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Abstract. Given a categorical crossed module H→ G, where G is a group,
we show that the category of derivations, Der(G,H), from G into H has a
natural monoidal structure. We introduce the Whitehead categorical group
of derivations as the Picard category of Der(G,H) and then we characterize
the invertible derivations, with respect to the tensor product, in this monoidal
category.
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1. Introduction

If G is a group and G → Aut(H) is a group homomorphism, that is, H is
a G-group, there is no natural structure on the set Der(G,H) of derivations
from G into H; however, in the course of investigations of the properties of
relative homotopy groups, J. H. C. Whitehead [20] showed that if H is a G-
crossed module, then Der(G,H) has a natural monoid structure, and he further
characterized the units in Der(G,H). The resulting group D(G,H) is called
the Whitehead group of regular derivations. These results have then allowed
the application of derivation groups to the variety of situations concerned with
the notion of crossed module. Such an application, to holomorphs of groups,
was given by A. S. T. Lue [12]; moreover, derivation groups appear, in the
automorphism structures for crossed modules studied by K. Norrie [14] and
R. Brown and N. D. Gilbert [2], and also in the development by N. D. Gilbert
[9] of Whitehead’s ideas by using the equivalence between crossed modules and
internal groups in the category of groupoids.

The object of this paper is to introduce the Whitehead “categorical group”
of regular derivations in order to obtain analogous applications at the level of
categorical groups.

Categorical groups are monoidal groupoids in which each object is invertible,
up to isomorphism, with respect to the tensor product [1, 10, 16, 17] and they
have been widely used in various fields such as ring theory, group cohomology
and algebraic topology [3, 4, 6, 8, 11, 15, 17, 19].

In this setting of categorical groups, the notion of crossed module was in-
troduced by L. Breen [1] and it has been used recently by P. Carrasco and J.
Mart́ınez [5] in order to study 2-fold extensions of a group G by a symmetric
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710 A. R. GARZÓN AND A. DEL RÍO

G-categorical group A. Of course, this notion of crossed module recovers the
classic one for groups when groups are seen as discrete categorical groups.

Derivations of G into H, when G is a categorical group acting on a braided
categorical group H, have been studied in [7], where it is shown how the braid-
ing in H allows the definition of a categorical group structure in the category
of derivations Der(G,H). However, if H is not braided, there is no natural
structure on the category Der(G,H).

Now, for any group G, we consider categorical crossed modules of the form
H → G[0], where G[0] denotes the discrete categorical group associated to
G, which we call categorical G-crossed modules. Then we analyze the natu-
ral monoidal structure, in the category of derivations Der(G,H), owing to the
G-crossed module structure in the categorical group H. For any monoidal cat-
egory C , there is an associated categorical group P(C ) [19], called the Picard
categorical group of C , consisting of invertible objects in C and isomorphisms
between them. Then we introduce the Whitehead categorical group of deriva-
tions D(G,H) exactly as the Picard categorical group of the monoidal category
Der(G,H) and, finally, we characterize the objects of D(G,H) in terms of the
endomorphisms, of G and H, associated to any derivation from G[0] into H.

2. Preliminaries

Let us recall [13] that a monoidal category G = (G,⊗, a, I, l, r) consists of a
category G, a functor (tensor product) ⊗ : G×G→ G, an object I of G, called
the unit object, and natural isomorphisms called, respectively, the associativity,
left-unit and right-unit constraints

a = a
X,Y,Z

: (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z),

l = l
X

: I ⊗X → X, r = r
X

: X ⊗ I → X,

such that the usual coherence conditions are satisfied. In a monoidal category,
an object X is said to be 2-regular, or invertible, if the functors Y 7→ X ⊗ Y
and Y 7→ Y ⊗ X are equivalences. A categorical group G is a monoidal small
category where every arrow is invertible and every object is 2-regular. In this
case, it is possible to define a contravariant functor (−)∗ : G → G, X 7→ X∗,
f 7→ f ∗, and natural isomorphisms

γ
X

: X ⊗X∗ → I, ϑ
X

: X∗ ⊗X → I,

such that l
X
· (γ

X
⊗1) = r

X
· (1⊗ϑ

X
) ·a

X,X∗,X
, for all objects X ∈ G. The triple

(X∗, γ
X
, ϑ

X
) is termed an inverse for X.

