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Abstract
In this paper, the one-dimensional unconstrained global optimization prob-

lem of continuous functions satifying a Hölder condition is considered. We
first extend the algorithm of sequential covering SCA for Lipschitz functions to
a large class of Hölder functions, and we propose a modification MSCA of this
algorithm. We show that the implementation of the algorithm MSCA has the
advantage of avoiding the use of auxiliary calculations. The algorithm MSCA
is then some what easily which permits to considerably reduce the calculation
time. The convergence of the method is also studied. The algorithm MSCA
can be applied to systems of nonlinear equations. Finally, some numerical
examples are presented and illustrate the efficiency of the present approach.

Keywords: Global optimization, Hölder functions, Sequential covering
method, Systems of nonlinear equations.

1 Introduction

This paper investigates the global optimization problem of minimizing a one-
dimensional multiextremal function f(x) having a finite number of local min-
ima over an interval [a, b] of R, i.e., the finding of a point x∗ ∈ [a, b] and the
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value f ∗ such that
f ∗ = f(x∗) = min

x∈[a,b]
f(x). (1)

Throughout this work, we assume that the objective function f satisfies a
Hölder condition, i.e.,

|f(x)− f(y)| ≤ h |x− y|α , for all x, y ∈ [a, b] , (2)

where 0 < h < ∞ is called the Hölder constant and 0 < α < 1 the Hölder
exponent.
Let ε > 0 be the desired accuracy with which the global minimum of f(x) is
to be searched.
Now, we review the concept of Hölder functions and give several properties.
Obviously, a Hölder function f(x) is a Lipschitz one on [a, b] when α = 1, [11].
If f(x) is a Hölder function with constant h > 0 and exponent 0 < α < 1
on [a, b] , then it is also Hölder function with constant h

′
> h and exponent

α
′
< α. Although a Hölder function is always continuous, it need not to be

differentiable. A Hölder function with a low value of α is much more irregular
than a Hölder function with a high value of α (in fact, this statement only
makes sense if we consider the highest value of α for which (2) holds).
Global optimization problems arise in many disperse fields of science and tech-
nology. The existence of multiple local minima of a general nonconvex objec-
tive function makes global optimization a great challenge.
This problem is of interest for at least two reasons. Firstly, because such an
interest is motivated by a number of real life applications where such problems
arise, for instance, the simple plant location problem under a uniform delivered
price policy, see Hanjoul et al. [12], infinte horizon optimization problems see
[15] and secondly, because such objective functions are more irregular than the
Lipschitz ones, [17].
Many approaches using an auxiliary function have been proposed to deal with
the continuous global optimization problems [9-11]. In [8], the authors have
proposed an extension of the method of Piyavskii [22], [26] to case of a univari-
ate Hölder function where the parameters h and α are a priori known. They
used a technique which is based on the construction of piecewise parabolic
lower bounding functions of f on [a, b]. At each iteration, the method necessi-
tates the determination of the unique global minimizer of a convex nondiffer-
entiable functions. This amounts to solving a nonlinear equation of order α,
which is not always easy to treat explicitly. In [18], the authors have suggested
at each iteration, an approximation of the global minimizer of lower bound-
ing functions by the intersection point of two secantes linked to the piecewise
parabols. In [23], we have extended the Piyavskii’s algorithm by construct-
ing a lower bounding functions which are piecewise linear. The purpose of
the present work is to avoid the use of the construction of piecewise lower
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bounding functions of f on [a, b]. We propose a sequential covering algorithm
SCA which is best known most discused in literature [2], [4-7] is constructed
for Hölder functions without differentiability not convex property of f , but
the parameters h and α must be known. We construct an iterative sequence
(xk)k≥1of points of [a, b] , such that with each point xi we associate a neigh-
bouring interval I(xi, rik) with center xi and radius rik. When the interval [a, b]
is completely covered then we prove the convergence of the sequence (xk)k≥1
to a global minimizer x∗ of f on [a, b] .
This paper modifies the sequential covering algorithm for Hölder continuous
functions. An advantage of our modification is that it reduces the number of
evaluation points necessary to the convergence. Moreover, it is a new optimiza-
tion method to solve a system of nonlinear equations without differentiability
assumption on the objective function.
The rest of this paper is organized as follows: In section 2, the method of
sequential covering is briefly described. The corresponding algorithm for uni-
variate Hölder functions is presented in section 3. In section 4, we propose a
modifications of the sequential covering algorithm. In section 5, test functions
and numerical experiments are reported. In sections 6, we apply the modified
algorithm for solving systems of nonlinear nonsmooth equations. Finally, some
conclusions are drawn in section 7.

