ON THE EXISTENCE OF SINGULAR SOLUTIONS

M. BARTUŠEK AND J. OSIČKA

Abstract. Sufficient conditions are given, under which the equation $y^{(n)} = f(t, y, y', \dots, y^{(l)})g(y^{(n-1)})$ has a singular solution $y[T, \tau) \to \mathbf{R}, \ \tau < \infty$ satisfying $\lim_{t \to \tau_{-}} y^{(i)}(t) = c_{i} \in \mathbf{R}, \ i = 0, 1, \dots, l$ and $\lim_{t \to \tau_{-}} |y^{(j)}(t)| = \infty$ for $j = l+1, \dots, n-1$ where $l \in \{0, 1, \dots, n-2\}$.

2000 Mathematics Subject Classification: 34C11.

Key words and phrases: Singular solution, fourth order differential equation, black hole solution.

1. Introduction

Consider the n-th order differential equation

$$y^{(n)} = f(t, y, y', \dots, y^{(l)})g(y^{(n-1)}), \tag{1}$$

where $n \geq 2$, $l \in \{0, 1, \dots, n-2\}$, $f \in C^0(\mathbf{R}_+ \times \mathbf{R}^{l+1})$, $g \in C^0(\mathbf{R})$, $\mathbf{R}_+ = [0, \infty)$, $\mathbf{R} = (-\infty, \infty)$ and there exists $\alpha \in \{-1, 1\}$ such that

$$\alpha f(t, x_1, \dots, x_{l+1}) x_1 > 0 \quad \text{for} \quad x_1 \neq 0.$$
 (2)

A solution y defined on the interval $[T, \tau) \subset \mathbf{R}_+$ is called singular if $\tau < \infty$ and y cannot be defined for $t = \tau$.

The problem of the existence of singular solutions satisfying the Cauchy initial-value problem and their asymptotic behaviour is thoroughly studied in [4] for the second order Emden–Fowler equation

$$y'' = r(t)|y|^{\lambda}\operatorname{sgn} y, \quad r(t) \ge 0. \tag{3}$$

In the common case for (1), the profound investigations are carried out in [5]. All these results concern the case $\alpha = 1$. For $\alpha = -1$, sufficient conditions are given in [2], under which singular solutions of

$$y^{(n)} = r(t)|y|^{\lambda} \operatorname{sgn} y, \quad n > 2, \quad r < 0,$$

exist.

Another problem concerning singular solutions is solved in [3] $(n = 2, f(t, x_1, ..., x_l) \equiv r(t)|x_1|^{\sigma} \operatorname{sgn} x_1, g(x) = |x|^{\lambda})$ and in [1] in the case l = n - 2.

Let $\tau \in (0, \infty)$. Sufficient and/or necessary conditions are given there, under which a singular solution y exists with given asymptotic behaviour at the left-hand side point τ of the definition interval $c_i \in \mathbf{R}$,

$$\lim_{t \to \tau_{-}} y^{(i)}(t) = c_{i} \quad \text{for} \quad i = 0, 1, \dots, n - 2, \quad \lim_{t \to \tau_{-}} |y^{(n-1)}(t)| = \infty.$$
 (4)

In the present paper this result is generalized to the case in which we seek a singular solution y satisfying the condition

$$\tau \in (0, \infty), \quad c_i \in \mathbf{R}; \quad \lim_{t \to \tau_-} y^{(i)}(t) = c_i, \quad i = 0, 1, \dots, l,$$

$$\lim_{t \to \tau} |y^{(j)}(t)| = \infty \quad \text{for} \quad j = l + 1, \dots, n - 1.$$
(5)

Note that in [3] such solutions are called blackhole solutions (for n = 2 and l = 0).

Denote by [a] the entire part of the number a.

2. Main Results

Let y be a solution of (1) satisfying (5). Since, according to (2) $f(t, c_0, c_1, \ldots, c_l) \neq 0$ if and only if $c_0 \neq 0$, we ought to divide our investigation into two cases $c_0 \neq 0$ and $c_0 = 0$ for which the results are different.

Let $c_0 \neq 0$. The following theorem gives a necessary condition for the existence of a solution of (1), (5).

Theorem 1. Let $c_0 \neq 0$, $M \in (0, \infty)$, $K \in (0, 1]$, $\lambda \leq 2$ for l = n - 2,

$$\lambda \bar{\in} \left(1 + \frac{1}{n - l - 1}, 1 + \frac{1}{n - l - 2} \right) \quad for \quad < n - 2,$$

$$K|x|^{\lambda} \leq g(x) \leq |x|^{\lambda} \quad for \quad |x| \geq M.$$
(6)

Then equation (1) has no singular solution y satisfying (5).

The next theorem shows that in the opposite case in (6) problem (1), (5) is solvable.

Theorem 2. Let $\tau \in (0, \infty)$, $c_0 \neq 0$, $M \in (0, \infty)$, $\beta = \alpha \operatorname{sgn} c_0$, $\lambda > 2$ for l = n - 2,

$$1 + \frac{1}{n - l - 1} < \lambda \le 1 + \frac{1}{n - l - 2} \quad for \quad l < n - 2$$
 (7)

and

$$g(x) \ge |x|^{\lambda} \quad for \quad \beta x \ge M.$$
 (8)

Then there exists a singular solution y of (1) satisfying (5) which is defined in a left neighborhood of τ .