Let us remark that, once an inverse for any object has been chosen, there is
a natural isomorphism

υ
X,Y

: (X ⊗ Y )∗ → Y ∗ ⊗X∗ ,

satisfying a
Z∗,Y ∗,X∗ · (υY,Z

⊗ 1) · υ
X,Y⊗Z

= (1⊗ υ
X,Y

) · υ
X⊗Y,Z

· a∗
X,Y,Z

.
A functor T : G→ H between categorical groups is termed a homomorphism

if it is supplied with natural isomorphisms

µ = µ
X,Y

: T (X ⊗ Y ) → T (X)⊗ T (Y ),
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compatible with a in the sense that:

(1⊗ µ
Y,Z

) · µ
X,Y⊗Z

· T (a
X,Y,Z

) = a
T (X),T (Y ),T (Z)

· (µ
X,Y

⊗ 1) · µ
X⊗Y,Z

. (1)

Below we will denote by C G the category of categorical groups and homomor-
phisms between them.

Note that if (T, µ) is a homomorphism, then there exists a (unique) iso-
morphism [6], µ0 : T (I) → I, such that T (r

X
) = r

T (X)
· (1 ⊗ µ0) · µX,I

and

T (l
X
) = l

T (X)
· (µ0 ⊗ 1) · µ

I,X
. With respect to the inverses, there exist (unique)

isomorphisms
λ

X
: T (X∗) → T (X)∗,

such that the equalities µ0 · T (γ
X
) = γ

T (X)
· (1 ⊗ λ

X
) · µ

X,X∗ and µ0 · T (ϑ
X
) =

ϑ
T (X)

· (λ
X
⊗ 1) · µ

X∗,X
hold.

Given homomorphisms of categorical groups (T, µ), (T ′µ′) : G → H, a mor-
phism from (T, µ) to (T ′, µ′) consists of a natural transformation ε : T → T ′

such that, for any objects X, Y ∈ G, the following condition holds:

(ε
X
⊗ ε

Y
) · µ

X,Y
= µ′

X,Y
· ε

X⊗Y
. (2)

If G is a group, a G-categorical group is defined [5] as a categorical group H
together with a homomorphism of categorical groups (a G-action)

(T, µ) : G[0] → E q(H)

from the discrete categorical group defined by G (denoted by G[0]) to the cat-
egorical group, E q(H), of equivalences of H [1]. It is easy to see that giving a
G-action on H is equivalent to giving equivalences

x(−) : H→ H, A 7→ xA , f 7→ xf

for each x ∈ G, together with natural isomorphisms

ψ = ψ
x,A,A′ : x(A⊗ A′) → xA⊗ xA′,

φ = φ
x,x′,A : xx′A → x( x′A),

φ0 = φ
0,A

: 1A → A,

satisfying suitable coherence conditions (see [6, 18]).
Moreover, for any x ∈ G, there exists a unique isomorphism

ψ0 = ψ0,x : xI → I,

such that lxA
· (ψ0,x ⊗ 1) · ψ

x,I,A
=

x
l
A

and rxA
· (1⊗ ψ0,x) · ψx,A,I

=
x
r

A
, for any

element x ∈ G and any object A ∈ H .
A G-categorical group is termed strict when all the isomorphisms ψ

x,A,A′ ,
φ

x,x′,A , φ
0,A

and ψ0,x are equalities.
Let H and E be G-categorical groups. A G-equivariant homomorphism

(T, ν) : H → E consists of a categorical group homomorphism T = (T, µ) :
H→ E and a family of natural isomorphisms

ν = (ν
x,A

: T ( xA) → xT (A))
(x,A)∈G×Obj(H)

that are compatible with ψ, φ and φ0 in the appropriate sense (see [18]).
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3. The Category of Derivations Der(G,H)

Let G be a group and let H be a G-categorical group. A derivation from G
into H is a pair (D, β) where D : G[0] → H is a functor and

β = (βx,y : D(xy) → D(x)⊗ xD(y))x,y∈G

is a family of isomorphisms such that, for any x, y, z ∈ G, the following coher-
ence condition holds

(1⊗ ψx,D(y), yD(z)) · (1⊗ xβy,z) · βx,yz

= (1⊗ (1⊗ φx,y,D(z))) · aD(x), xD(y), xyD(z)
· (βx,y ⊗ 1) · βxy,z . (3)

If (D, β) is a derivation, there exists an isomorphism β̄0 : D(1) → I (where 1 is
the neutral element of G) that is determined by the equalities

r
D(x)

· (1⊗ ψ0,x) · (1⊗ xβ̄0) · βx,1 = idD(x) = lD(x) · (1⊗ φ0,D(x)) · (β̄0 ⊗ 1) · β1,x .

Let D0 : G[0] → H be the constant functor with value the unit object I ∈ H.
Then, if for any x ∈ G we consider the arrow in H (β0)x = (1 ⊗ ψ−1

0,x
) · l−1

I
:

I → I ⊗ I → I ⊗ xI, the pair (D0, β0) is clearly a derivation, called the trivial
derivation from G into H.