2 General Idea of the Method of Coverings

Covering algorithms, [5], [11], [24-25], constitute an important class of methods
for solving problems of type (1) for very large classes of functions f . Let S∗ be
the set of all global minimizers of the objective function f (the solutions set)
and the set of ε-optimal (approximate) solutions of problem (1) is defined as
follows

S∗ε = {x ∈ [a, b] : f(x) ≤ f ∗ + ε}. (3)

The sets S∗, S∗ε are nonempty because of the compactness of [a, b] and the
continuity of f on [a, b] .
It is clear that S∗ ⊂ S∗ε ⊂ [a, b] . Our goal is to find at least one point xε ∈ S∗ε .
Any value f(xε) where xε ∈ S∗ε is called an ε-optimal value of f on [a, b] .
Let Xk = {x1, x2, ..., xk} be a finite set of k points in [a, b] . After evaluating f
at these points, we define the record value

m∗i = min (f(x1), f(x2), ..., f(xi)) = f(xr), for 1 ≤ i ≤ k. (4)

Any such point xr , i ≤ r ≤ k is called a record point. We say that a numerical
algorithm solves the problem (1) after k evaluations if a set Xk is such that
m∗k ≤ f ∗ + ε or, equivalently, (xr ∈ Xk) belongs to the set S∗ε . The algorithm
is defined by a rule for constructing such a set Xk.
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It is follows from (4) that the sequence (m∗i )1≤i≤k is an nonincreasing one.
With each point xi, we associate its neighbor interval [a, b]i .
Consider the following sets Si and their union Uk,

Si = {x : xi ∈ [a, b]i , m
∗
i − ε ≤ f(x)}, 1 ≤ i ≤ k, 5

(2)

Uk =
k
∪
i=1
Si.

We say that the sets Si cover the interval [a, b], if

[a, b] ⊂ Uk. (6)

If the condition (6) is not fulfilled, then the search for minimum is continued
on the set [a, b] \Uk. The process is finished when the whole interval [a, b] is
completely covered. Instead of finding the global minimum on [a, b], one finds
the global minimum on subintervals whose union contains [a, b] .

3 Sequential Covering Algorithm for Hölder

Functions

In this section, we show how to construct a covering of [a, b] for functions
satisfying the Hölder condition (2). To construct such a covering, we must
know how to construct a minorant of the objective function f on [a, b] . Assume
that the function f satisfies the condition (2). Hence, we obtain the minorant
of f on the interval [a, b] :

f(y)− h |x− y|α ≤ f(x), ∀x, y ∈ [a, b] (7)

Using this minorant we prove the following theorem:

Theorem 1.1 Let f satisfy (2). We assume that f is evaluated at the
points x1, x2, ..., xk. We put m∗k = min

1≤i≤k
f(xi) and designate by (I(xi, rik))1≤i≤k

the set of intervals centered at {xi}1≤i≤k and with radius riksuch that rik =(
f(xi)−m∗k+ε

h

)1/α
.

If the union
k
∪
i=1
I(xi, rik) covers [a, b], then m∗k is a global minimum of f on

[a, b] .