If, moreover, $\varepsilon > 0$, g(x) > 0 for $\beta x \in (0, \varepsilon]$,

$$l + \frac{1 - \alpha}{2}$$
 is odd, $(-1)^i c_i c_0 \ge 0$ for $i = 1, 2, \dots, l$, (9)

and

$$\left| \int_{0}^{\beta \varepsilon} \frac{ds}{g(s)} \right| = \infty, \tag{10}$$

then y is defined on the interval $[0, \tau)$.

Corollary 1. Let $c_0 \neq 0$, $M \in (0, \infty)$ and

$$g(x) = |x|^{\lambda} \quad for \quad |x| \ge M.$$

Then (1) has a singular solution y satisfying (5) if and only if (7) is valid.

Corollary 2. Let $\lambda > 1 + \frac{1}{n-1}$ and $M \in \mathbb{R}_+$ be such that

$$g(x) \ge x^{\lambda}$$
 for $x \ge M$.

Then (1) has a singular solution.

Remark. For $\alpha=1$ the conclusion of Corollary 2 is known, see, e.g., [6, Theorem 11.3]. For $\alpha=-1$ it generalizes Corollary 1 in [1].

The following two theorems solve the same problem in the case

$$\beta \in \{-1, 1\}, \quad c_0 = 0, \quad (-1)^i \beta c_i \ge 0 \quad \text{for} \quad i = 1, 2, \dots, l.$$
 (11)

Theorem 3. Let $\tau \in (0, \infty)$, $\sigma > 0$, $\varepsilon > 0$, $M \in (0, \infty)$, $\bar{M} \in (0, \infty)$,

$$l - \frac{1 - \alpha}{2} \quad be \ odd, \tag{12}$$

$$2 + (n-2)\sigma < \lambda$$
 for $l = n-2$,

$$1 + \frac{l\sigma + 1}{n - l - 1} < \lambda \le 1 + \frac{(l+1)\sigma + 1}{n - l - 2} \quad \text{for } l < n - 2, \tag{13}$$

(8) and (11) hold. Further, let

$$|f(t, x_1, \dots, x_{l+1})| \ge \bar{M}|x_1|^{\sigma}$$
 (14)

for $t \in [0, \tau]$, $\beta x_1 \in [0, \varepsilon]$, $(-1)^j \beta x_{j+1} \in [(-1)^j \beta c_j, (-1)^j \beta c_j + \varepsilon]$, $j = 1, \dots, l$.

Then there exists a singular solution y of (1) satisfying (5), which is defined in a left neighborhood of τ .

If, moreover, g(x) > 0 for $\beta x \in (0, \varepsilon]$ and (10) holds, then y is defined on the interval $[0, \tau)$.

Theorem 4. Let $\sigma > 0$, $c_i = 0$ for i = 0, 1, ..., l, $M \in (0, \infty)$, $\varepsilon > 0$, $\alpha \in \{-1, 1\}$, $r \in C^0(\mathbf{R}_+)$, $\alpha r(t) > 0$ on \mathbf{R}_+ , (12) hold and

$$g(x) = |x|^{\lambda}$$
 for $|x| \ge M$.

Then the equation

$$y^{(n)} = r(t)|y|^{\sigma}g\left(y^{(n-1)}\right)\operatorname{sgn}y\tag{15}$$

has a solution y satisfying (1), (5) if and only if (13) is valid.

The following proposition shows that assumption (12) in Theorems 3 and 4 is important.

Proposition. Let $c_i = 0$, i = 0, 1, ..., l and $l - \frac{\alpha - 1}{2}$ be even. Let $g(x) \ge 0$ on \mathbf{R} . Then equation (1) has no solution satisfying (1), (5).

In this paper the main assumptions are imposed on the function g depending on $y^{(n-1)}$. But solutions of (1), (5) may exist for the equation

$$y^{(n)} = f(t, y, \dots, y^{(j)}), \quad j \in \{l+1, \dots, n-1\},$$
(16)

too. From this we formulate an open problem.

Open problem. To study the existence of a solution satisfying (1), (5) of equation (16).

3. Lemmas and Proofs

We need the next two lemmas.

Lemma 1. Let $[a,b] \subset \mathbf{R}_+$, $\phi \in C^0[a,b]$ and $\tilde{f} \in C^0([a,b] \times \mathbf{R}^n)$ be such that $\tilde{f}(t,x_1,\ldots,x_n)| < \phi(t), \quad t \in [a,b], \ x_i \in \mathbf{R}, \ i=1,\ldots,n.$

Then for arbitrary $\gamma_i \in \mathbf{R}$, $i = 0, 1, \dots, n-1$, the equation

$$u^{(n)} = \tilde{f}(t, u, u', \dots, u^{(n-1)})$$

has at least one solution satisfying the boundary value conditions

$$u^{(i)}(b) = \gamma_i$$
 for $i = 0, 1, ..., l + 1;$
 $u^{(j)}(a) = \gamma_{j+1}$ for $j = l + 1, ..., n - 2.$

Proof. It follows, e.g., from [6, Lemma 10.1] since the homogeneous problem

$$u^{(n)} = 0$$
, $u^{(i)}(b) = u^{(j)}(a) = 0$ for $i = 0, 1, ..., l+1$; $j = l+1, ..., n-2$,

has a trivial solution only. \Box

The following Kolmogorov–Horny type inequality is a very useful tool (see, e.g., the proof of Lemma 5.2 in [6]).