Given two derivations (D, β), (D′, β′) : G[0] → H, an arrow from (D, β) to
(D′, β′) consists of a natural transformation ε : D → D′ such that, for any
x, y, z ∈ G, the following condition holds:

(εx ⊗ xεy) · βx,y = β′x,y · εxy . (4)

The vertical composition of natural transformations determines a composition
for arrows between derivations, and therefore we can consider the category,
Der(G,H), of derivations from G into H, which is actually a groupoid.

Note that, if H is a G-group, then H[0] is a G-categorical group and thus
the category Der(G,H[0]) is exactly the discrete category associated to the
set Der(G,H). Recall that, in this case, there is a bijection between the set
Der(G,H) and the set of group homomorphisms f , from G to the semidirect
product HoG, such that pr ·f = idG, where pr : HoG → G is the projection.

Now, if H is a G-categorical group, we can consider the semidirect product
HoG[0] (see [6]), which is the categorical group where the underlying groupoid
is H × G[0] and with tensor product given by (A, x) ⊗ (B, y) = (A ⊗ xB, xy).
Since C G is a 2-category, where the 2-cells are the morphisms between homo-
morphisms, we can consider the category HomC G (G[0],H o G[0]) and then we
have the following:

Proposition 3.1. For any group G and any G-categorical group H there is
an isomorphism of categories between Der(G,H) and the full subcategory A of
HomC G (G[0],H o G[0]) whose objects are those homomorphisms T = (T, µ) :
G[0] → H o G[0] such that pT = idG[0], where p : H o G[0] → G[0] is the
projection.

Proof. We shall define functors

κ : Der(G,H) −→ A ; Σ : A −→ Der(G,H)
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such that κ · Σ = id and Σ · κ = id.
For any object (D, β) ∈ Der(G,H), we let κ((D, β)) = (T, µ), where T (x) =

(D(x), x) ∈ H o G[0], and µx,y : T (xy) → T (x) ⊗ T (y) is given by µx,y =
(βx,y, idxy). For any arrow ε : (D, β) → (D′, β′), κ(ε) : (T, µ) → (T ′, µ′) is the
morphism determined by the natural transformation given by κ(ε)x = (εx, idx).

To define the functor Σ, let us consider the projection ∂ : H o G[0] →
H, (A, x) 7→ A. Then, for any object (T, µ) ∈ A , Σ((T, µ)) = (D, β), where
D(x) = ∂T (x), and βx,y : D(xy) → D(x) ⊗ xD(y) is given by βx,y = ∂(µx,y).
For any morphism τ : (T, µ) → (T ′, µ′), Σ(τ) : (D, β) → (D′, β′) is the ar-
row determined by the natural transformation whose component at X ∈ G is
Σ(τ)x = ∂(τx).

Now it is straightforward to check that κ and Σ are inverse to each other. ¤

4. The Monoidal Structure on Der(G,H)

Recall that, if G is a group, a G-crossed module consists of a group homo-
morphism ρ : H → G together with an action (x, h) 7→ xh of G on H satisfying
ρ(xh) = xρ(h)x−1 and ρ(h)h′ = hh′h−1, for all x ∈ G, h, h′ ∈ H.

This notion has the following generalization in the setting of categorical
groups.

Definition 4.1 ([5]). Let G be a group. A categorical G-crossed module
consists of a triad (H, ρ, ξ), where H is a G-categorical group, ρ : H → G[0]
is a G-equivariant homomorphism (necessarily strict), considering in G[0] the
action given by conjugation (i.e. ρ( xA) = xρ(A)x−1 for any x ∈ G and A ∈ H),
and

ξ =
(
ξ

A,B
: ρ(A)B ⊗ A → A⊗B

)
(A,B)∈H

is a family of natural isomorphisms in H, such that for all objects A,B,C ∈ H
the following diagrams are commutative:

ρ(A)(B ⊗ C)⊗ A
ξ
A,B⊗C //

ψ⊗1

²²

A⊗B ⊗ C

ρ(A)B ⊗ ρ(A)C ⊗ A
1⊗ξ

A,C

// ρ(A)B ⊗ A⊗ C ,

ξ
A,B

⊗1

OO

(5)

ρ(A⊗B)C ⊗ A⊗B
ξ
A⊗B,C //

φ⊗1
²²

A⊗B ⊗ C

ρ(A)(ρ(B)C)⊗ A⊗B
ξ
A,ρ(B)C

⊗1
// A⊗ ρ(B)C ⊗B ,

1⊗ξ
B,C

OO

(6)
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x( ρ(A)B ⊗ A)
xξ

A,B

vvnnnnnnnnnn

ψ // x( ρ(A)B)⊗ xA

(xρ(A))B ⊗ xA

φ⊗1llYYYYYYY

x(A⊗B)

ψ ((PPPPPPPPPPP
(ρ( xA)x)B ⊗ xA .