Proof. First, the inequality (7) yields that the inequality

m∗k − ε ≤ f(x), (8)
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will be satisfied for all x satisfying

m∗k − ε ≤ f(y)− h |x− y|α . (9)

Let xi belongs to Xk, i ≤ k. Introduce the intervals I(xi, rik) such that

I(xi, rik) = {x ∈ R, |x− xi| ≤ rik} . (10)

From the inequality (9) and for y = xi, we have

|x− xi| ≤
(
f(xi)−m∗k + ε

h

)1/α

.

The center of the interval I(xi, rik) is the point xi and the radius is

rik =

(
f(xi)−m∗k + ε

h

)1/α

. (11)

From (7), (10) and (11) it follows that (8) holds for all x ∈ I(xi, rik).

Now, let m = min
x∈[a,b]

f(x) = f(x0), where x0 ∈ [a, b], since
k
∪
i=1
I(xi, rik) contains

the interval [a, b], then x0 ∈
k
∪
i=1
I(xi, rik), hence there exists a 1 ≤ i0 ≤ k such

that x0 ∈ I(xi0 ,
(
f(xi0 )−m

∗
k+ε

h

)1/α
). Consequently

|xi0 − x0| ≤
(
f(xi0)−m∗k + ε

h

)1/α

,

therefore
h |xi0 − x0|

α ≤ f(xi0)−m∗k + ε. (12)

From the inequality (12) and, taking into account the Hölder condition of f
for all xi0 and x0 in [a, b] , we obtain

m∗k −m ≤ ε.

We conclude that m∗k is a global minimum of f on [a, b] .

3.1 SCA Algorithm

At realizing the method, the intervals (I(xi, rik))1≤i≤k and Xk are sequentially
constructed. We suppose that the last computation of f was fulfilled at the
point xk, the record point was xr and the record m∗k is determined from (4).
If at the new point xk+1 we have f(xk+1) < m∗k, we set m∗k+1 = f(xk+1) and
replace the radius rik by ri(k+1). If the intervals (I(xi, ri(k+1)))1≤i≤k cover the
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interval [a, b], the computations end; otherwise, we take a new point xk+2

and the minimization procedure is continued on [a, b] \
k
∪
i=1

I(xi, ri(k+1)). The

procedure terminates when the interval [a, b] is completely covered. Since [a, b]
is bounded, such a covering is accomplished in a finite number of steps. The
interval [a, b] is covered by intervals of different radii (nonuniformity). Consider
a point xi at whichm∗i = f(xi), 1 ≤ i ≤ k, obviously we have f(xi) = m∗i ≥ m∗k,
hence,

rik =

(
f(xi)−m∗k + ε

h

)1/α

≥
( ε
h

)1/α
.

Then the shortest radius is at points xi at which m∗i = f(xi) i.e.,
(
ε
h

)1/α
. We

then take x1 = a +
(
ε
h

)1/α
, which is the center of the interval I(x1, r11) and

radius r11 =
(
ε
h

)1/α
, because at the initialization f(x1) = m∗1. With this value

of x1, we save time and we are sure not to have ignored the global minimum
in a neighbourhood of this point. Indeed, if

x∗ = arg min
x∈[a,b]

f(x) ∈ I(x1, r11),

and, taking into account the Hölder condition of f for x1, x
∗ in [a, b] , we

obtain
f(x1)− f(x∗) ≤ ε.

For the point x2 which is the center of the interval I(x2, r22) and radius r22 =(
f(x2)−m∗2+ε

h

)1/α
, we shoud take x2 = x1 + r11 + r22. But r22 is unknown, and

since the shortest radius is
(
ε
h

)1/α
, then we take

x2 = x1 + r11 +
( ε
h

)1/α
= x1 + 2

( ε
h

)1/α
.

For k ≥ 2, the sequence (xk)k≥1 has the form: x1 = a+
(
ε
h

)1/α
xk+1 = xk +

(
ε
h

)1/α
+
(
f(xk)−m∗k+ε

h

)1/α
for k ≥ 1.

