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EXISTENCE AND PROPERTIES OF h-SETS

MICHELE BRICCHI

Abstract. In this note we shall consider the following problem: which con-
ditions should satisfy a function h : (0, 1) → R in order to guarantee the
existence of a (regular) measure µ in Rn with compact support Γ ⊂ Rn and

c1h(r) ≤ µ(B(γ, r)) ≤ c2h(r), (♥)

for some positive constants c2, and c2 independent of γ ∈ Γ and r ∈ (0, 1)?
The theory of self-similar fractals provides outstanding examples of sets ful-
filling (♥) with h(r) = rd, 0 ≤ d ≤ n, and a suitable measure µ. Analogously,
we shall rely on some recent techniques for the construction of pseudo self-
similar fractals in order to deal with our more general task.
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1. Introduction

We try to generalise the idea of (d, Ψ)-sets: these sets have been introduced
by D. Edmunds and H. Triebel in [4] and [5] as a perturbation of d-sets. Their
definition is given in terms of qualitative behaviour of some Radon measures
in Rn. Roughly speaking, a (d, Ψ)-set Γ (0 < d < n) is the support of a Radon
measure µ, such that

µ(B(γ, r)) ∼ rdΨ(r), r ∈ (0, 1) and γ ∈ Γ, (1.1)

where Ψ(r) is a perturbation at most of logarithmic growth (or decay) near 0.
We point out that throughout this paper we use the equivalence “∼” in

ak ∼ bk or ϕ(r) ∼ ψ(r)

always to mean that there are two positive numbers c1 and c2 such that

c1ak ≤ bk ≤ c2ak or c1ϕ(r) ≤ ψ(r) ≤ c2ϕ(r)

for all admitted values of the discrete variable k or the continuous variable r.
Here ak, bk are positive numbers and ϕ, ψ are positive functions.

The initial problem concerning (1.1) was to prove that, given any admissible
d and Ψ, there actually exist a compact set Γ and a Radon measure µ with
supp µ = Γ, satisfying the required properties. The proof of the existence of
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these sets can be found in the quoted papers and, in a more detailed form,
in [12, 22.8].

It is also important to know how different can be all the measures µ satis-
fying (1.1), for a fixed (d, Ψ)-set Γ. The situation turns out to be similar to
the case of d-sets: if Γ is a (d, Ψ)-set, then all finite Radon measures µ with
supp µ = Γ and (1.1) are equivalent to each other and there is a canonical
representative Hd,Ψ|Γ constructed analogously to the s-dimensional Hausdorff
measure, s > 0 (see Definition 3.3 below) and then restricted to Γ. Proofs and
further comments can be found in [1, 2] and [3].

Now, in a more general context, we ask for which functions h : [0, 1] → R
there exist a Radon measure µ and compact set Γ = supp µ ⊂ Rn such that

µ(B(γ, r)) ∼ h(r), γ ∈ Γ, r ∈ [0, 1]. (1.2)

In order to deal with this general approach we need basically two major ingredi-
ents: a refined theory of Hausdorff measures and densities and some knowledge
of sets generated by infinitely many contractions. General Hausdorff measures
and densities of measures help us to reduce the problem of the generic measure
µ appearing in (1.2) to a (good) standard representative, whereas sets defined in
terms of (possibly) infinitely many contractions provide a nice class of examples.

2. A Counterexample

Let ε > 0 and consider the function h(r) = rn+ε. We claim that in Rn there
cannot exist a compact set Γ and a Radon measure µ with supp µ = Γ such
that

µ(B(γ, r)) ∼ rn+ε, γ ∈ Γ, r ∈ [0, 1].

As a matter of fact any measure with this property should be equivalent to
Hn+ε|Γ (see Theorem 3.6 below). But this measure is identically zero in Rn and
hence our claim is proved.

This example shows that for an appropriate measure µ the class of functions
h for which µ(B(γ, r)) ∼ h(r) depends on the dimension n of Rn.

3. Hausdorff Measures and Upper Densities

The definition of Hausdorff measures follows the so-called Carathéodory con-
struction procedure. We collect here the main definitions and results and refer
to [10] and [14] for a complete survey on these topics, including all proofs of
this section and further references.

Definition 3.1. Let H denote the class of all right continuous monotone
increasing functions h : [0, +∞] → [0, +∞] such that h(u) > 0 if u > 0. We
refer to H as to the set of all gauge functions.

Definition 3.2. If A ⊂ Rn and δ > 0, we denote by δ(A) the family of all
open δ-coverings of A, i.e., the collection of all sequences {Ai}i∈N of sets Ai

such that Ai is open, diam(Ai) < δ and ∪∞i=1Ai ⊃ A. Of course, if A 6= ∅, then
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diam(A) = supx,y∈A |x− y| is the diameter of A rigorously complemented with
diam(∅) = 0.

Definition 3.3. Let h ∈ H and define, for A ⊂ Rn, that h(A) = h(diam(A))
if A 6= ∅ and h(∅) = 0. Then the set function

Hh(A) = lim
δ→0

{
inf

{ ∞∑

i=1

h(Ai) : {Ai}i∈N ∈ δ(A)
}}

, A ⊂ Rn,

is called the Hausdorff measure corresponding to the gauge function h.

Of course, for h(r) = rs one simply writes Hs.

Remark 3.4. The h-measure defined above is actually well defined: for any
A ⊂ Rn, the approximate measure

Hh
δ (A) = inf

{ ∞∑

i=1

h(Ai) : {Ai}i∈N ∈ δ(A)
}

is monotone in δ, i.e., Hh
δ1

(A) ≥ Hh
δ2

(A) if δ1 ≤ δ2 and hence Hh(A) =
supδ>0Hh

δ (A) (of course, one allows +∞ as a possible outcome). Moreover,
Hh is an (outer) Borel regular measure.

It can also be noted that only values of h(r) with r near zero are really
important. Hence one can think of h(r) as a function, say, from [0, 1) → R+.