Lemma 2. Let $[a,b] \subset \mathbb{R}_+$, a < b, $m \ge 2$ be an integer, $u \in C^m[a,b]$, and let $u^{(j)}$ have zero in the interval [a,b] for $j=1,\ldots,m-1$. Then

$$\rho_i \le 2^{i(m-i)} \rho_0^{\frac{m-i}{m}} \rho_m^{\frac{i}{m}}, \quad i = 1, 2, \dots, m-1,$$

where

$$\rho_i = \max\{|u^{(i)}(t)| \ a \le t \le b\}, \quad i = 0, 1, \dots, m.$$

Proof of Theorem 1. Let for simplicity $c_0 > 0$ and $\alpha = 1$. Put $\lambda_1 = \frac{1}{\lambda - 1}$ and let $y [\tau_1, \tau) \to \mathbf{R}$ be a solution of (1), (5). Then, according to (1) and (2) $\lim_{t \to \tau_-} y^{(j)}(t) = \infty$ for $j = l + 1, \ldots, n$. Let $T \in [\tau_1, \tau)$ be such that

$$y(t) \ge \frac{c_0}{2}$$
 on $[T, \tau)$, $y^{(j)}(T) \ge 0$, $j = l + 1, l + 2, \dots, n - 2$, $y^{(n-1)}(T) \ge M$. (17)

By this and the boundedness of $y^{(i)}(t)$, i = 0, 1, ..., l, we obtain from (1)

$$y^{(n)}(t) \le M_1 \left[y^{(n-1)}(t) \right]^{\lambda}, \quad t \in [T, \tau),$$

where M_1 is a suitable constant. Let $\lambda \leq 1 + \frac{1}{n-l-1}$. Hence the integration on the interval $[t,\tau)$ yields

$$y^{(n-1)}(t) \ge [(\lambda - 1)M_1(\tau - t)]^{-\lambda_1}, \quad t \in [T, \tau).$$
 (18)

Hence $n-l-1 \leq \lambda_1$, and the Taylor Series Theorem, (17) and (18) yield

$$c_{l} = y^{(l)}(\tau) = \sum_{i=0}^{n-l-2} \frac{y^{(l+i)}(T)}{i!} (\tau - T)^{i} + \int_{T}^{\tau} \frac{(\tau - s)^{n-l-2}}{(n-l-2)!} y^{(n-1)}(s) ds$$
$$\geq y^{(l)}(T) + M_{2} \int_{T}^{\tau} (\tau - s)^{n-l-2-\lambda_{1}} ds = \infty,$$

where

$$M_2 = \frac{[(\lambda - 1)M_1]^{-\lambda_1}}{(n - l - 2)!}.$$

Hence a solution y satisfying (1), (5) does not exist in this case.

Let l < n-2 and $\lambda > 1 + \frac{1}{n-l-2}$. Hence $n-l-2-\lambda_1 > 0$. Then, similarly to (18), we can prove that

$$y^{(n-1)}(t) \le [(\lambda - 1)M_3(\tau - t)]^{-\lambda_1}, \quad t \in [T, \tau),$$
 (19)

where $M_3 = \min \{ Kf(t, y(t), \dots, y^{(l)}(t)) \mid T \le t \le \tau \} > 0.$

From this the Taylor Series Theorem yields

$$\infty = y^{(l+1)}(\tau) = \sum_{i=0}^{n-l-3} \frac{y^{(l+i+1)}}{i!} (\tau - T)^i + \int_T^{\tau} \frac{(\tau - s)^{n-l-3}}{(n-l-3)!} y^{(n-1)}(s) ds$$

$$\leq M_4 + M_5 \int_T^{\tau} (\tau - s)^{n-l-3-\lambda_1} ds < \infty$$

as $n-l-3-\lambda_1>-1$; M_4 and M_5 are positive constants. The contradiction obtained proves that a singular solution does not exist. \square

Proof of Theorem 2. For l = n - 2 we proved the statement in [1]. Thus let l < n - 2 and, first, we prove the result for (7) with $\lambda \neq 1 + \frac{1}{n-l-2}$.

We prove the statement for $\alpha = 1$ and $c_0 > 0$; thus $\beta = 1$. For the other cases the proof is similar.