However, the evaluation points are not equidistant and form an iterative se-
quence. This choice allows us not to miss the global minimum of f on each
subintervals of [a, b].

Algorithm SCA
1. Initialization.
Put k = 1, x1 = a+

(
ε
h

)1/α
, xε = x1, m

∗
ε = f(xε)
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2. Steps k = 2, 3, ...

Put xk+1 = xk +
(
ε
h

)1/α
+
(
f(xk)−m∗ε+ε

h

)1/α
.

If xk+1 > b−
(
ε
h

)1/α
, then stop.

Otherwise, determine f(xk+1).
If f(xk+1) < m∗ε, then put xε = xk+1,m

∗
ε = f(xk+1).

Put k = k + 1 go to 2.

4 A Modified Sequential Covering Algorithm

Some modifications have been proposed for the case of Lipschitz functions [5].
In this paper we propose a new modification for the case of Hölder functions.
For this, we give the following result.

Theorem 1.2 Let f be a real Hölder function with constant h > 0 and ex-
ponent α (0 < α < 1), defined on the interval [a, b] of R. We assume that f
is evaluated at the points x1, x2, ..., xk. We put m∗k = min

1≤i≤k
f(xi) and designate

by (I(xi, rik))1≤i≤k the set of intervals centered at {xi}1≤i≤k and with radius

riksuch that rik =
f(xi)−m∗k+

ε
2

Cε/2
, where

Cε =


αh

1
α

ε
1−α
α

for α ∈
{

1
m
,m ∈ N∗\ {1}

}
αh

α+1
α

ε
1
α

for α ∈ ]0, 1[ r
{

1
m
,m ∈ N∗\ {1}

}
.

If the union
k
∪
i=1
I(xi, rik) contains [a, b] , then m∗k is a global minimum of f on

[a, b] .

Let us first give the following result:

Theorem 1.3 Let f be a real Hölder function with constant h > 0 and ex-
ponent 0 < α < 1, defined on the interval [a, b] of R. Then there exists a
constant Cε > 0 such that

|f(x)− f(y)| ≤ Cε |x− y|+ ε , ∀ε > 0 and ∀ x, y ∈ [a, b] . (13)

We give the following lemma:

Lemma 1. Let δ > 0 and 0 < α < 1, then there exists a constant C > 0 such

that:
zα − Cz − δ ≤ 0, ∀ z > 0. (14)

Proof. Indeed:
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1) If α = 1
m
, m ∈ N∗\ {1}, from the inequality (14), we have

z ≤ (Cz + δ)m .

By the Binomial formula, we obtain, for any C > 0 :

(Cz + δ)m = m
i=0

(mi ) Ciziδm−i = δm+mCzδm−1+...+Cmzp = mCzδm−1+R(z, C, δ).

Where (mi ) := m!
i!(m−i)! , and R(z, C, δ) > 0 is the rest of Binomial formula.

Hence,
(Cz + δ)m ≥ mCzδm−1,

and therefore
Cz + δ ≥ (mCδm−1)

1
m z

1
m ,

then

z
1
m ≤ C

(mCδm−1)
1
m

z +
δ

(mCδm−1)
1
m

. (15)

Taking C = δ1−m

m
we obtain the inequality (14).

2) If α 6= 1
m

, m ∈ N∗\ {1} , then there exists p ∈ N∗ such that

1

p+ 1
< α <

1

p
,

therefore, from the inequality (15),

zα ≤ z
1
p+1 ≤ δ−p

p+ 1
z + δ ≤ αδ−

1
α z + δ.

Hence (14) is obtained with C = αδ−
1
α .

Proof of the theorem 1.3
If in the condition (2) and by lemma 1, we put z = |x− y| in the inequality
(14), then there exists a constant C > 0 such that

|x− y|α ≤ C |x− y|+ δ, (16)

with

C =

 αδ
α−1
α for α ∈

{
1
m
,m ∈ N∗\ {1}

}
αδ−

1
α for α ∈ ]0, 1[ r

{
1
m
,m ∈ N∗\ {1}

}
.