Extremely useful local characteristics of Borel measures are their upper and
lower densities. Let h be a gauge function with the property that h(0) = 0.

Definition 3.5. Let µ be a locally finite Borel measure. Then

Dh
µ(x) = lim sup

r→0

µ(B(x, r))

h(2r)

and

Dhµ(x) = lim inf
r→0

µ(B(x, r))

h(2r)

are called the upper, respectively the lower, h-density of µ at x. For a special
choice h(r) = rs one writes of course Ds

, and Ds.

The following theorem will turn out to be of great importance later on. We
briefly denote by Xµ the class of all µ-measurable sets and by B(Rn) the class
of all Borel sets in Rn.

Theorem 3.6. Let µ be a locally finite Borel measure and let h be a gauge
function such that h(0) = 0 and h(2r) ≤ Kh(r) for some positive constant K.
Then

(i) µ(A) ≤ K supx∈ADh
µ(x)Hh(A), A ∈ Xµ,

and

(ii) µ(A) ≥ infx∈ADh
µ(x)Hh(A), A ∈ B(Rn).
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4. Alphabets and Words

Following [7], we collect here some useful notation.
Let N ≥ 2 be a natural number, then by the alphabet we mean the set of

letters A = {1, . . . , N}. A is endowed with the discrete topology and with the
equally distributed Radon measure τ 1 defined on atoms by τ 1(i) = N−1 for
i ∈ A.

A finite word α of length k = |α| is any element of Ak and will be denoted
by α = α1α2 . . . αk. Ak is endowed with the product measure τ k = ×k

i=1τ
1.

Given any two finite words α = α1 . . . αk and β = β1 . . . βh we denote by αβ
the finite word α1 . . . αkβ1 . . . βh. The set of finite words is endowed with the
following relation: α ≺ β if |α| ≤ |β| and αi = βi, i = 1, . . . , |α|.

An infinite word (or simply a word) is any member of A = AN and will be
denoted by I = i1i2 . . . . We extend the relation introduced above: if α is a
finite word and I ∈ A, then α ≺ I means that αj = ij, j = 1, . . . , |α|.

If α is a finite word and I ∈ A, then αI denotes the shifted word obtained by
chaining α and I, i.e., by α1, . . . α|α|i1i2 . . . and α∗ is the set {αI, I ∈ A}. The
k-th stop of a word I is the finite word i1 . . . ik, and will be indicated with I|k.

Let n1, . . . , nm ∈ N; then we define the projection πn1...nm : A → Am by
πn1...nm(i1i2, . . . ) = in1 . . . inm .

Since A =
∏∞

i=1A, we endow the set of all words with the product topology T
and the product σ-algebra M. We collect in the following proposition some very
well known facts.

Proposition 4.1. A is a compact (complete and separable) metric space. For
any choice of the numbers ni ∈ N the projection operator πn1...nm is uniformly
continuous.

Moreover, if we let τ = ×∞i=1τ
1, we get a Radon finite measure on A such that

τ ◦ π−1
n1...nm

= τm, (4.1)

for any choice of the numbers ni.

Here we have adopted the notation for image (or distribution) measures with
respect to a function f : (τ ◦f−1)(A) = τ(f−1(A)). Sometimes the same measure
is denoted by τf , τ]f or f(τ).

5. Cantor-Type Sets

In this section we quote the results obtained by G. Follo in [6] about sets
generated by infinitely many contractions. The situation presented in that
paper is rather general. Here we need a special case where the ambient space
is Rn, the contractions are even similarities whose number at every step is the
same constant. Hence the following results hold true and are proved in a much
more general setting.

We recall that if x ∈ Rn and A is a nonempty set of Rn, then we let d(x,A) =
infa∈A |x− a| be the distance from x to A. Remember also that on the class K
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of all nonempty compact sets of Rn one defines the so-called Hausdorff metric
given by

dH(H,K) = sup{d(k, H), d(h,K) : k ∈ K,h ∈ H}.
This is actually a distance and dH({x}, {y}) = |x − y| for any x, y ∈ Rn. It is
known that the metric space (K, dH) is complete.

Let N ≥ 2 be a fixed number and let F = {F1,F2, . . . } be a sequence of
finite sets (with cardinality N) of contractive similarities, i.e., for every k ∈ N,
Fk = {fk,1, . . . , fk,N} is a set of N different contractive similarities in Rn, each
one with the same similarity ratio %k. We call (improperly) F a system of
similarities (of order N).

Then define, for A ⊂ Rn and k ∈ N, Fk(A) = ∪N
j=1fk,j(A) and let

Fk ◦ Fk+1(A) = Fk(Fk+1(A)), k = 1, 2, . . . .

Theorem 5.1. Consider the sequence {Fk}k∈N described above and suppose
that these two conditions hold true:

(i) there exists a nonempty compact set Q ⊂ Rn such that Fk(Q) ⊂ Q for
every k ∈ N;

(ii) limk→∞
∏k

j=1 %k = 0.

Then the sequence of sets

F1 ◦ · · · ◦ Fk(A) =
⋃

i1,...,ik∈{1,...,N}
f1,i1 ◦ · · · ◦ fk,ik(A)

is convergent in the Hausdorff metric for any non-empty compact set A. More-
over, the limit (which is a compact set of Rn) is independent of A and will be
denoted by K.

The set K can be described in a more direct (and useful) way: choose a
starting point x0 in Rn and consider a word I = i1i2 · · · ∈ A (the number N of
letters of the alphabet A defined in the previous section is the same number N
of similarities involved here). For any k ∈ N let

fI|k(x0) = f1,i1 ◦ f2,i2 ◦ · · · ◦ fk,ik(x0). (5.1)

Theorem 5.2. For any I ∈ A, the sequence {fI|k(x0)}k defined above con-

verges to a point p(I) ∈ K independent of x0. The application p : A → K
defined in this way is surjective and uniformly continuous.