Let

$$N > 2 \max(c_0, |c_1|, \dots, |c_l|), \quad k_0 > [[2M]],$$
 (20)

$$\begin{split} D &= \{ [x_1, \dots, x_{l+1}] \, \tfrac{c_0}{2} \leq x_1 \leq c_0, \, |x_j| \leq N \quad \text{for} \quad j = 2, \dots, l+1 \}, \\ M_1 &= \min \{ f(t, x_1, \dots, x_{l+1}) \, t \in [0, \tau], \, [x_1, \dots, x_{l+1}] \in D \} > 0, \\ M_2 &= \max \{ f(t, x_1, \dots, x_{l+1}) \, t \in [0, \tau], \, [x_1, \dots, x_{l+1}] \in D \}, \\ M_3 &= 2 [(\lambda - 1) M_1]^{-\lambda_1}, \, \lambda_1 = \frac{1}{\lambda - 1}, \, \bar{\lambda} = n - l - 1 - \lambda_1 > 0, \\ N_1 &= 2^{n - l - 2} M_3^{\frac{1}{n - l - 1}} \left[1 - \frac{\lambda_1}{n - l - 1} \right]^{-1}. \end{split}$$

Further, let $T \in [0, \tau)$ be such that

$$\tau - T < \left(\frac{M_3}{M}\right)^{\lambda - 1}, \quad (\tau - T)^{n - l - 2} < \frac{k_0}{M},$$
(21)

$$\tau - T < \frac{1}{M_2} \int_{M}^{2M} \frac{ds}{g(s)},$$
(22)

$$(\tau - T)^{\bar{\lambda}} \le (2N_1)^{-n+l+1} N, \tag{23}$$

$$\sum_{r=i+1}^{l-1} |c_r| \frac{(\tau - T)^{r-i}}{(r-i)!} + N \frac{(\tau - T)^{l-i}}{(l-i)!} \le \frac{N}{2}, \quad i = 0, 1, \dots, l-1,$$
 (24)

$$\sum_{r=1}^{l-1} |c_r| \frac{(\tau - T)^r}{r!} + N \frac{(\tau - T)^l}{l!} \le \frac{c_0}{2}.$$
 (25)

Denote $J = [T, \tau)$ and note that due to $\bar{\lambda} > 0$, T exists.

Consider the auxilliary two-point boundary-value problem $k \in \{k_0, k_0 + 1, \dots\}$,

$$y^{(n)} = f\left(t, \Phi_0(y), \Phi_1(y'), \dots, \Phi_1(y^{(l)})\right) g\left(\Phi_2(t, y^{(n-1)})\right),$$

$$y^{(i)}(\tau) = c_i, \quad i = 0, 1, \dots, l; \quad y^{(l+1)}(\tau) = k;$$

$$y^{(j)}(T) = 0, \quad j = l+1, \dots, n-2, \quad t \in J,$$

$$(26)$$

where

$$\Phi_0(s) = \begin{cases}
s & \text{for } \frac{c_0}{2} \le s \le N, \\
N & \text{for } s > N, \\
\frac{c_0}{2} & \text{for } s < \frac{c_0}{2},
\end{cases}$$
(27)

$$\Phi_1(s) = \begin{cases} s & \text{for } |s| \le N, \\ N \operatorname{sgn} s & \text{for } |s| > N \end{cases}$$
 (28)

and

$$\Phi_2(t,s) = \begin{cases}
s & \text{for } M \le s \le M_3(\tau - t)^{-\lambda_1}, \\
M_3(\tau - t)^{-\frac{1}{\lambda - 1}} & \text{for } s > M_3(\tau - t)^{-\lambda_1}, \\
M & \text{for } s < M.
\end{cases} (29)$$

Note that due to (21) Φ_2 is well defined.

To prove the existence of a solution of (26), let us consider the sequence of boundary value problems

$$\bar{m}_{0} > \frac{1}{\tau - t}, \quad m \in \{\bar{m}_{0}, \bar{m}_{0} + 1, \dots\}, \quad \tau_{m} = \tau - \frac{1}{m},
z^{(n)} = F(t, z, z', \dots, z^{(l)}, z^{(n-1)}),
z^{(i)}(\tau_{m}) = c_{i}, \quad i = 0, 1, \dots, l, \quad z^{(l+1)}(\tau_{m}) = k,
z^{(j)}(T) = 0, \quad j = l+1, \dots, n-2,$$
(30)

where

$$F(t, x_1, \dots, x_{l+2}) = f(t, \Phi_0(x_1), \Phi_1(x_2), \dots, \Phi_1(x_{l+1})) g(\Phi_2(t, x_{l+2})).$$

Since

$$|F(t, x_1, \dots, x_{l+2})| \le M_2 \max_{T \le \bar{t} \le t} \max_{M < s < M_3(\tau - \bar{t})^{-\lambda_1}} g(\bar{t}, s), \quad t \in [T, \tau_m],$$

(30) has a solution z_m according to Lemma 1.

Further, we estimate $z_m^{(n-1)}$. Let $J_m = [T, \tau_m]$. First we prove that

$$z_m^{(n-1)}(t) < M_3(\tau - t)^{-\lambda_1}, \quad t \in [T, \tau_m),$$
 (31)

for large m, say $m \geq \bar{m}_0$. If (31) is not valid, then either

(i) there exists $t_1 \in [T, \tau_m)$ such that

$$z_m^{(n-1)}(t_1) = M_3(\tau - t_1)^{-\lambda_1}$$
 and $z_m^{(n-1)}(\tau_m) \le M_3(\tau - \tau_m)^{-\lambda_1}$ (32)

or

(ii)

$$z_m^{(n-1)}(t) > M_3(\tau - t)^{-\lambda_1} \tag{33}$$

in a left neighborhood of $t = \tau_m$.