Setting hδ = ε, and since f is hölderian, we deduce the theorem 1.3 from (2)
and (16).

Proof of the theorem 1.2
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By the inequality (13) we have ∀ε > 0 and ∀ x, y ∈ [a, b] , there exists a
constant Cε/2 > 0, such that

f(y)− Cε/2 |x− y| −
ε

2
≤ f(x).

With the modification which we have proposed above, and for a fixed value
y ∈ [a, b], if a certain x satisfy

m∗k − ε ≤ f(y)− Cε/2 |x− y| −
ε

2
, (17)

then m∗k − ε ≤ f(x). If we take y = xi, and by the inequality (17) we have

|x− xi| ≤
f(xi)−m∗k + ε

2

Cε/2
.

Hence, we can cover the interval [a, b] by the family of the intervals

I(xi, rik) =

{
x ∈ R, |x− xi| ≤

f(xi)−m∗k + ε
2

Cε/2

}
;

and the constant Cε is given explicitly by theorem 1.2.

Algorithm MSCA1

1. Initialization.
Put k = 1, x1 = a+ ε

2Cε/2
, xε = x1, m

∗
ε = f(xε)

2. Step k = 2, 3, ...
Put xk+1 = xk + f(xi)−m∗ε+ε

Cε/2

If xk+1 > b then stop.
Otherwise, determine f(xk+1).
If f(xk+1) < m∗ε, then put xε = xk+1,m

∗
ε = f(xk+1)

Put k = k + 1 go to step 2.

4.1 Remark

If a radius r
′

ik is such that r
′

ik > rik, then the modified nonuniform covering
algorithm MSCA2 that we suggest will be quickened a little. However, it is
interesting to look for other constants C

′
ε smaller than Cε to show that r

′

ik > rik
and in this case, the covering by the intervals I(xi, r

′

ik) becomes quicher than
that of the intervals I(xi, rik). We shall numerically establish this result. The
following lemma is needed for our purpose in proving.

Lemma 2. Let h, ε > 0 and 0 < α < 1. We consider the function
gα : ]0,∞[→ R defined by

gα(z) =
hzα − ε

z
.
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Then

gαmax = gα(
(

ε
h(1−α)

)1/α
) = αε

1−α

(
h
ε
(1− α)

)1/α
.

Proof. We observe that the unique solution of the equation

g
′

α(z) = 0,

is z0 =
(

ε
h(1−α)

)1/α
∈ ]0,∞[ . The function gα(z) is increasing on ]0, z0[ and

decreasing on ]z0,∞[ . Thus, the global maximum for gα(z) is attained at z0.
From the inequality (13) we deduce:

C
′

ε ≥
|f(x)− f(y)| − ε

|x− y|
, ∀ε > 0 and ∀ x, y ∈ [a, b] .

And since f is hölderian on [a, b] then we have

|f(x)− f(y)| − ε
|x− y|

≤ gα(|x− y|), ∀ε > 0 and ∀ x, y ∈ [a, b] .

Therefore, we can take

C
′

ε = sup
x,y∈[a,b]

gα(|x− y|) ≥ sup
x,y∈[a,b]

|f(x)− f(y)| − ε
|x− y|

.

And with the lemma 2 we have

C
′

ε = sup
x,y∈[a,b]

gα(|x− y|),

hense

C
′

ε =
αε

1− α

(
h

ε
(1− α)

)1/α

.

We can now show that C
′
ε < Cε for all h, ε > 0 and 0 < α < 1.

5 Numerical Experiments

This section reports numerical results of the algorithm SCA and the proposed
algorithms MSCA1 and MSCA2 with the Hölder condition (2) in solving some
test problems. The following problems are found in literature. In order to
find the global minimum of the following examples, we use all of the above
algorithms which have been implemented in MATLAB and the experiments
have been executed at a PC with Intel Core Duo 1.6G and 1G RAM.