Here we make a short digression and add an observation: the map p is not
generally injective. However, under the following assumption, p turns out to be
a one-to-one map. We got an inspiration, when reading an analogous statement
in the new book of J. Kigami ([9, Proposition 1.2.5]).

Proposition 5.3. Suppose that for every k ∈ N, fk,i(Q)∩fk,j(Q) = ∅, i 6= j,
then p is injective.
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Proof. Let us introduce some notation: if I = i1i2 · · · ∈ A and m ∈ N0, then
σmI = im+1im+2 . . . and pm+1(I) = limk→∞ fm+1,im+1 ◦ · · · ◦ fm+k,im+k

(x0). Fi-
nally, if I 6= J , then δ(I, J) = min{k : ik 6= jk} − 1.

To prove our assertion, first observe that if I 6= J , then p(I) = p(J) if and
only if pm+1(σmI) = pm+1(σmJ), where m = δ(I, J) (reduction). Indeed, let
I, J ∈ α∗, for |α| = m, then p(I) = fα(pm+1σmI) = fα(pm+1σmJ) = p(J). Since
fα is injective the “if” part is proved. The other direction is obvious.

So, if I 6= J and p(I) = p(J), up to a shift of m symbols, the first letters
of I and J (now related to the system {Fk+m}∞k=1 are different and fm+1,i(Q) ∩
fm+1,j(Q) 6= ∅ for some i 6= j.

This rather easy assertion will hold true in our setting thereafter when we shall
construct a pseudo self-similar fractal using the techniques described above.
Hence, in our case p is even a homeomorphism and the topological nature of
the fractal K = p(A) is then completely described by that of A.

Let us come back to our path and let us define a suitable measure on K: let

µ = τ ◦ p−1, (5.2)

where τ is the Radon measure defined on A in Proposition 4.1.

Theorem 5.4. The measure µ = τ ◦ p−1 is a finite Radon measure with
supp µ = K. Moreover, for any Radon measure ν with ν(Rn) = 1 and compact
support, the sequence

νk = N−k
∑

|σ|=k

ν ◦ f−1
σ

converges weakly to µ as k tends to infinity.

Of course, fσ is defined as in (5.1): if |σ| = k, then fσ(x) = f1,σ1 ◦· · ·◦fk,σk
(x)

for x ∈ Rn.
The first part of the theorem is an immediate consequence of the properties of

image measures under continuous functions. The second (and more important)
part can be regarded as an extension of the existence theorem of invariant
measures on self-similar fractals.

Remark 5.5. As we have pointed out all these results hold in a much more
general form. In any case the theory developed in the previous sections is widely
sufficient for us. See [6] for a complete survey.

6. Construction

Let us come to the main part of this note, i.e., the construction of an h-set.
Below follows a more precise definition.

Definition 6.1. Let, for n ∈ N, Hn be the set of all continuous monotone
increasing functions h : [0,∞) → [0,∞) such that there exist m ∈ N with m ≥ 2
and a sequence {λk}k∈N with

(D1) h(λ1 · · ·λk) ∼ m−nk, k ∈ N;
(D2) 0 < infk λk ≤ supk λk < m−1.
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The class Hn is a suitable set of functions providing examples of compact
sets Γ able to carry a measure µ with µ(B(γ, r)) ∼ h(r), for γ ∈ Γ and all r
sufficiently small: as a matter of fact the number mn and the coefficients λk

will be used for the construction of a pseudo self-similar fractal (as shown in
Section 5) with the desired properties.

Remark 6.2. Notice that any h ∈ Hn has the so-called doubling condition,
i.e, there exists a positive constant C = C(h) such that

h(2r) ≤ Ch(r), 0 < r < 1.

In (8.9) we shall considerably improve this assertion.

Remark 6.3. The assumption supk λk < m−1 is technically useful, but strong:
the function h(r) = rn is not contained in Hn. Analogously, functions of type
rn| log r|{, for κ > 0 (related to (n, Ψ)-sets), are not to be considered in the
above schematisation. For those functions it may happen that supk λk = m−1.
We can of course incorporate these particular examples into Hn: we already
know that n-sets and (n, Ψ)-sets exist. Analogously, the case infk λk = 0 is
a limiting situation. An interesting example where this strong decay occurs
is given by h(r) = | log r|−{ with κ > 0, which, consequently, does not be-
long to Hn. However, one could prove that there exists a compact set Γ with
H| log(·)|−{ |Γ(B(γ, r)) ∼ | log r|−{, for γ ∈ Γ and 0 < r < 1.

By these examples it should be clear that our approach does not take into
account the existing limiting cases.

If a function h verifies the following stronger condition, then h ∈ Hn. Some-
times this is easier to check than Conditions (D1) and (D2) of Definition 6.1.

Proposition 6.4. Let h be a strictly increasing continuous function and de-
note by h−1 its inverse. If there exist two real numbers δ > 1 and K > 0
with

(i) h(2δr) ≤ 2nh(r) and
(ii) h−1(2s) ≤ Kh−1(s)

for all r and s sufficiently small, then h ∈ Hn.

The proof of this proposition is rather simple and we omit it.
Here we give the main definition we have in mind.

Definition 6.5. Let Γ be a non-empty compact set in Rn and h ∈ Hn. Then
Γ is calledan h-set if there exists a finite Radon measure µ in Rn whose support
is Γ, such that

µ(B(γ, r)) ∼ h(r), γ ∈ Γ, r ∈ (0, 1).

Such a measure µ will be called related to h or, simply, an h-measure.

Theorem 6.6. For every h ∈ Hn there exists an h-set, i.e., there exist a
compact set Γ ⊂ Rn and a finite Radon measure µ such that

(i) supp µ = Γ;
(ii) µ(B(γ, r)) ∼ h(r), for γ ∈ Γ and r ∈ (0, 1).
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Moreover, all measures µ satisfying (i) and (ii) are equivalent to Hh|Γ.