φ⊗1
rreeeee

xA⊗ xB ρ(xA)( xB)⊗ xA
ξxA,xB

oo

(7)

Note that if H is a group and (H[0], ρ : H[0] → G[0], ξ) is a categorical
G-crossed module, then ξ is necessarily an identity and therefore we obtain a
G-equivariant group homomorphism ρ : H → G, which is a crossed module in
the usual sense. In addition, Conduché’s 2-crossed modules are particular cases
of categorical G-crossed modules (see [5]). Categorical G-modules (see [4]) are
braided categorical groups [10] provided with a coherent left action of G[0].
If (A, c) is a G-module then the trivial homomorphism A → G[0] is clearly a
categorical G-crossed module where ξ is given by the braiding c.

If H is a G-crossed module, then the set Der(G,H) of derivations from G
into H has a natural monoid structure [20]. Now, if (H, ρ, ξ) is a categorical
G-crossed module, then H is a G-categorical group and our aim below is to show
that the category Der(G,H) has a natural monoidal structure, that is inherited
from the G-crossed module structure in H. To do so, we first show the following:

Lemma 4.2. Let (H, ρ, ξ) be a categorical G-crossed module. For any deriva-
tion (D, β) : G[0] → H, there are endomorphisms of G[0] and of H,

σ
D

: G[0] → G[0] , θ
D

= (θ
D
, µ

θ
) : H −→ H,

where σ
D
(x) = ρ(D(x))x, x ∈ G, and θ

D
is defined, for any object A ∈ H, by

θ
D
(A) = D(ρ(A))⊗A, for any arrow f : A → B, by θ

D
(f) = D(ρ(f))⊗f = 1⊗f

and where (µ
θ
)

A,B
: θ

D
(A ⊗ B) → θ

D
(A) ⊗ θ

D
(B), A,B ∈ H, is given by the

following composition:

D(ρ(A⊗B))⊗ A⊗B
(µ

θ
)
A,B // D(ρ(A))⊗ A⊗D(ρ(B))⊗B

D(ρ(A)ρ(B))⊗ A⊗B
β

ρ(A),ρ(B)
⊗1

// D(ρ(A))⊗ ρ(A)D(ρ(B))⊗ A⊗B .

1⊗ξ
A,D(ρ(B))

⊗1

OO

Moreover, if ε : (D, β) → (D′, β′) is an arrow in Der(G,H), then σ
D

= σ
D′

and there is a morphism of categorical group homomorphisms τ : θ
D
→ θ

D′
given, for any A ∈ H, by τ

A
= ε

ρ(A)
⊗ id

A
.

Moreover, if D0 : G[0] → H is the trivial derivation, then σ
D0

= idG and
there is a morphism θ

D0
→ idH given, for any A ∈ H, by l

A
: I ⊗ A → A.
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Proof. σ
D

is a group homomorphism since, for any x, y ∈ G,

σ
D
(xy) = ρ(D(xy)) xy = ρ[D(x)⊗ xD(y)] xy

= ρ(D(x))ρ( xD(y)) xy = ρ(D(x)) x ρ(D(y)) x−1xy

= ρ(D(x)) x ρ(D(y)) y = σ
D
(x)σ

D
(y) .

As for θ
D
, we obtain the coherence condition (1) for µ

θ
as follows:

(1⊗ (µ
θ
)

B,C
) · (µ

θ
)

A,B⊗C
· θ

D
(a

A,B,C
) =

def
= [(1⊗ (1⊗ ξ

B,D(ρ(C))
⊗ 1)) · (1⊗ (β

ρ(B),ρ(C)
⊗ 1))]·

[(1⊗ ξ
A,D(ρ(B⊗C))

⊗ 1) · (β
ρ(A),ρ(B⊗C)

⊗ 1)] · [1⊗ a
A,B,C

]
nat
= (1⊗ (1⊗ ξ

B,D(ρ(C))
⊗ 1)) · (1⊗ ξ

A,D(ρ(B))⊗ ρ(B)D(ρ(C))
⊗ 1)·

((1⊗ ρ(A)β
ρ(B),ρ(C)

)⊗ 1⊗ 1) · (β
ρ(A),ρ(B⊗C)