Problem 1. Consider the following global minimization problem [20] :
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min
x∈[0,1]

f1(x) = − cosx exp

(
1−
√
|sinπx−0.5|

π

)
.

h = 4.3, α = 1/2
Problem 2. Consider the following global minimization problem [18] :

min
x∈[0,10]

f2(x) =
5∑

k=1

k |sin ((3k + 1)x+ k)| |x− k|
1
5 .

h = 77, α = 1/5

Problem 3. Consider the following global minimization problem [8] :

min
x∈[−0.5,0.5]

f3(x) = |x+ 0.25|
2
3 − 3 cos x

2
.

h = 4.26, α = 2/3
All these test functions are neither differentiable nor Lipschitz on their feasible
domains but only hölderian.

Table. Numerical tests
Tol(ε) SCA MSCA1 MSCA2

f1 0.1 x∗ =0.167117 0.167117 0.167117
f(x∗) =-2.650706 -2.650706 -2.650706
nep =191 259 185

f2 0.1 x∗ =7.388878 2.8186e-009 7.385764
f(x∗) =14.067589 14.0676 14.067532
nep =100000 100000 100000

f3 0.1 x∗ =-0.251838 -0.252227 -0.251957
f(x∗) =-2.961241 -2.959120 -0.952687
nep =56 64 51

nep :Number of evaluation points.

6 Solving Systems of Nonlinear Equations

Many applied problems are reduced to solving systems of nonlinear equations
[3], [13], [21], which is one of the most difficult numerical computation problems
in mathematics. This task has applications in scientific fields such as physics
[16], chemistry [14], economics [1] etc. There are several methods proposed
in the literature to tackle this problem, however a complete solution has not
yet been achieved. Newton and quasi-Newton type methods and their modifi-
cations [19] are traditional optimization-based methods for solving systems of
nonlinear equations. But these methods need the differentiability assumption
for the functions of the system. In this work, we propose a modified algorithm
MSCA to solve systems of nonlinear equations formulated as an optimization
problem.
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Let us consider the problem of computing at least one solution of nonlinear
and nondifferentiable systems with simple bound constraints. We can express
this problems as 

f1(x) = 0
f2(x) = 0

...
fn(x) = 0

(S)

Let [a, b] ⊆ R be the interval where there exists one or more roots of the
nonlinear system (S). Let us suppose that the function fi : R→ R, for all
i = 1, ..., n, can be nondifferentiable, but it must be bounded in [a, b]. We shall
suppose the Hölder continuity of all functions fi on [a, b], i.e.,

|fi(x)− fi(y)| ≤ hi |x− y|αi , ∀x, y ∈ [a, b] ,

where hi > 0 and 0 < αi < 1 , for each i = 1, ..., n, are a priori known .
We first convert the nonlinear system (S) into an equivalent global optimiza-
tion problem, and then apply the modified algorithm MSCA to the problem.
Let us introduce the notation

H(x) = (f1(x), f2(x), ..., fn(x))T ,

( T denotes transpose of the row vector (f1(x), f2(x), ..., fn(x)). Then (S) can
be written as

H(x) = 0, x ∈ [a, b].

To solve this problem approximately it suffices to find at least one point x∗

from the set
[a, b]ε = {x ∈ [a, b] : ‖H(x)‖2 ≤ ε} ,

where ‖.‖2 is the Euclidean norm in Rn.
The typical methods for solving (S) are global optimization methods in which
the system (S) can be reformulated as the following global optimization prob-
lem (OP ) :

min
x∈[a,b]

f(x) := ‖H(x)‖2 . (OP )

In (OP ), f : [a, b] ⊆ R→ R is a nonnegative, nonsmooth and possibly multi-
modal function. Since the system represented by (S) has solution(s) in [a, b],
then, in terms of results, to solve this system is equivalent to find a global
minimum(a) of the optimization problem given by (OP ).
The following proposition, needed in order to justify the approach taken, shows
the Hölder property of f.