Proof. Let {λk}k∈N and m be, respectively, the sequence and the number related
to h by Definition 6.1. Let Q = [−1/2, 1/2]n be the unit cube in Rn. Let us
divide it naturally into mn sub-cubes with sides of length m−1 parallel to the
coordinate axes and denote their centers by vj, j = 1, . . . , mn. Then define

fk,j(x) = λkx + vj, k ∈ N, j = 1, . . . , mn.

Now, we let F = {Fk}k∈N be the system of similarities defined by

Fk = {fk,1, . . . , fk,mn}.
We can apply Theorem 5.1 to the family {Fk}k∈N. In fact, condition 5.1–(i)

is fulfilled, taking precisely our cube Q. 5.1–(ii) is also true since in this case
the similarity ratios %k = λk < m−1 ≤ 1/2. Therefore there exists a compact
set Γ ⊂ Q which is the limit of F1 ◦ · · · ◦ Fk(Q) as k →∞.

Our aim is to prove that this Γ satisfies conditions (i) and (ii) of the theorem,
with respect to the measure µ defined in (5.2) and described in Theorem 5.4
adapted to the present situation. We remark that the number N appearing
there is the same number N = mn of contractions in each Fk.

Now, fix x0 ∈ Rn and let B = B(γ, r) be a ball of radius r ∈ (0, 1) and center
γ ∈ Γ.

Step 1. By Theorem 5.2 there exists a word I ∈ A such that

p(I) = lim
k→∞

f1,i1 ◦ · · · ◦ fk,ik(x0) = γ.

Therefore, for all k greater than some k0

fI|k(Q) = f1,i1 ◦ · · · ◦ fk,ik(Q) ⊂ B. (6.1)

In order to see this, choose q ∈ Q. Then |fI|k(q) − p(I)| = λ1 · · ·λk|q − q′|,
where q′ belongs to the pseudo self-similar fractal Γ̃ generated by the system
of similarities F̃ = {Fk+1,Fk+2, . . . }, which is in the same (or possibly bet-

ter) conditions as F. Hence also Γ̃ ⊂ Q and consequently λ1 · · ·λk|q − q′| ≤
λ1 · · ·λk diam(Q).

Thus, we choose a minimal index k (sometimes called Markov stop) such that
condition (6.1) is fulfilled.

Equivalently, k is a minimal index for which λ1 · · ·λk diam(Q) ≤ r.
Then, with this choice of k = k(r), one can easily check that

λ0r < λ1 · · ·λk diam(Q) ≤ r,

where λ0 = infk λk > 0. This inequality and the doubling condition for h imply
that

h(r) ≤ ch(λ1 · · ·λk) ≤ c′m−kn, (6.2)

for some unimportant constants c and c′ depending only on h.
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Thanks to the definition of µ and (4.1), the measure µ(fI|k(Q)) can be easily
estimated:

µ(fI|k(Q)) = τ ◦ p−1(fI|k(Q)) = τ
(
p−1(fI|k(Q))

)

= τ
(
{J ∈ A : p(J) ∈ fI|k(Q)}

)
≥ τ

(
{J ∈ A : J ∈ I∗|k}

)

= τ(I∗|k) = τ(π−1
1,...,k(I|k)) = τ k(I|k) = m−kn. (6.3)

Hence, by (6.2) and (6.3), we have

µ(B(γ, r))

h(r)
≥ µ(fI|k(Q))

h(r)
≥ m−kn

cm−kn
= C.

Therefore µ(B(γ, r)) ≥ Ch(r) for some constant C > 0 independent of γ ∈ Γ
and r ∈ (0, 1). This is half of the desired estimation.

Step 2. Let again k = k(r) be the Markov stop for {λj}j∈N. Consider the
set of all words of length k and define Qα = fα(Q), for every α with |α| = k.
Of course, the sets Qα, |α| = k, are pairwise disjoint.

Now we need the condition λ0 = supj λj < m−1 which we have not yet used.
By simple calculations one gets that if γ ∈ Qα and γ′ ∈ Qα′ for two different
words α and α′ with length k, then |γ − γ′| > (m−1 − λ0)λ1 · · ·λk−1. Let
c = (m−1 − λ0)(diam(Q))−1. Of course, we have

µ(B(γ, cr)) = τ({I ∈ A : |p(I)− γ| ≤ cr}).
Let γ = p(αγJ), for |αγ| = k and J ∈ A. If I 6∈ α∗γ, then p(I) 6∈ Qαγ . Hence,

as we have said above, |p(I) − γ| > (m−1 − λ0)λ1 · · ·λk−1 > cr and therefore
p(I) 6∈ B(γ, cr). Consequently,

µ(B(γ, cr)) ≤ τ(α∗γ) = m−nk.

This shows that
µ(B(γ, r)) ≤ Ch(r)

for some unimportant positive constant C.
Combining together this result and what we have obtained in Step 1, we

conclude that there are two positive constants c1 and c2 such that

c1h(r) ≤ µ(B(γ, r)) ≤ c2h(r), r ∈ (0, 1), γ ∈ Γ. (6.4)

Step 3. It remains to show that µ is essentially unique. In order to get this
result note that (6.4) immediately implies that

0 < c ≤ Dh
µ(γ) ≤ C < ∞

for some constants c and C independent of γ ∈ Γ. Thanks to Theorem 3.6 we
can conclude that

µ(A) = µ(A ∩ Γ) ∼ sup
x∈A∩Γ

Dh
µ(x)Hh(A ∩ Γ)

∼ Hh(A ∩ Γ) = Hh|Γ(A), A ∈ B(Rn).
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This concludes the proof of the theorem.

7. Examples

As we have remarked in the introduction, our aim was to give a unified and
general approach to the study of (compact) sets Γ whose geometrical structure
is defined by

µ(B(γ, r)) ∼ h(r), γ ∈ Γ, r ∈ (0, 1),

where µ is a finite Radon measure supported by Γ. Apart from the limiting
cases discussed in Remark 6.3, the outcome is satisfactory: as we will see, all
(d, Ψ)-sets (0 < d < n) introduced by D. Edmunds and H. Triebel in [4, 5]
(including the case of d-sets) are particular h-sets; we shall also show some
examples of h-sets which are not (d, Ψ)-sets. Hence, after showing that this
approach is consistent and produces something new, in Section 8 we will study
some geometrical properties of h-sets.