⊗ 1) · [1⊗ a
A,B,C

]
(5)
= (1⊗ (1⊗ ξ

B,D(ρ(C))
⊗ 1)) · (1⊗ ξ

A,D(ρ(B))
⊗ a

θ
D

(A),D(ρ(B))⊗ ρ(B)D(ρ(C)),B⊗C
)·

(1⊗ 1⊗ ξ
A,ρ(B)D(ρ(C))

⊗ 1) · (1⊗ ψ
ρ(A),D(ρ(B)),ρ(B)D(ρ(C))

⊗ a−1
A,B,C

)·
((1⊗ ρ(A)β

ρ(B),ρ(C)
)⊗ 1⊗ 1) · (β

ρ(A),ρ(B⊗C)
⊗ 1) · [1⊗ a

A,B,C
]

(3)
= (1⊗ (1⊗ ξ

B,D(ρ(C))
⊗ 1)) · (1⊗ ξ

A,D(ρ(B))
⊗ 1) · a

θ
D

(A),D(ρ(B))⊗ ρ(B)D(ρ(C)),B⊗C
·

(1⊗ 1⊗ ξ
A,ρ(B)D(ρ(C))

⊗ 1) · (1⊗ (1⊗ φ
ρ(A),ρ(B),D(ρ(C))

)⊗ 1)·
(a

D(ρ(A)),ρ(A)D(ρ(B)),ρ(A⊗B)D(ρ(C))
⊗ 1) · ((β

ρ(A),ρ(B)
⊗ 1)⊗ 1) · (β

ρ(A⊗B),ρ(C)
⊗ 1)

(6)
= (1⊗ (1⊗ ξ

B,D(ρ(C))
⊗ 1)) · (1⊗ ξ

A,D(ρ(B))
⊗ 1) · a

θ
D

(A),D(ρ(B))⊗ ρ(B)D(ρ(C)),B⊗C
·

(1⊗ (1⊗ ξ−1
B,D(ρ(C))

⊗ 1)) · (1⊗ (1⊗ ξ
A⊗B,D(ρ(C))

⊗ 1))·
(a

D(ρ(A)),ρ(A)D(ρ(B)),ρ(A⊗B)D(ρ(C))
⊗ 1) · ((β

ρ(A),ρ(B)
⊗ 1)⊗ 1) · (β

ρ(A⊗B),ρ(C)
⊗ 1)

nat
= (1⊗ ξ

A,D(ρ(B))
⊗ a

θ
D

(A),θ
D

(B),θ
D

(C)
) · (a

D(ρ(A)),ρ(A)D(ρ(B)),A⊗B
⊗ 1)·

(1⊗ (ξ
A⊗B,D(ρ(C))

⊗ 1)) · ((β
ρ(A),ρ(B)

⊗ 1)⊗ 1) · (β
ρ(A⊗B),ρ(C)

⊗ 1)
nat
= a

θ
D

(A),θ
D

(B),θ
D

(C)
· [(1⊗ ξ

A,D(ρ(B))
⊗ 1) · ((β

ρ(A),ρ(B)
⊗ 1)⊗ 1)]·

[(1⊗ ξ
ρ(A⊗B),D(ρ(C))

⊗ 1) · (β
ρ(A⊗B),ρ(C)

⊗ 1)]
def
= a

θ
D

(A),θ
D

(B),θ
D

(C)
· ((µθ)A,B

⊗ 1) · (µθ)A⊗B,C
.

Finally, σ
D

= σ
D′ since, for any x ∈ G, ρ(εx) : ρ(D(x)) → ρ(D′(x)) is neces-

sarily an identity, because G[0] is discrete, and therefore σ
D
(x) = ρ(D(x))x =

ρ(D′(x))x = σ
D′ (x). On the other hand, to prove that τ : θ

D
→ θ

D′ , given by
τ

A
= ε

ρ(A)
⊗ id

A
: D(ρ(A))⊗ A → D′(ρ(A))⊗ A, is a morphism is routine. ¤

Now, using the endomorphism σ
D

of G associated to any derivation D, we
have:

Proposition 4.3. Let G be a group and (H, ρ, ξ) a categorical G-crossed
module. If (D1, β1) and (D2, β2) are derivations from G[0] into H, then there is
a derivation from G[0] into H, (D1 ⊗D2, β1 ⊗ β2), where D1 ⊗D2 : G[0] → H
is given by (D1 ⊗ D2)(x) = D1(σD2

(x)) ⊗ D2(x), x ∈ G, and (β1 ⊗ β2) =
((β1⊗ β2)x,y : (D1⊗D2)(xy) → (D1⊗D2)(x)⊗ x(D1⊗D2)(y)) is the family of
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natural isomorphisms given by the following composition:

D1(σD2
(x)σ

D2
(y))⊗D2(xy)

(β1)σ
D2

(x),σ
D2

(y)⊗(β2)x,y

²²

D1(σD2
(x))⊗ρ(D2(x))x D1(σD2

(y))⊗D2(x)⊗ xD2(y)

1⊗φ⊗1
²²

D1(σD2
(x))⊗ρ(D2(x)) (xD1(σD2

(y)))⊗D2(x)⊗ xD2(y)

1⊗ξ
D2(x),xD1(σ

D2
(y))

⊗1

²²
D1(σD2

(x))⊗D2(x)⊗ xD1(σD2
(y))⊗ xD2(y)

1⊗ψ−1

²²
D1(σD2

(x))⊗D2(x)⊗ x(D1(σD2
(y))⊗D2(y)).