Let (i) be valid. As (26)–(30) yield $z_m^{(n)}(t) > 0$ and $z_m^{(n-1)}$ is increasing on J_m , it follows from (32) and (21) that

$$M \le z_m^{(n-1)}(t), \quad t \in [t_1, \tau_m].$$
 (34)

Hence

$$z_m^{(n)}(t) \ge M_1 \left(z_m^{(n-1)}(t) \right)^{\lambda}, \quad t \in J_m,$$

and the integration and (32) yield

$$\frac{\tau_m - t_1}{M_3^{\lambda - 1}} > \frac{1}{[z_m^{(n-1)}(t_1)]^{\lambda - 1}} - \frac{1}{[z_m^{(n-1)}(\tau_m)]^{\lambda - 1}} \ge M_1(\lambda - 1)(\tau_m - t_1),$$

which contradicts the definition of M_3 .

Let (33) be valid and let $t_1, T \leq t_1 < \tau_m$ be such that $z_m^{(n-1)}(t) > M_3(\tau - t)^{-\lambda_1}$ on the interval $[t_1, \tau_m)$. Then the Taylor Series Theorem yields

$$k = z_m^{(l+1)}(\tau_m) \ge \int_{t_1}^{\tau_m} \frac{(\tau_m - s)^{n-l-3}}{(n-l-3)!} z_m^{(n-1)}(s) \, ds$$

$$\ge \frac{M_3}{(n-l-3)!} \int_{t_1}^{\tau_m} (\tau_m - s)^{n-l-3} (\tau - s)^{-\lambda_1} \, ds$$

$$\ge \frac{-M_3}{(n-l-2)!} \int_{t_1}^{\tau_m} (\tau - s)^{n-l-1-\lambda_1} \, \frac{d}{ds} \left((1 - \frac{1}{m(\tau - s)})^{n-l-2} \right) \, ds$$

$$\ge \frac{M_3}{(n-l-2)!} \left(\frac{1}{m} \right)^{n-l-2-\lambda_1} \left(1 - \frac{1}{m(\tau - t_1)} \right)^{n-l-2} \to \infty \quad \text{for } m \to \infty.$$

Hence (31) holds.

Further, we prove indirectly the following estimation from bellow

$$M < z_m^{(n-1)}(t), \quad t \in J_m.$$
 (35)

Note that $z_m^{(n-1)}$ is increasing, and first we prove that (35) is valid for $t = \tau_m$. Let, conversely, $z_m^{(n-1)}(\tau_m) \leq M$. Then

$$k_0 \le k = z_m^{(l+1)}(\tau_m) = \int_T^{\tau_m} \frac{(\tau_m - s)^{n-l-3}}{(n-l-3)!} z_m^{(n-1)}(s) \, ds \le \frac{M}{(n-l-2)!} (\tau_m - T)^{n-l-2},$$

which contradicts (21). Thus (35) holds. Let $T_1 \in [T, \tau_m)$ exist such that $z_m^{(n-1)}(T_1) = M$. Then $M < z_m^{(n-1)}(t)$ on J_m and

$$z_m^{(n)}(t) \le M_2 g\left(z_m^{(n-1)}(t)\right), \quad t \in J_m.$$

From this, by the integration, we have

$$\int_{M}^{2M} \frac{ds}{g(s)} \le \int_{M}^{k} \frac{ds}{g(s)} \le M_2(\tau_m - T) < M_2(\tau - T).$$

The contradiction with (22) proves that (35) is valid and according to (30)

$$z_m^{(j)}(t) \ge 0$$
 on J_m , $j = l + 1, l + 2, \dots, n$. (36)

Denote $\rho = \max_{t \in J_m} |z_m^{(l)}(t)|$. Then, by virtue of (31), (36) and Lemma 2 with $[a,b] = [\tau,t], \ u = z_m^{(l)}$ and m = n-l-1, we have

$$0 \le z_m^{(i+1)}(t) \le 2^{n-l-2} \rho^{\frac{n-l-2}{n-l-1}} \left(z_m^{n-1}(t) \right)^{\frac{1}{n-l-1}} \le 2^{n-l-2} M_3^{\frac{1}{n-l-1}} \rho^{\frac{n-l-2}{n-l-1}} (\tau-t)^{-\frac{\lambda_1}{n-l-1}},$$

and hence, as $\frac{\lambda_1}{n-l-1} \in (0,1)$, the integration on J_m yields

$$0 \le c_l - z_m^{(l)}(T) \le N_1(\tau - T)^{1 - \frac{\lambda_1}{n - l - 1}} \rho^{\frac{n - l - 2}{n - l - 1}}.$$
(37)

Since $z_m^{(l)}$ is increasing on J_m , either $z_m^{(l)}(T) \ge -|c_l|$ and $\rho = |c_l|$ or $z_m^{(l)}(T) < -|c_l|$ and (23) and (37) yield

$$c_l + \rho \le N_1 (\tau - T)^{1 - \frac{\lambda_1}{n - l - 1}} \rho^{\frac{n - l - 2}{n - l - 1}} \le \frac{1}{2} N^{\frac{1}{n - l - 1}} \rho^{\frac{n - l - 2}{n - l - 1}}.$$

