2.6 applies and completes the proof as before.
If we have supk tk < ∞ and tk = 0 for k ≤ k̃,

|{n ∈ Z : δn 6= 0}| < ∞ ,

so there is nothing to prove.
Finally, if tk = 0 for k ≤ k̃ and supk tk = ∞, this time (6.14) yields

sup
k≥k0

|{k′ : vk = vk′}| < ∞

for a certain k0 ∈ N, and we may proceed as in the preceding case.

Next we ask for conditions which ensure − logP(‖X‖q < ε) º ε−α for some
α > 0.
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Proposition 6.4. Let (tk)k∈Z and X be as in Proposition 6.3. If for some
α > 0 and δn’s defined by (6.17)

lim
n→∞

n1/α+1/q
(
δ∗n−1 + δ∗−n

)
> 0 ,

then necessarily
lim
ε→0

εα logP(‖X‖q < ε) < 0 .

Proof. This can be proved exactly as Proposition 6.3 by using Theorem 2.5,
Proposition 2.6 and Proposition 6.1.

Let us illustrate the preceding results by an example. We define random
variables (Yk)k≥1 by

Yk :=


 1

2k

2k+1−1∑

l=2k

∣∣∣∣∣
W (l)

l1/2

∣∣∣∣∣
q



1/q

, q < ∞ ,

and

Yk := sup
2k≤l<2k+1

∣∣∣∣∣
W (l)

l1/2

∣∣∣∣∣ , q = ∞ .

Proposition 6.5. Let (γk)k≥1 be a sequence of nonnegative real numbers,
and for q ∈ [1,∞], let 1/r = 1/2 + 1/q.

(i) If ‖(γk)k∈N‖r < ∞, then lim
ε→0

ε2 logP
( ∞∑

k=1

γq
k Y q

k < εq
)

= 0 .

(ii) For γk decreasing and − logP
( ∞∑

k=1

γq
k Y q

k < εq
)
¹ ε−α we necessarily

have sup
k≥1

k1/α+1/qγk < ∞ .

(iii) Suppose that γk’s are decreasing with γk º k−1/α−1/q for a certain α > 0.

Then it follows − logP
( ∞∑

k=1

γq
k Y q

k < εq
)
º ε−α .

In all three cases, for q = ∞, one has to read P
(
sup
k≥1

γkYk < ε
)

everywhere.

Proof. We set
αl = 2−k/q γk l−1/2 , 2k ≤ l < 2k+1

for any k ≥ 0, and αl = 0 if l < 0. Then it is easy to obtain

‖(γkYk)k∈Z‖q = ‖X‖q (6.20)

with X = (Xl)l∈Z = (αl W (l))l∈Z. Let b be given by βk = 1 if k ≥ 0, βk = 0
otherwise. Then tl = l for l ≥ 0, and tl = 0 otherwise. For vk’s defined in (2.6)
we have vk = 0 for k ≤ 0 and vk = 2k − 1 for k ≥ 1. Thus

δk(a, b) = 2k/2−k/qγk




2k+1−1∑

l=2k

l−q/2




1/q
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if q < ∞ and

δk(a, b) = 2k/2γk

(
sup

2k≤l<2k+1

l−1/2
)

= γk

for q = ∞. In any case we obtain

2−1/2γk ≤ δk(a, b) ≤ γk , (6.21)

so that (γk)k∈N ∈ `r(N) iff (δk)k∈N ∈ `r(N), and (i) follows from Theorem 6.2.
Conversely, if γk’s are decreasing, by (6.21) we have supk≥1 k1/α+1/qγk < ∞ iff
the same holds for δ∗k’s. So (ii) is a consequence of Proposition 6.3 and (6.20).
Similarly, assertion (iii) is proved.
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