Moreover, in such conditions, σ
D1⊗D2

= σ
D1
· σ

D2
.

Proof. It is straightforward to check that β1 ⊗ β2 satisfies (3) so that (D1 ⊗
D2, β1 ⊗ β2) is a derivation from G[0] to H.

As for the second statement we have:

σ
D1⊗D2

(x) = ρ((D1 ⊗D2)(x))x = ρ(D1(σD2
(x))⊗D2(x)) x

= ρ(D1(ρ(D2(x)) x))ρ(D2(x)) x = ρ(D1(ρ(D2(x)) x))σ
D2

(x)

= ρ(D1(σD2
(x)))σ

D2
(x) = σ

D1
(σ

D2
(x)).

¤
The derivation (D1 ⊗D2, β1 ⊗ β2) built into the above proposition defines a

functor

Der(G,H)×Der(G,H)
⊗ // Der(G,H)

(D1, β1)⊗ (D2, β2) = (D1 ⊗D2, β1 ⊗ β2),

that determines a monoidal structure in the category Der(G,H). The iso-
morphism of associativity, ā : ((D1, β1) ⊗ (D2, β2)) ⊗ (D3, β3) → (D1, β1) ⊗
((D2, β2) ⊗ (D3, β3)), is the arrow determined by the natural transformation
ā : (D1⊗D2)⊗D3 → D1⊗ (D2⊗D3) given by āx = a

D1(σ
D2⊗D3

(x)),D2(σ
D3

(x)),D3(x)
,

x ∈ G; the unit object Ī, is the trivial derivation (D0, β0); the left unit con-
straint l̄ = l̄

(D,β)
: (D0, β0) ⊗ (D, β) → (D, β), is the arrow determined by the

natural transformation l̄ : D0 ⊗D → D given by l̄x = l
D(x)

; and the right unit

constraint r̄ = r̄
(D,β)

: (D, β) ⊗ (D0, β0) → (D, β), is the arrow determined by
the natural transformation r̄ : D ⊗D0 → D given by r̄x = r

D(x)
.

Below we will see that another monoidal structure in Der(G,H) can be defined
alternatively, by using the endomorphism θ

D
: H → H, given in Lemma 4.2,

instead of σ
D
. To do so, we first show the following:
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Proposition 4.4. Let (H, ρ, ξ) be a categorical G-crossed module and (D, β)
a derivation from G[0] to H. Then we have:

i) σ
D
· ρ = ρ · θ

D
: H→ G[0].

ii) Both θ
D
· D and D · σ

D
are derivations from G[0] into H and there is an

arrow in Der(G,H), ε : θ
D
·D → D · σ

D
.

iii) If ac : G[0] → Eq(H) denotes the G-action on H then, for any x ∈ G, there
is a morphism of categorical group homomorphisms τx : θ

D
· acx → ac

σ
D

(x)
· θ

D
.

iv) Given two derivations (D1, β1), (D2, β2) : G[0] → H there is, for any x ∈ G,
a natural isomorphism χx : D1(σD2

(x))⊗D2(x) → θ
D1

(D2(x))⊗D1(x).

Proof. i) (σ
D
· ρ)(A) = ρ(D(ρ(A)))ρ(A) = ρ(D(ρ(A))⊗ A) = (ρ · θ

D
)(A).

ii) To prove that θ
D
·D and D ·σ

D
are derivations is straightforward. As for the

arrow ε, it is given by the natural transformation whose component at x ∈ G,
εx : (θ

D
·D)(x) → (D · σ

D
)(x), is determined by the following diagram:

θD (D(x)) = D(ρ(D(x)))⊗D(x)
εx //__________

1⊗r−1

²²

D(σD (x)) = D(ρ(D(x))x)

β
ρ(D(x)),x

²²
D(ρ(D(x)))⊗ ρ(D(x))D(x)