Thus $\rho \leq 2|c_l|$ or $\frac{\rho}{2} \leq c_l + \rho \leq \frac{1}{2}N^{\frac{1}{n-l-1}}\rho^{\frac{n-l-2}{n-l-1}}$ and according to (20) in all cases we have

$$|z_m^{(l)}(t)| \le N, \quad t \in J_m. \tag{38}$$

From this, (31), (36) and Lemma 2 with [a, b] = [T, t], $u = z_m^{(l)}$ and m = n - l - 1 we have

$$|z_m^{(j)}(t)| \le 2^{(j-l)(n-j-1)} N^{\frac{n-j-1}{n-l-1}} M_3^{\frac{j-l}{n-l-1}} (\tau - t)^{\frac{j-l}{n-l-1}},$$

$$t \in J_m, \quad j = l+1, \dots, n-2.$$

$$(39)$$

Further, (20), (24), (25), (38) and the Taylor Series Theorem yield

$$c_{i} - z_{m}^{(i)}(t) = \sum_{r=i+1}^{l-1} \frac{c_{r}(t - \tau_{m})^{r-i}}{(r-i)!} + \int_{\tau_{m}}^{t} \frac{(t-s)^{l-i-1}}{(l-i-1)!} z_{m}^{(l)}(s) ds,$$

$$|z_{m}^{(i)}(t)| \leq \sum_{r=i+1}^{l-1} \frac{c_{r}|}{(r-i)!} (\tau - T)^{r-i} + \frac{N}{(l-i)!} (\tau - T)^{l-i} + |c_{i}| \leq N,$$

$$i = 0, 1, \dots, l-1, \quad t \in J_{m},$$

$$(40)$$

$$|z_m(t)| \ge c_0 - \sum_{r=1}^{l-1} |c_r| \frac{(\tau - T)^r}{r!} - \frac{N}{l!} (\tau - T)^l \ge \frac{c_0}{2}, \quad t \in J_m.$$
 (41)

Estimations (38), (39) and (40) show that $\{z_m^{(j)}\}$, j = 0, 1, ..., n-1, $m = m_0, m_0 + 1, ...$, are uniformly bounded with respect to j and m and hence according to the Arzelá–Ascoli Theorem (see [6], Lemma 10.2) there exists a subsequence that converges uniformly to the solution y_k of (26). At the same time, it is clear that (see (41), too)

$$\frac{c_0}{2} \le y_k(t) \le N, \ |y_k^{(i)}(t)| \le N, \quad i = 1, 2, \dots, l, \tag{42}$$

$$|y_k^{(j)}(t)| \le 2^{(j-l)(n-j-1)} N_3^{\frac{n-j-1}{n-l-1}} M_3^{\frac{j-l}{n-l-1}} (\tau - t)^{\frac{j-l}{n-l-1}},$$

$$t \in J, \quad j = l+1, \dots, n-1.$$
(43)

Moreover, (31), (35), (42) yield

$$\Phi_0(y_k(t)) = y_k(t), \quad \Phi_1(y_k^{(i)}(t)) = y_k^{(i)}(t) \quad \text{for} \quad i = 1, 2, \dots, l,$$

$$\Phi_2(t, y_k^{(n-1)}(t)) = y_k^{(n-1)}(t), \quad t \in J,$$

and hence $y_k(t)$ is a solution of (1) satisfying

$$y_k^{(i)}(\tau) = c_i, \quad i = 0, 1, \dots, l; \quad y_k^{(l+1)}(\tau) = k.$$

As estimations (42) a (43) do not depend on k, i and j, the Arzelá–Ascoli Theorem implies the existence of a subsequence of $\{y_k(\tau)\}_{k_0}^{\infty}$ that converges uniformly to the solution of (1) satisfying

$$y^{(j)}(T) = 0, \quad j = l+1, \dots, n-2,$$
 (44)

$$\lim_{t \to \tau_{-}} y^{(i)}(t) = c_{i}, \quad i = 0, 1, \dots, l, \quad \lim_{t \to \tau_{-}} y^{(l)}(t) = \infty.$$
 (45)

Let $\lambda = 1 + \frac{1}{n-l-2}$. Then there exists a sequence of $\{\lambda_s\}_1^{\infty}$ such that λ_s satisfies (7) and $\lim_{s\to\infty} \lambda_s = 1 + \frac{1}{n-l-2}$. Denote by y_s a solution of (1), (5) with $\lambda = \lambda_s$. It follows from (21)–(25) that there exists $T \in [0,\tau)$ such that $y_s, s \in \{1,2,\ldots\}$ is defined on the interval $[T,\tau)$. At the same time, since (38)–(41) do not depend on λ , there exists Φ such that

$$|y_s^{(i)}(t)| \le \Phi(t), \quad t \in [T, \tau), \quad i = 0, 1, \dots, n-1, \quad s = 1, 2, \dots$$

Hence, according to the Arzelá–Ascoli Theorem, there exists a subsequence of $\{y_s\}_{1}^{\infty}$ that converges uniformly to a solution of (1), satisfying (5).