We briefly recall the definition of (d, Ψ)-sets.

Definition 7.1. A positive monotone function Ψ defined on the interval
(0, 1) is said admissible if

Ψ(2−2j) ∼ Ψ(2−j), j ∈ N. (7.1)

Example 7.2. Let b ∈ R and 0 < c < 1. Then the function

Ψ(r) = | log cr|b

is an admissible function.

We shall use some properties of admissible functions in the sequel: we refer
to [1, 3, 4, 5] and [12, Section 22] for their proofs and further observations. For
the sake of simplicity one might always think of Ψ(r) = | log cr|b for some b ∈ R
and 0 < c < 1, though not all admissible functions can be described in this way.

Definition 7.3. Let Γ be a compact subset of Rn, Ψ be an admissible func-
tion and d be a real number with 0 < d < n. Then Γ is said to be a (d, Ψ)-set
if there exists a finite Radon measure µ such that supp µ = Γ and

µ(B(γ, r)) ∼ rdΨ(r), γ ∈ Γ, 0 < r < 1.

The following theorem essentially asserts that h-sets extend the definition of
(d, Ψ)-sets.

Theorem 7.4. Any (d, Ψ)-set, with 0 < d < n is an h-set, with h(r) ∼
rdΨ(r).

Proof. Up to equivalent functions, we may assume h(r) = rdΨ(r) to be contin-
uous and monotone decreasing, with Ψ(1) = 1, but this is not the point.

We have to find a sufficiently large positive integer m and a sequence {λk}k∈N
such that Conditions (D1) and (D2) of Definition 6.1 be satisfied. Let

λk = m−n
d Ψ− 1

d (m−nk
d )Ψ

1
d (m−n(k−1)

d ), k = 1, 2, . . . . (7.2)
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With this choice we have, for k = 1, 2, . . . ,

λ1 · · ·λk = m−nk
d Ψ− 1

d (m−nk
d ). (7.3)

Let us estimate h(λ1 · · ·λk). From (7.3) we get

h(λ1 · · ·λk) = m−nkΨ−1(m−nk
d )Ψ(m−nk

d Ψ− 1
d (m−nk

d )).

Both for an increasing and for a decreasing admissible function Ψ the last ex-
pression is greater than m−nk; hence it remains to show the upper estimation.
We consider the case of decreasing Ψ. Then, by the properties of admissible
functions,

m− 2nk
d = o(m−nk

d Ψ− 1
d (m−nk

d )), k →∞,

and hence there exists a positive constant C independent of k such that

m−nk
d Ψ− 1

d (m−nk
d ) ≥ Cm− 2nk

d .

Therefore
h(λ1 · · ·λk) ≤ m−nkΨ−1(m−nk

d )Ψ(Cm− 2nk
d ).

By (7.1) we finally get h(λ1 · · ·λk) ≤ cm−nk which is the upper estimate we
wished. If Ψ is increasing, one proceeds analogously.

Let us consider now the coefficients λk. By monotonicity we have always
λk ≤ m−n

d < m−1 (Ψ decreasing) or λk ≥ m−n
d (Ψ increasing). We consider now

the case with Ψ increasing. The techniques we use to prove the upper estimation
for λk in this case are analogous to those needed for the lower estimation in the
other one.

By the properties of admissible functions we have

Ψ
1
d (m−n(k−1)

d ) ≤ c(log m)bΨ
1
d (m−nk

d )

for some positive constants c and b independent of m and k. Hence, inserting
this estimate into (7.2) and choosing m large enough (remember that d < n)
we have, for some ε > 0,

0 < m−n
d ≤ λk ≤ m−1−ε, k = 1, 2, . . . ,

which is the desired assertion.

Another interesting class of h-sets can be obtained with the choice

h(r) = rde±| log r|{ , 0 < r < 1,

for 0 < κ ≤ 1/2 and 0 < d < n. Notice that exp{±| log r|{} is not an admissible
function in the sense of Definition 7.1, as an easy calculation immediately shows.

To compare more precisely exp{±| log r|{} and an admissible function Ψ(r)
we pass to the logarithms (and exploit some properties of admissible functions):

| log exp{±| log r|{}| ∼ | log r|{,
and

| log |Ψ(r)|| ≤ c log | log r|,
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where r > 0 is small enough. These estimations show that exp{±| log r|{} and
Ψ(r) are not comparable.

Proposition 7.5. Let 0 < κ ≤ 1/2 and 0 < d < n. Then the function
h(r) = rd exp{±| log r|{} for 0 < r < 1 belongs to Hn.

Proof. Let us consider the case h(r) = rd exp(−| log r|{), the other one being
analogous. Let

λk = m−n
d exp

{
c(k{ − (k − 1){)

}

with c = 1
d
(n

d
){(log m){. With this choice we have

λ1 · · ·λk = m−nk
d exp{ck{}.

Hence

h(λ1 · · ·λk) = m−nk exp{dck{} exp
{
−| log m−nk

d exp ck{|{
}

= m−nk exp
{
dck{ −

∣∣∣∣
nk

d
log m− ck{

∣∣∣∣
{}

= m−nk exp
{
dck{

(
1− (1− c′k{−1){︸ ︷︷ ︸

∼c′′k{−1

)}

∼ m−nk exp{dck2{−1} ∼ m−nk

since 2κ − 1 ≤ 0.
For the estimation of the coefficients λk we have, by monotonicity arguments

and taking into account n/d > 1, that

m−n
d ≤ λk ≤ m−n

d ec(log m){ < m−1

(with c independent of m) provided m large enough.
As we have said, the case h(r) = rd exp{| log r|{} can be treated analogously

and therefore the proof is concluded.