1⊗r−1

²²
D(ρ(D(x)))⊗D(x)⊗ I

1⊗γ−1

²²

D(ρ(D(x)))⊗ ρ(D(x))D(x)⊗ I

1⊗γ−1

²²
D(ρ(D(x)))⊗D(x)⊗D(x)⊗D(x)∗

1⊗ξ−1
D(x),D(x)

⊗1

// D(ρ(D(x)))⊗ ρ(D(x))D(x)⊗D(x)⊗D(x)∗.

iii) For any object A ∈ H, τx,A : θ
D
( xA) → σ

D
(x)

θ
D
(A) is the arrow in H given

by the following diagram:

θD (xA) = D(ρ(xA))⊗ xA = D(xρ(A)x−1)⊗ xA
τx,A //______

β
xρ(A),x−1⊗1

²²

σ
D

(x)θD (A) = (ρ(D(x)) x)θD (A)

φ

²²
D(xρ(A))⊗ xρ(A)D(x−1)⊗ xA

1⊗φ⊗1

²²

(ρ(D(x))(xθD (A))

(1⊗γ−1)·r−1

²²
D(xρ(A))⊗ x(ρ(A)D(x−1))⊗ xA

1⊗ψ−1

²²

ρ(D(x))(xθD (A))⊗D(x)⊗D(x)∗

ξ
D(x),xθ

D
(A)⊗r−1

²²
D(xρ(A))⊗ x(ρ(A)D(x−1)⊗A)

β
x,ρ(A)⊗

xξ
A,D(x−1)

²²

D(x)⊗ x(D(ρ(A))⊗A)⊗D(x)∗ ⊗ I

1⊗β̄−1
0

²²
D(x)⊗ xD(ρ(A))⊗ x(A⊗D(x−1))

1⊗ψ

²²

D(x)⊗ x(D(ρ(A))⊗A)⊗D(x)∗ ⊗D(xx−1)

1⊗ψ⊗1⊗β
x,x−1

²²
D(x)⊗ xD(ρ(A))⊗ xA⊗ xD(x−1)

(1⊗ϑ−1⊗1)(r−1⊗1)

// D(x)⊗ xD(ρ(A))⊗ xA⊗D(x)∗ ⊗D(x)⊗ xD(x−1).



718 A. R. GARZÓN AND A. DEL RÍO

iv) The arrow χx : D1(σD2
(x))⊗D2(x) → θ

D1
(D2(x))⊗D1(x) is defined as the

composite χx = (1⊗ ξ
D2(x),D1(x)

) · ((β1)ρ(D2(x)),x
⊗ 1). ¤

Now, consider the functor

Der(G,H)×Der(G,H)
⊗̄ // Der(G,H)

(D1, β1)⊗̄(D2, β2) = (D1⊗̄D2, β1⊗̄β2),

where D1⊗̄D2 : G[0] → H is given by (D1⊗̄D2)(x) = θ
D1

(D2(x))⊗D1(x) and

(β1⊗̄β2)x,y : (D1⊗̄D2)(xy) → (D1⊗̄D2)(x)⊗ x(D1⊗̄D2)(y)

is defined as the following composition:

θ
D1

(D2(xy))⊗D1(xy)

θ
D1

((β2)x,y )⊗(β1)x,y²²
θ

D1
(D2(x)⊗ xD2(y))⊗D1(x)⊗ xD1(y)

µ
θD1

⊗1
²²

θ
D1

(D2(x))⊗ θ
D1

(xD2(y))⊗D1(x)⊗ xD1(y)

1⊗(τ1)
x,D2(y)

⊗1
²²

θ
D1

(D2(x))⊗ σ
D1

(x)
θ

D1
(D2(y))⊗D1(x)⊗ xD1(y)

1⊗φ⊗1²²

θ
D1

(D2(x))⊗ ρ(D1(x))(xθ
D1

(D2(y)))⊗D1(x)⊗ xD1(y)
1⊗ξ

D1(x),xθ
D1

(D2(y))
⊗1

²²
θ

D1
(D2(x))⊗D1(x)⊗ xθ

D1
(D2(y))⊗ xD1(y)

1⊗ψ−1
²²

θ
D1

(D2(x))⊗D1(x)⊗ x(θ
D1

(D2(y))⊗D1(y)) .

To check that (D1⊗̄D2, β1⊗̄β2) is a derivation is straightforward. It is also easy
to see that there is a morphism of categorical group homomorphisms

θ
D1
· θ

D2
→ θ

D1⊗̄D2
(8)

whose component at A ∈ H is the arrow (µ
θ
D1

)
D2(ρ(A)),A

.

The functor ⊗̄ determines a monoidal structure in the category Der(G,H)
and, for any derivations (D1, β1) and (D2, β2), there is a natural isomorphism
(D1 ⊗D2)(x) → (D1⊗̄D2)(x) given by the isomorphism χx defined in Proposi-
tion 4.4 iv).