Proposition 1. If the functions fi, i = 1, ..., n, are Hölder continuous with
the parameters hi > 0 and 0 < αi < 1 on [a, b], then f is also Hölderian on

[a, b], with the parameters h = (
n∑
i=1

h2i )
1/2and α = min

1≤i≤n
αi.
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Proof If we use the well known triangle inequality

|‖a‖2 − ‖b‖2| ≤ ‖a− b‖2 ,

and from the Hölder property of the functions fi, we obtain for all pairs x1, x2 ∈
[a, b], the chain of relations

|f(x1)− f(x2)| = |‖H(x1)‖2 − ‖H(x2)‖2| ≤ ‖H(x1)−H(x2)‖2

≤

(
n∑
i=1

h2i |x1 − x2|
2αi

)1/2

≤ (
n∑
i=1

h2i )
1/2. |x1 − x2|

min
i
αi
.

This shows that f defines a Hölder function on [a, b].

Proposition 2. x∗ is a solution of system (S) if and only if

0 = f∗ = ‖H(x∗)‖2 = min {‖H(x)‖2 , x ∈ [a, b]} .

Proof By the definition, f(x) ≥ 0. Thus, for the global minimizer x∗ of f(x)
it holds f(x∗) ≥ 0. If there exists x∗ ∈ [a, b] such that f(x∗) = 0, then it
implies that x∗ is a global minimizer and subsequently f1(x

∗) = f2(x
∗) = ... =

fn(x∗) = 0 and then x∗ is a root for the corresponding system of nonlinear
equations. The proof is an immediate consequence of the norm property, i.e.,
‖z‖2 ≥ 0, ∀z and ‖z‖2 = 0⇔ z = 0.

By virtue of the proposition 2, the optimization problem contains all of the
information on (S). We see that min

x∈[a,b]
f(x) > 0 holds if and only if the system

(S) has no solution, and in the case min
x∈[a,b]

f(x) = 0 the set of solutions of the

problem (OP ) coincides with the set of solutions of (S).

Example The following example is proposed by the author. Consider the
system of nonlinear equations:

f1(x) =
√

9
4
− x2 −

√
5
2

= 0

f2(x) =
∣∣sin(π

2
x)
∣∣ ∣∣∣√2−x√

2−1

∣∣∣ 13 − x = 0

f3(x) = − cos(x+ π
2
− 1)e1−

√
|sinπ(x+π2−1)− 1

2 |
π = 0.

(S
′
)

The functions f1(x), f2(x) and f3(x) of the system (S
′
) are hölderian on the

interval [−1.5, 1.5] with respectively the constants
(h1 =

√
3, α1 = 1/2), (h2 = 5.4, α2 = 1/3) et (h3 = 7.3, α3 = 1/2).
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The system (S
′
) is equivalent to the following global minimization problem:

min
x∈[−1.5,1.5]

f(x),

where f(x) = ‖H(x)‖2 =
√

(f1(x))2 + (f2(x))2 + (f3(x))2, is a Hölder function

with the constant h =
√
h21 + h22 + h23 = 9.2439 and α = min(α1, α2, α3) = 1/3.

Applying the modified nonuniform covering algorithm we obtain for ε = 0.1,
the solution of (S

′
), by x = 1.0000062.

7 Conclusion

The global optimization of Hölder functions has already been studied. In our
work we bring an ordered sequential covering algorithm for univariate Hölder
functions without using any assumptions of differentiability or convexity of
the objective function, but only the knowledge of the parameters h and α. The
method thus obtained is simple, efficient and its convergence is proved. We
have applied the modified algorithm for solving nonsmooth system of nonlinear
equations as an equivalent converted global optimization problem. Numerical
examples are given and show the effectiveness of our proposed algorithm. In
the future, the author will focus on the applicability of the algorithm MSCA
for the case of Hölder functions with several variables defined on the hyper-
rectangle [a1, b1]× [a2, b2]× ...× [an, bn] of Rn.
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