Let (9) and (10) be valid. Let y be defined on the interval $(\bar{\tau}, \tau) \subset [0, \tau)$ and not be extendable to $t = \bar{\tau}$. Then

$$\lim \sup_{t \to \bar{x}^+} |y^{(n-1)}(t)| = \infty. \tag{46}$$

First we prove that

$$y^{(n-1)}(t) > 0$$
 on $(\bar{\tau}, \tau)$. (47)

Suppose that there exists $\tau_1 \in (\bar{\tau}, \tau)$ such that $y^{(n-1)}(\tau_1) = 0$ and $y^{(n-1)}(t) > 0$ on the interval (τ_1, τ) . As $\tau_1 < T$, it follows from this and (45) that $y^{(j)}$, $j = 0, 1, \ldots, l$, are bounded on the interval (τ_1, τ) . Let $\tau_2 \in (\tau_1, \tau)$ be such that $y^{(n-1)}(\tau_2) = \varepsilon$. Then by the integration of (1) and (10)

$$\infty = \int_{0}^{\varepsilon} \frac{ds}{g(s)} = \int_{\tau_{1}}^{\tau_{2}} f\left(t, y(t), \dots, y^{(l)}(t)\right) dt < \infty.$$

Hence (47) holds. As $\tau_1 < T$, it follows from (9), (44) and (45) that y(t) > 0 on the interval $(\bar{\tau}, \tau)$ $(y^{(i)}, i = 0, 1, \dots, l$ change their signs). Thus (1) yields $y^{(n)}(t) > 0$ on the interval $(\bar{\tau}, \tau)$, which, together with (47), contradicts (46). Hence y is defined at $t = \bar{\tau}$ and $\bar{\tau} = 0$. \square

Proof of Theorem 3. Let $\alpha = 1$ and $\beta = 1$. The proof is similar to the that of Theorem 2. Since (11) and (12) are valid, we can restrict our investigation to the case

$$D = \{ [x_1, \dots, x_{l+1}] \ 0 \le x_1 \le \varepsilon, \ (-1)^j x_{j+1} \in [(-1)^j c_j, (-1)^j c_j + \varepsilon] \}.$$

The only problem is that due to $c_0 = 0$, we have $M_1 = 0$ and $M_3 = \infty$, where M_1 and M_3 are given as in the proof of Theorem 2. Thus (31) gives us no

information and it must be proved in a different way. Hence we prove that (31) is valid with the new values of λ_1 and M_3 given by

$$\lambda_1 = \frac{(n-1)\sigma + 1}{\lambda + \sigma - 1}, \quad M_3 = \left[\frac{2(n-1)\sigma + 2}{(\lambda + \sigma - 1)M_1}\right]^{\frac{1}{\lambda + \sigma - 1}}$$

where $M_1 = \frac{\bar{M}}{[l!(n-l-2)!(n-1)]^{\sigma}}$. Note that, similarly to the proof of Theorem 2, $z_m^{(n-1)}$ is positively increasing on the interval $J_m = [T, \tau_m], \ \tau_m = \tau - \frac{1}{m}$. Note that (13) yields

$$n - l - 2 \le \lambda_1 < n - l - 1.$$

If (31) is not valid, then either (32) or (33) holds.

Let (32) be valid. It follows similarly to (34) that

$$M \le z_m^{(n-1)}(t), \quad t \in [t_1, \tau_m].$$
 (48)

Now we will estimate z_m . According to (48) and the Taylor Series Theorem we have

$$z_m^{(l+1)}(s) = \sum_{r=0}^{n-l-3} \frac{z_m^{(l+1+r)}(t)}{r!} (s-t)^r + \int_t^s \frac{(s-\sigma)^{n-l-3}}{(n-l-3)!} z_m^{(n-1)}(\sigma) d\sigma$$

$$\geq z_m^{(n-1)}(t) \frac{(s-t)^{n-l-2}}{(n-l-2)!}, \quad t \leq s \leq \tau_m. \tag{49}$$

Similarly, the Taylor Series Theorem, (11), (12) and (49) yield

$$z_m(t) \ge \int_{\tau_m}^t \frac{(t-s)^l}{l!} z_m^{(l+1)}(s) \, ds \ge z_m^{(n-1)}(t) \int_{\tau_m}^t \frac{(s-t)^{n-2}(-1)^l}{l!(n-l-2)!} \, ds$$
$$= \frac{(\tau_m - t)^{n-1}}{l!(n-l-2)!(n-1)} z_m^{(n-1)}(t), \quad t \in [t_1, \tau_m].$$

From this, (8), (14), (48) and (49)

$$z_m^{(n)}(t) \ge \bar{M} z_m^{\sigma}(t) \left(z_m^{(n-1)}(t) \right)^{\lambda} \ge M_1(\tau_m - t)^{(n-1)\sigma} \left(z_m^{(n-1)}(t) \right)^{\lambda + \sigma}$$