Then we summarize the above results in the following:

Theorem 4.5. If G is a group and (H, ρ, ξ) is a categorical G-crossed module,
the functors

⊗ : Der(G,H)×Der(G,H) −→ Der(G,H)

and

⊗̄ : Der(G,H)×Der(G,H) −→ Der(G,H)
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determine, in the category Der(G,H), two monoidal structures connected by the
natural isomorphism χx defined in Proposition 4.4.

Let us recall now [19] that, for any monoidal category C , the Picard cate-
gorical group P(C ) of C is the subcategory of C given by invertible objects
and isomorphisms between them. Clearly, P(C ) is a categorical group and
any monoidal functor F : C → D restricts to a homomorphism of categorical
groups P(F ) : P(C ) → P(D). In this way, there is a functor P from the
category of monoidal categories to C G .

Definition 4.6. For any group G and any categorical G-crossed module
(H, ρ, ξ) we define the Whitehead categorical group of derivations D(G,H) as
the Picard categorical group, P(Der(G,H)), of the monoidal category
(Der(G,H),⊗).

Note that, when H = H[0] is the discrete categorial group associated to a
group H, the categorial group D(G,H) is exactly the discrete one associated to
the Whitehead group D(G,H) of the regular derivations from G into H. Also,
note that if (A, c) is a G-module then D(G,A) = Der(G,A), where the last is
the categorical group of derivations studied in [7].

Finally, we characterize the objects of D(G,H), that is, the invertible deriva-
tions, as follows:

Theorem 4.7. Let G be a group and (H, ρ, ξ) a categorical G-crossed module.
Then, the following statements are equivalent:

a) (D, β) ∈ D(G,H),
b) σ

D
∈ Aut(G),

c) θ
D
∈ E q(H).

Proof. a) ⇒ b) If (D, β) ∈ D(G,H), then there exists an inverse for (D, β), that
is, a derivation (D, β)∗ = (D̄, β̄) ∈ D(G,H) and isomorphisms (D, β)⊗(D̄, β̄) ∼=
(D̄, β̄)⊗ (D, β) ∼= (D0, β0). Thus, according to Lemma 4.2 and Proposition 4.3,
σ

D
· σ

D̄
= σ

D̄
· σ

D
= σ

D0
= idG and therefore σ

D
is an automorphism.

a) ⇒ c) Using now (8) and Lemma 4.2, there exist morphisms of categorical
group homomorphisms

θ
D
· θ

D̄
−→ θ

D⊗D̄
−→ θ

D0
−→ idH

and

θ
D̄
· θ

D
−→ θ

D̄⊗D
−→ θ

D0
−→ idH

and therefore θ
D

is an equivalence of H.
b) ⇒ a) Let (D, β) ∈ Der(G,H) such that σ

D
is an automorphism. An inverse

(D, β)∗ = (D̄, β̄) for (D, β) is obtained as follows. Define D̄ : G[0] → H by
D̄(x) = (D(σ−1

D
(x)))∗ and, by denoting x′ = σ−1

D
(x), x ∈ G, let β̄x,y : D̄(xy) →
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D̄(x)⊗ xD̄(y) be the arrow in H determined by the diagram:

D̄(xy) = (D(x′y′))∗

(β−1

x′,y′ )
∗

²²

β̄x,y //______ D̄(x)⊗ xD̄(y) = (D(x′))∗ ⊗ x(D(y′)∗)

(D(x′)⊗ x′D(y′))∗

(ξ
D(x′), x′D(y′)

)∗

²²

D(x′)∗ ⊗ ( xD(y′))∗

1⊗λ−1

OO

( ρ(D(x′))( x′D(y′))⊗D(x′))∗
(φ⊗1)∗

// ( σ
D

(x′)D(y′)⊗D(x′))∗.

υ

OO

It is straightforward to see that (D̄, β̄) ∈ Der(G,H). In addition, for any
x ∈ G, (D̄ ⊗ D)(x) = D̄(σ

D
(x)) ⊗ D(x) = (D(σ−1

D
(σ

D
(x))))∗ ⊗ D(x) =

D(x)∗ ⊗ D(x) ' I = D0(x) and therefore there is an arrow in Der(G,H),
(D̄, β̄) ⊗ (D, β) → (D0, β0). Thus, (D̄, β̄) is an inverse for (D, β) and so
(D, β) ∈ D(G,H).
c) ⇒ a) The proof is similar to the above one by defining D̄(x) = θ−1

D
(D(x)∗)

where θ−1
D

is a quasi-inverse of θ
D
. ¤
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