8. Properties of the Measure

In this section we derive some geometric properties of an h-set. For exam-
ple, in the simplest case with h(r) = rd it is known that the (local) Hausdorff
dimension is equal to d. With some more effort one gets that also in a slightly
more general case of (d, Ψ)-sets the dimension is still d (see [1, 3]). But the spe-
cial structure of the measure µ related to an h-set allows us not only to derive
the Hausdorff dimension but also other significant measure-theoretic properties.
In the sequel we shall restrict our attention to the Minkowski content, to the
Hausdorff dimension of an h-set Γ and to the Hausdorff dimension of the mea-
sure µ ∼ Hh|Γ supported by Γ. Finally, we shall consider two pure geometric
properties of an h-set: the so-called Markov inequality related to a set and the
ball condition. We shall give a sufficient condition for which h-sets preserve
Markov’s inequality, generalising an analogous theorem stated by A. Jonsson
and H. Wallin for d-sets, and we shall show that every h-set verifies the so-called
ball condition.
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We begin by recalling the definition of the Hausdorff dimension of a set (let
in the following inf ∅ = sup∅ = 0).

Definition 8.1. Let A ⊂ Rn. Then the number

dimH A = inf{s ≥ 0 : Hs(A) = 0}
(
= sup{s ≥ 0 : Hs(A) = ∞}

)

is called the Hausdorff dimension of A.

Definition 8.2. For s ≥ 0 the upper and the lower s-dimensional Minkowski
content of a bounded subset A of Rn are defined by

Ms
(A) = lim sup

δ→0

Ln(Aδ)

δn−s

and

Ms(A) = lim inf
δ→0

Ln(Aδ)

δn−s
,

respectively. If the limits coincide, then the common value Ms(A) is called
s-dimensional Minkowski content of the set A.

Recall that Aδ := {x ∈ Rn : d(x,A) ≤ δ} is the parallel set of A of amount δ
and Ln denotes the Lebesgue n-dimensional outer measure. Accordingly, the
upper and the lower Minkowski dimension are defined as follows.

Definition 8.3. Let A be a bounded subset of Rn; then

dimMA = inf{s ≥ 0 : Ms
(A) = 0}

(
= sup{s ≥ 0 : Ms

(A) = ∞}
)

and

dimMA = inf{s ≥ 0 : Ms(A) = 0}
(
= sup{s ≥ 0 : Ms(A) = ∞}

)

are called the upper and the lower Minkowski dimension of A, respectively.
Should the limits coincide, then the common value dimM A is called the Min-
kowski dimension of A.

There is an immediate characterisation of these Minkowski dimensions, which
is easier to handle.

Proposition 8.4. Let A be a bounded subset of Rn. Then

dimMA = n− lim inf
δ→0

logLn(Aδ)

log δ

and

dimMA = n− lim sup
δ→0

logLn(Aδ)

log δ
.

Finally, we introduce the local and the global Hausdorff dimension of a Borel
measure.
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Definition 8.5. Let µ be a locally finite Borel measure and x ∈ Rn. Then

dimHµ(x) = lim inf
r→0

log µ(B(x, r))

log r

is called the lower pointwise dimension of µ at x.

Definition 8.6. Let µ be a locally finite Borel measure. Then

dimHµ = ess supx∈Rn dimHµ(x)

is called the Hausdorff dimension of µ.

Now, let Γ be an h-set, and let µ be a related measure (by this we always
mean that µ is a finite Radon measure with µ(B(γ, r)) ∼ h(r), for small values
of r). It is easy to show that

lim inf
r→0

log µ(B(γ, r))

log r
= lim inf

r→0

log h(r)

log r

(and analogously for the lim sup), since log µ(B(γ, r))/ log r = log h(r)/ log r +
o(1) as r → 0. This proves the following theorem.

Theorem 8.7. If µ is a measure related to an h-set, then

dimH µ = lim inf
r→0

log h(r)

log r
.

In order to evaluate the Minkowski content of an h-set, let us consider the
following lemmas.

Lemma 8.8. Let, for 0 < r < 1, B(r) = {B(γi, r)}Nr
i=1, γi ∈ Γ, be a finite

covering of an h-set Γ such that B(γi, r/3) ∩ B(γj, r/3) = ∅ for i 6= j (such a
covering will be called optimal). Then

Nr ∼ 1

h(r)
, 0 < r < 1,

where the equivalence constants do not depend on r.

Proof. The proof is simple:

µ(Γ) = µ
(Nr⋃

i=1

B(γi, r)
)
≤ Nr max

1≤i≤Nr

µ(B(γi, r)) ≤ cNrh(r)

≤ c′Nrh(r/3) ≤ c′′Nr min
1≤i≤Nr

µ(B(γi, r/3)) ≤ c′′
Nr∑

i=1

µ(B(γi, r/3))

= c′′µ
(Nr⋃

i=1

B(γi, r/3)
)
≤ c′′µ(Γ).

Since 0 < µ(Γ) < ∞, we get Nr ∼ 1/h(r), which is the desired assertion.



EXISTENCE AND PROPERTIES OF h-SETS 27

Lemma 8.9. Let Γ be an h-set. Then

Ln(Γδ) ∼ δn

h(δ)
.

Proof. Of course we can find positive constants c1 and c2 (sufficiently small
and large, respectively) independently of δ and two optimal coverings B(c1δ) =

{B(γi, c1δ)}Nc1δ

i=1 and B(c2δ) = {B(γ̃j, c2δ)}Nc2δ

j=1 such that

Nc1δ⋃

i=1

B(γi, c1δ) ⊂ Γδ ⊂
Nc2δ⋃

j=1

B(γ̃j, c2δ).

By the above Lemma 8.8 we finally get

Ln(Γδ) ∼ δn

h(δ)

(with equivalence constants independent of δ) which is the desired assertion.

We can now state the main assertion for the Minkowski dimensions of h-sets.

Theorem 8.10. Let Γ be an h-set. Then

dimMΓ = lim inf
δ→0

log h(r)

log r

and

dimMΓ = lim sup
δ→0

log h(r)

log r
.