The integration on the interval $[t_1, \tau_m]$ yields

$$\frac{2(\tau_m - t_1)^{(n-1)\sigma+1}}{M_3^{\lambda + \sigma - 1}} \ge \frac{(\tau - t_1)^{(n-1)\sigma + 1} - m^{-(n-1)\sigma + 1}}{M_3^{\lambda + \sigma - 1}} \ge \frac{1}{\left[z_m^{(n-1)}(t_1)\right]^{\lambda + \sigma - 1}} - \frac{1}{\left[z_m^{(n-1)}(\tau_m)\right]^{\lambda + \sigma - 1}} \ge \frac{M_1(\lambda + \sigma - 1)}{(n-1)\sigma + 1}(\tau_m - t_1)^{(n-1)\sigma + 1}$$

for large m. The contradiction obtained with the definition of M_3 , shows that (32) does not hold. The fact that (33) is impossible can be proved similarly to the same case in the proof of Theorem 2. \square

Proof of Theorem 4. (i) Let $y[T,\tau) \to \mathbf{R}$ be a solution of (1), (5) with $\alpha = 1$ and, for simplicity, $y^{(n-1)}(t) \geq M$ on the interval $[T,\tau)$. Put $\lambda_1 = \frac{(n-1)\sigma+1}{\lambda+\sigma-1}$ and M_1 as in the proof of Theorem 3.

Let $\lambda \geq 1 + \frac{(l+1)\sigma+1}{n-l-2}$ for l < n-2; hence $n-l-2-\lambda_1 \geq 0$. We can prove similarly to (44)-(46) that

$$y^{(n)}(t) \ge M_1(\tau - t)^{(n-1)\sigma} [y^{(n-1)}(t)]^{\lambda + \sigma}, \quad t \in [T, \tau).$$

From this and by the integration we obtain an estimation from above of $y^{(n-1)}$ similar to (19) and the proof is similar to the second part of the proof of Theorem 1.

Let
$$\lambda < 1 + \frac{l\sigma+1}{n-l-1}$$
; hence $n-l-1-\lambda_1 < 0$. Then

$$y(t) = \int_{\tau}^{t} \frac{(t-s)^{l}}{l!} y^{(l+1)}(s) ds \le \frac{|y^{(l)}(t)|}{l!} (\tau - t)^{l}, \quad t \in [T, \tau).$$

From this

$$y^{(n)}(t) \le M_2 y^{\sigma}(t) \left[y^{(n-1)}(t) \right]^{\lambda} \le M_2 (\tau - t)^{l\sigma} \left[y^{(n-1)}(t) \right]^{\lambda},$$

and the integration on the interval $[t, \tau)$ yields

$$y^{(n-1)}(t) \ge M_3(\tau - t)^{-\frac{l\sigma+1}{\lambda-1}},$$

where

$$M_2 = \max_{t \in [0,\tau]} r(t), \quad M_3 = \left\lceil \frac{M_2(\lambda - 1)}{l\sigma + 1} \right\rceil^{-\frac{1}{\lambda - 1}}.$$

The proof is similar to the first part of the proof of Theorem 1, only in (18) we take $\lambda_1 = \frac{l\sigma+1}{\lambda-1}$.

(ii) The existence problem is solved by Theorem 3. \square

Proof of Proposition. Let $y[T,\tau) \to \mathbf{R}$ be a solution of (1) and (5) with $\alpha = 1$; hence l is even. Let $\lim_{t \to \tau^-} y^{(n-1)}(t) = \infty$. Then $y^{(l)} < 0$ in a left neighborhood l of τ . From this and from l being even we can conclude that y < 0 and $y^{(n)} \leq 0$ on l. The contradiction to $\lim_{t \to \tau^-} y^{(n-1)} = \infty$ proves the statement. Other possible cases can be proved similarly. \square

ACKNOWLEDGEMENT

The research of the second author was supported by Grant 201/99/0295 of the Grant Agency of the Czech Republic.

References

- 1. M. Bartušek, On Existence of singular solutions of *n*-th order differential equations. *Arch. Math. (Brno)* **36**(2000), 395–404.
- 2. T. A. Chanturia, On existence of singular and unbounded oscillatory solutions of differential equations of Emden–Fowler type. *Diffrentsial'nye Uraveniya* **28**(1992), 1009–1022.
- 3. J. Jaroš and T. Kusano, On black hole solutions of second order differential equations with a singularity in the differential operator. Funk. Ekv. (to appear).
- 4. I. T. KIGURADZE, Asymptotic properties of solutions of a nonlinear differential equation of Emden–Fowler type. *Izv. Akad. Nauk SSSR*, *Ser. Mat.* **29**(1965), 965–986.
- 5. I. T. KIGURADZE, Some singular boundary-value problems for ordinary differential equations. (Ruissian) *Tbilisi University Press, Tbilisi*, 1975.
- 6. I. T. KIGURADZE and T. CHANTURIA, Asymptotic properties of solution of nonautonomous ordinary differential equations. Kluwer Academic Publishers, Dordrecht, 1993.

(Received 10.04.2001)

Authors' address:
Department of Mathematics
Masaryk University
Janáčkovo nám. 2a, 662 95 Brno
Czech Republic
E mail: Rartusek@math.muni.ez

E-mail: Bartusek@math.muni.cz Osicka@math.muni.cz