Proof. Thanks to Lemma 8.9 and Proposition 8.4 we get

dimM(Γ) = n− lim inf
δ→0

log(δn/h(δ))

log δ

= n− lim inf
δ→0

log δn − log h(δ)

log δ
= lim sup

δ→0

log h(δ)

log δ
.

Considering analogously dimM(Γ) we conclude the proof.

Remark 8.11. We observe that it may really happen that

lim inf
δ→0

log h(δ)

log δ
< lim sup

δ→0

log h(δ)

log δ
, (8.1)

for some function h ∈ Hn. To see this, first observe that if h and g are two
positive equivalent functions from, say, (0, 1) → R, then

lim inf
r→0

log h(r)

log r
= lim inf

r→0

log g(r)

log r

and analogously for the lim sup.
If h ∈ Hn, then one can easily construct an equivalent function g such that

lim inf
r→0

log g(r)

log r
= lim inf

k→∞
log g(λ1 · · ·λk)

log λ1 · · ·λk
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(analogously for the lim sup), where m and λk, k ∈ N0, come from the definition
of h ∈ Hn. Since the above expressions, as we pointed out, are independent of
the particular representative of h ∈ Hn we have that

lim inf
r→0

log h(r)

log r
= n lim inf

k→∞

( | logm λ1 · · ·λk|
k

)−1

(8.2)

(analogously for the lim sup), for any h ∈ Hn.
Therefore, the existence of a function h ∈ Hn with (8.1) is simply reduced to

the choice of an appropriate sequence {λk}k∈N0 , such that the right hand-side
of (8.2) oscillates (which is possible), complemented by the observation that for
any given sequence {λk}k∈N0 with 0 < infk λk ≤ supk λk < m−1, for some integer
m ≥ 2, one can easily construct a function h ∈ Hn related to that sequence.

Finally, let us come to the most interesting property (for us) of an h-set.

Theorem 8.12. Let Γ be an h-set. Then

dimH Γ ∩B(γ, r) = lim inf
δ→0

log h(δ)

log δ
γ ∈ Γ, r ∈ (0, 1). (8.3)

The expression on the left-hand side is sometimes called the local Hausdorff
dimension of the set Γ and in general it is a function depending on γ and r. The
theorem says that in the case of h-sets it is always constant. This implies the
weaker assertion that the Hausdorff dimension of Γ is lim infδ→0 log h(δ)/ log δ.

Proof. Let us denote the inferior limit in (8.3) by D. Let us consider the se-
quence {sk = λ1 · · ·λk}∞k=1 exploited in the proof of the Main Theorem 6.6.
Recall that h(sk) ∼ m−nk and 0 < α < λk < β < 1, k = 1, 2 . . . , (we shall later
return to the exact value of these constants now it is only important that 0 <
α < β < 1). By what we said in Remark 8.11, D = lim supk→∞ log h(sk)/ log sk,
and the latter is easily estimated as follows:

n log m

| log α| ≤ lim inf
k→∞

log h(sk)

log sk

≤ n log m

| log β| .

Now that we know that 0 < D < +∞, we can apply the so-called mass distri-
bution principle for estimating the Hausdorff dimension of a set. Let 0 < s < D
and γ ∈ Γ, then we have

2sDs
µ(γ) = lim sup

r→0

µ(B(γ, r))

rs
= lim sup

r→0
exp{log µ(B(γ, r))− s log r}

= exp{lim sup
r→0

log r(log h(r)/ log r − s)} = 0. (8.4)

Then, thanks to Theorem 3.6–(i) and (8.4),

0 < µ(Γ) ≤ c

=0︷ ︸︸ ︷
sup
γ∈Γ

Ds
µ(γ)Hs(Γ).
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The only noncontradictory assertion we can derive is that Hs(Γ) = ∞. This
implies s ≤ dimH Γ. Since s was arbitrarily chosen in (0, D), we get D ≤
dimH Γ. Analogously, taking s > D, one gets

inf
γ∈Γ

Ds
µ(γ) = ∞. (8.5)

Again, thanks to Theorem 3.6–(ii) and (8.5), we infer that

∞ > µ(Γ) ≥
=∞︷ ︸︸ ︷

inf
γ∈Γ

Ds
µ(γ)Hs(Γ).

The only possibility to avoid a contradiction is that Hs(Γ) = 0. This shows
that dimH Γ ≤ s. Since s was arbitrarily chosen in (D, +∞), we get that
dimH Γ ≤ D. Therefore we have that the Hausdorff dimension of Γ is D.

It remains to show that this notion is even local, i.e., if we choose Γ(γ, r) =
Γ ∩ B(γ, r), γ ∈ Γ, 0 < r < 1, we have to show that dimH Γ(γ, r) = D. But
this is straightforward: one can reconsider the above proof replacing Γ(γ, r) is
still an h-set with respect to µ̃ = Hh|Γ(γ, r), maybe with different equivalence
constants, but this does not matter. Hence the dimension of Γ(γ, r) is still D.
But this is what we have claimed and the proof is concluded.

Remark 8.13. Using the version of Theorem 3.6 for lower densities instead of
upper densities and using the same techniques as in the above proof, one could
show that if Γ is an h-set, then

dimP Γ ∩B(γ, r) = lim sup
δ→0

log h(δ)

log δ
, γ ∈ Γ, r ∈ (0, 1),

where dimP A denotes the packing dimension of a set A ⊂ Rn.

Remark 8.14. As a by-product of the above proof we have

0 <
n log m

| log λ0| ≤ dimH Γ ≤ n log m

| log λ0| < n,

where λ0 = infk λk and λ0 = supk λk come from condition (D2) of Definition 6.1.

Now we would like to investigate the so-called local Markov inequality related
to an h-set. This property turns out to be rather helpful in problems concerning
the linear extension to Rn of functions belonging to Besov-type spaces suitably
defined on h-sets.

We give the definition of a set preserving the local Markov inequality and a
useful geometrical characterisation. Sets preserving this inequality are studied
in detail in [8] (see also [13]): we refer to this work for a general survey.

Definition 8.15. We say that a closed non-empty set F ⊂ Rn preserves
the local Markov’s inequality if the following condition holds for all positive
integers k:
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for all polynomials P of degree at most k and all balls B = B(f, r) with
f ∈ F and 0 < r ≤ 1, we have

max
F∩B

|∇P | ≤ cr−1 max
F∩B

|P | (8.6)

with a constant c depending only on F , n and k. We then refer to (8.6) as
Markov’s inequality on F .

For the sake of brevity a set preserving the local Markov’s inequality is simply
said Markovian.

The definition imposes, in some sense, a certain “thickness” on the set F .
However, also very “dusty” and sparse sets (hence, low-dimensional sets) can
also be Markovian. What really matters is a non-local alignment condition, as
Proposition 8.16 points out. For instance, for any admissible function h ∈ Hn,
the pseudo self-similar fractal constructed in the proof of the Main Theorem 6.6
preserves the local Markov inequality, as one easily verifies with the help of the
following proposition (see [8, Theorem 2, p. 39]).

Proposition 8.16. A closed non-empty subset F of Rn is a Markovian set
if and only if the following geometric condition does not hold: for every ε > 0
there exists a ball B = B(f, r), with f ∈ F and 0 < r ≤ 1, so that B ∩ F is
contained in some band of the form {x ∈ Rn : |b · (x− f)| < εr}, where the dot
stands for the scalar product and |b| = 1.

The following proposition gives a sufficient condition for a function h ∈ Hn

so that the resulting h-set preserves the local Markov’s inequality. Essentially,
we extend [8, Theorem 3, p. 39].

Theorem 8.17. Let n ≥ 2 and let Γ be an h-set in Rn. Suppose that for
every c > 0 there exists ε > 0 such that h(εr)/h(r) ≤ cεn−1, for 0 < r ≤ 1.
Then Γ is a Markovian set.

Proof. We prove that the geometric characterisation expressed in the above
Proposition 8.16 does not hold. Let µ be an h-measure on Γ. Let ε > 0 to be
chosen appropriately later on and let B = B(γ, r) be a ball with γ ∈ Γ and
0 < r ≤ 1. Let D = B ∩ {x : |b · (γ − x)| < εr} be the intersection of B with a
chosen band.

Then at most (2r)n−1εr/(εr)n = 2n−1ε1−n cubes of side εr cover D. If one
of these cubes intersects Γ, then it is contained in a ball of radius

√
nεr and

center γ′ ∈ Γ. Then we have

µ(B) = µ(B(γ, r)) ≥ c1h(r)

and
µ(D) ≤ 2n−1ε1−nµ(B(γ′,

√
nεr)) ≤ c2ε

1−nh(rε),

where c1 and c2 are positive constants depending only on h.
Since µ(B) − µ(D) ≥ h(r)(c1 − c2ε

1−nh(εr)/h(r)), by assumption we can
choose ε so that µ(B) − µ(D) > 0. But this means that B ∩ Γ is not entirely
contained in the chosen band.
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Now we discuss another purely geometric property of a set, which is helpful in
some problems concerning traces of Besov spaces Bs

pq(Rn) and Triebel–Lizorkin
spaces F s

pq(Rn) on h-sets.

Definition 8.18. A non-empty Borel set Γ satisfies the ball condition if there
exists a number 0 < η < 1 with the following property:

for any ball B(γ, r) centered at γ ∈ Γ and of radius 0 < r ≤ 1 there is a ball
B(x, ηr) centered at some x ∈ Rn, such that

B(γ, r) ⊃ B(x, ηr) and B(x, ηr) ∩ Γ = ∅.

This definition coincides essentially with [11, Definition 18.10, p. 142].
Any set satisfying the ball condition has Lebesgue measure zero, and we

might intuitively imagine that it is “self-similarly porous”.
Here, we are interested in the interplay between finite Radon measures µ and

their support. More precisely, let us suppose that µ is a finite Radon measure
with compact support Γ such that

µ(B(γ, r)) ∼ Φ(r), γ ∈ Γ, r ∈ (0, 1), (8.7)

for some suitable continuous function Φ in [0, 1).
In [12, Proposition 9.18, p. 139] one finds a necessary and sufficient condition

on Φ under which Γ = supp µ satisfies the ball condition:

Theorem 8.19. Let µ be a finite Radon measure in Rn, with compact sup-
port Γ, satisfying (8.7), where Φ is supposed to be a continuous monotonically
increasing function on [0, 1) with Φ(r) > 0 if 0 < r < 1 and Φ(0) = 0. Then Γ
satisfies the ball condition if and only if there are two positive numbers c and λ
such that

Φ(2−ν) ≤ c2(n−λ){Φ(2−ν−{) for all ν,κ ∈ N0. (8.8)

Here is the main assertion concerning h-sets and the ball condition.

Theorem 8.20. Any h-set satisfies the ball condition.

Proof. We shall prove that any admissible h satisfies the conditions required in
the above Theorem 8.19. Of course, the only assumption to be checked is (8.8).

Let m and {λk} be, respectively, the number and the sequence from Def-
inition 6.1. Let ε > 0 be small so that λk ≤ m−1−ε for k = 1, 2 . . . (by
Condition (D2) it is possible to find such ε). It is not difficult to realise that

h(2−ν+{) ≤ cmnp{h(2−ν), ν, κ ∈ N, (8.9)

where c is a positive constant depending only on h and

p{ = min{k ∈ N : m−(1−ε)k ≤ 2−{}.
With this refined doubling condition we immediately get

h(2−ν) ≤ cmp{nh(2−ν−{) ≤ c′m(p{−1)nh(2−ν−{)

≤ c′m
{n

(1+ε) log m h(2−ν−{) = c′2(n−λ){h(2−ν−{),
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with λ = n(1− 1/(1 + ε)) > 0.
This is what we claimed and the proof is concluded.
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